The Haag-Kastler Axioms for the P(ϕ) 2 7 1 Model on the De Sitter Space 0 2 r Christian D. Jäkel∗and JensMund† a M March 14,2017 3 1 ] h Abstract p - WeestablishtheHaag-Kastleraxiomsforaclassofmodelsonthetwo- h dimensionaldeSitterspace,includingtheP(ϕ) model. 2 t a m 1 Introduction [ 2 Inrecentwork[2],wehaveprovidedanovelconstructionoftheP(ϕ) model 2 v on the de Sitter space. Our work was presented in the canonical formalism, 1 3 and although finite speed of light was established, we find it worthwhile to 2 provideaproofoftheHaag-Kastleraxioms. 8 0 1. 2 One-particle space 0 7 Thetwo-dimensionaldeSitterspace 1 : . v dS= x R1+2 |x2−x2−x2 =−r2 , r>0, (1) i (cid:8) ∈ 0 1 2 (cid:9) X canbeviewedasaone-sheetedhyperboloid,embeddedinthe(1+2)-dimensional ar MinkowskispaceR1+2. Theembedding(1)iscompatiblewiththemetricand thecausalstructure,i.e.,thedeSitterspacedSinheritsitsmetricandthecausal structurefromtheambientMinkowskispace. TheisometrygroupofdSisO(1,2). Theconnectedcomponentcontaining theidentityisSO (1,2). Thelatterisgeneratedbytherotations 0 1 0 0 . R (α) = 0 cosα −sinα , α [0,2π), 0 ∈ 0 sinα cosα ∗[email protected],UniversidadedeSãoPaulo(USP),Brasil †mund@fisica.ufjf.br,DepartamentodeFisica,UniversidadedeJuizdeFora,Brasil 1 andtheLorentzboosts cosht 0 sinht . Λ (t) = 0 1 0 , t R. 1 ∈ sinht 0 cosht Accordingtoourconvention, the boostsΛ (t)keepthe x -axisinvariant,and 1 1 thereforecorrespondtoboostsinthex -direction. 2 Thecircle . S1 ={x dS|x =0} 0 ∈ forms a Cauchy surface for dS. For two points x = (0,rsinψ,rcosψ) and y=(0,rsinψ′,rcosψ′)onthecircleS1,theWightmantwo-pointfunctionofa scalarfreefield(analysedin[4])equals W(2)(x,y)=cνPs+(−cos(ψ−ψ′)). (2) HerePs+ istheLegendrefunctionfortheparameter s± =−1 iν, (3) 2 ∓ with i 1 −ζ2 if0<ζ<1/2, ν= 4 qζ2− 1 ifζ>1/2, 4 andζtheeigenvalueoftheCqasimiroperatorofSO (1,2). 0 Thetwo-pointfunction(2)givesrisetoascalarproductonC (S1): ∞ . hh,h′iH =cνZ rdψZ rdψ′ h(ψ) (4) S1 S1 Ps+ −cos(ψ−ψ′) h′(ψ′). × Thevalueofthepositivenormalisationco(cid:0)nstantis (cid:1) 1 1 c =− = . ν 2sin(πs+) 2cos(iνπ) Note that the singularity for ψ = ψ′ is integrable. The completion of C (S1) w.r.t.thisscalarproductisaone-particleHilbertspace,whichwedenote∞byH. Lemma2.1. Thescalarproduct(4)canbeexpressedas h,h′ H = h, 1 h′ , h i 2ω L2(S1,rdψ) (cid:10) (cid:11) withωastrictlypositiveself-adjointoperatoronL2(S1,rdψ)withFouriercoefficients Γ k+s+ Γ k+1−s+ ω(k)=r−1(k+s+) 2 2 , k Z. Γ(cid:16)k−s+(cid:17) Γ(cid:16)k+1+s+(cid:17) ∈ 2 2 e (cid:0) (cid:1) (cid:0) (cid:1) 2 Oneofthekeyresultsin[2]isthatHcarriesaunitaryirreduciblerepresenta- tionoftheLorentzgroup: Theorem2.2. Therotations u(R (α))h (ψ)=h(ψ−α), α [0,2π), h H, 0 ∈ ∈ (cid:0) (cid:1) andtheboosts u(Λ (t))=eitωrcosψ , t R, 1 ∈ generatearepresentationofSO (1,2)onH. 0 Definition2.3. LetI+ betheopenhalf-circle . I+ ={x S1 |x2 >0}. ∈ WenowdefineR-linearsubspacesofH: i.) Forthewedge . W = x dS|x >|x | 1 2 0 ∈ (cid:8) (cid:9) weset . H(W1)= h H|supp ℜh, ω−1ℑh I+ I+ . ∈ ⊂ × (cid:8) (cid:9) (cid:0) (cid:1) ii.) ForanarbitrarywedgeW =ΛW ,Λ SO (1,2),weset 1 0 ∈ . H(W)=u(Λ)H(W ). (5) 1 iii.) Foracausallycomplete,openandboundedregionO,weset . H(O)= H(W). (6) O⊂W \ ThenetO H(O)hasanumberofinterestingproperties,whichwillgive 7→ risetothelocalstructureoffreequantumfieldsonthedeSitterspace. Proposition2.4. ThesubspacesintroducedinDefinition2.3havethefollowingprop- erties: i.) (WedgeDuality).TheR-linearsubspaceH(W′)fortheoppositewedge . W′ = x dS|xspace-likeseparatedfromW ∈ (cid:8) (cid:9) equalsthesymplecticcomplement . H(W)′ = h H|ℑ h,g =0 g H(W) ∈ h i ∀ ∈ (cid:8) (cid:9) ofH(W). 3 ii.) (Localisation). For I a bounded open interval in S1, let O = I′′ denote the I causalcompletionoftheintervalIindS. Then H(O )= h H|supp ℜh, ω−1ℑh I I . I ∈ ⊂ × (cid:8) (cid:9) iii.) (Covariance). ForOacausallycomplete,op(cid:0)enandbound(cid:1)edregionsOandΛ ∈ SO (1,2),onefinds 0 H(ΛO)=u(Λ)H(O). Inparticular, u Λ (t) H(W )=H(W ) t R. 1 1 1 ∀ ∈ iv.) (Microcausality).Fortw(cid:0)ospac(cid:1)e-likeseparatedcausallycomplete,openandbounded regionsO andO ,onefinds 1 2 ℑ h1,h2 H =0 hi H(Oi), i=1,2. h i ∀ ∈ Proof. ForthespecialcaseW = W ,propertyi.)followsfromthedefinitionof 1 H(W ),thedefinitionofthesymplecticcomplement,andthefactthat 1 L2(I,dψ)⊥ =L2(Ic,dψ). Thegeneralcasefollowsfromdefinition(5). Next,let . W(α)=R (α)W , α [0,2π), 0 1 ∈ beawedgewhoseedgesliesonS1. AsO iscausallycomplete, I W =O =W(α) W(β) I ∩ OI\⊂W forsomefixedα,β [0,2π).Inspectingthedefinitions,wefindthat ∈ h H|supp ℜh, ω−1ℑh I I ∈ ⊂ × (cid:8) (cid:9) isequalto (cid:0) (cid:1) H W(α) H W(β) . ∩ AsbothW(α)andW(β)arew(cid:0)edges(cid:1)whic(cid:0)hconta(cid:1)inOI,wehave H(O ) H W(α) H W(β) . I ⊆ ∩ Next,weassumethatWisanarbitrar(cid:0)ywedg(cid:1)ewh(cid:0)ichcon(cid:1)tainsOI.Theopposite wedgeW′ofW is,likeanywedge,oftheformΛβ(t)R (α)W forsuitableα,β 0 1 andt. Asaconsequenceoffinitespeedoflight(seeProposition4.10.2in[2]),we have H(W′)=u Λ(β)(t) H W(α) h(cid:0) H|s(cid:1)up(cid:0)p ℜh,(cid:1)ω−1ℑh J J , ⊂ ∈ ⊂ × (cid:8) (cid:9) withJ = Γ Λ(β)(t)R0(α)I+ S1,where(cid:0)Γ(M)isthe(cid:1)domainofdependenceof ∩ asetM,i.e.,theunionofthefutureΓ+(M)andthepastΓ−(M)ofM. (cid:0) (cid:1) 4 Notethat i.) Γ Λ(β)(t)R0(α)I+ =Γ(W′); ii.) W(cid:0)′isspace-liketo(cid:1)I,sinceW containsO . I . HenceΓ(W′) S1isintheinteriorIc =S1\IofthecomplementofIwithinS1. ∩ Thus H W′ h H|supp ℜh, ω−1ℑh Ic Ic . ⊂ ∈ ⊂ × (cid:8) (cid:9) Itfollowsthat (cid:0) (cid:1) (cid:0) (cid:1) H W =H W′ ′ (cid:0) (cid:1) h(cid:0) H(cid:1) |supp ℜh, ω−1ℑh I I . ⊇ ∈ ⊂ × (cid:8) (cid:9) =H(W(cid:0)(α))∩H(W(β))(cid:1) | {z } Thisverifiespropertyii.). Inordertoverifypropertyiii.),wecompute H(ΛO)= H(ΛW)= H(ΛW) ΛO⊂ΛW O⊂W \ \ = u(Λ)H(W) O⊂W \ =u(Λ) H(W) . O⊂W ! \ =H(O) | {z } Finally,propertyiv.)followsfromthefactthatifO andO aretwospace-like 1 2 separated causally complete, open and bounded regions, then there exists a wedgeW =ΛW suchthat 1 O W and O W′. 1 2 ⊂ ⊂ Applyingu(Λ)totheidentityH(W )′ =H(W )′,weseethatlocalityisacon- 1 1 sequenceofcovarianceandwedgeduality. 3 Second Quantization The bosonic Fock space F = Γ(H) over H is defined as the direct sum of the n-particlespaces: Γ(H)=. H⊗ns , H⊗0s =. C, ⊕n=0 ∞ withH⊗ns then-foldtotallysymmetrictensorproduct s ofHwithitself. The ⊗ coherentvectors . 1 Γ(h)= h h ⊕n=0√n! ⊗s···⊗s ∞ n−times | {z } 5 form a total set in F. The vector Ω = Γ(0) is called the Fock vacuum. One ◦ canalsodefinesecondquantizedoperators. LetAbeaclosed,denselydefined linearoperatoronFwithdomainD(A). Then Γ(A): F F → istheclosureofthelinearoperatoractingonthelinearcombinationsofcoher- entvectorswithexponentinD(A)suchthat Γ(A)Γ(h)=Γ(Ah). Thisexponentiationpreservesself-adjointness,positivityandunitarity. 4 Nets of Local Algebras Forh,g H,therelations ∈ V(h)V(g)=e−iℑhh,giV(h+g), V(h)Ω◦ =e−12khk2Γ(ih), defineunitaryoperators,calledtheWeyloperators. Theysatisfy V∗(h)=V(−h) and V(0)=1. WeusetheWeyloperatorstoassociateavonNeumannalgebrasactingonthe Fockspace F to the wedge W : letA (W )denote the von Neumannalgebra 1 ◦ 1 generatedbytheWeyloperators V(h)|h H(W ) . 1 ∈ (cid:8) (cid:9) Given a representation U(Λ), Λ SO (1,2), of the Lorentz group acting on 0 ∈ FockspacewhichactskineticallyontheCauchysurfaceS1,wecanthandefine von Neumann algebras associated to arbitrary bounded, causally complete, convex regions. We proceed in steps, repeating the ideas which lie behind Definition 2.3 and starting from the free algebra of the wedge W . Note that 1 ΛW W Λ=Λ (t)forsomet R. 1 1 1 ⊂ ⇔ ∈ Definition 4.1. Given a unitary representation Λ U(Λ) of the Lorentz group 7→ SO (1,2)actingonFockspaceFandsatisfyingthecondition 0 U Λ (t) A (W )U Λ (t) −1 =A (W ), t R, 1 0 1 1 0 1 ∈ (cid:0) (cid:1) (cid:0) (cid:1) wedefinethefollowingvonNeumannalgebras: i.) ForanarbitrarywedgeW =ΛW ,Λ SO (1,d),weset 1 0 ∈ . A(W)=U(Λ)A W U(Λ)−1 . (7) ◦ 1 (cid:0) (cid:1) 6 ii.) For an arbitrary bounded, causally complete, convex region (these are the de Sitteranalogsofthedoublecones)O dS,weset ⊂ . A(O)= A W . (8) W⊃O \ (cid:0) (cid:1) Theinclusionpreservingmap O A(O) 7→ is called the net of local von Neumann algebras for the bosonic field on the de Sitter spacedStransformingunderU. Remarks4.1. i.) IncaseU U , ◦ ≡ . U (Λ)=Γ(u(Λ)), Λ SO (1,2), ◦ 0 ∈ wewilldenotethegeneratorofone-parameterunitarygroupt U Λ (t) by ◦ 1 7→ L andthelocalalgebrabyA (O). ItfollowsfromaresultbyAraki(Theorem1 ◦ ◦ (cid:0) (cid:1) in[1])andProposition2.4ii.)that A (O )= V(h)|h H, supp ℜh, ω−1ℑh I I ′′; ◦ I ∈ ⊂ × (cid:8) (cid:9) (cid:0) (cid:1) justasonemighthaveexpected. ii.) For the P(ϕ) model on the de Sitter space, the representation U is given as 2 follows. a.) Therotationsarethefreeones, U R (α) =Γ(u(R (α)), α [0,2π); (9) 0 0 ∈ (cid:0) (cid:1) b.) Thegenerator of the one-parameterunitary groupt U Λ (t) canbe 1 7→ expressed in terms of canonicalfields and canonical momenta (see [2] for (cid:0) (cid:1) details): L=L + lim rcosψdψ:P ϕ(δ (. −ψ)) :, ◦ ǫ→0ZS1 ǫ (cid:0) (cid:1) wherePisapolynomial,boundedfrombelow,ϕ(h)isthegeneratorofthe one-parameterunitarygroups V(sh),andδ approximatestheDirac ǫ 7→ deltafunctionasǫ 0. Asusual,the :: indicatesnormalordering. → In the general case, we will need a criterium for the representation of the Lorentzgroupwhichensuresthattheintersectionin(8)isnottrivial. Asuffi- cientconditionisthefollowing: assumethevonNeumannalgebrasaredefined asinDefinition4.1.Thenetoflocalalgebrasissaidtosatisfyfinitespeedoflight, 7 ifforanywedgeW,thealgebraA(W)iscontainedinthetime-zeroWeylalge- bra V(h)|h H; supp ℜh, ω−1ℑh J J ′′, (10) ∈ ⊂ × (cid:8) (cid:9) whereJ=Γ(W) S1. (cid:0) (cid:1) ∩ Theorem4.2. Assumethenetoflocalalgebrassatisfiesfinitespeedoflight. Then thelocalalgebrasassociatedtoanintervalI S1ontheCauchysurfacecoincidewith ⊂ thoseofthefreetheory,i.e., A(O )=A (O ), I S1 . I ◦ I ⊂ Proof. TheprooffollowstheideasexposedintheproofofProposition2.4ii.). ThusthekeystepistoshowthatforanywedgeWwhichcontainsO ,wehave I A(W′) V(h)|h H, supp ℜh, ω−1ℑh Ic Ic ′′, ⊂ ∈ ⊂ × (cid:8) (cid:9) . whereIc = S1\I. AstheedgesofW aren(cid:0)ecessarilys(cid:1)pace-orlight-liketoO , I thisinclusionfollowsfromfinitespeedoflightasexpressedin(10). Byduality, A(W) V(h)|h H, supp ℜh, ω−1ℑh I I ′′, ⊃ ∈ ⊂ × (cid:8) (cid:9) =A(cid:0)◦(OI) (cid:1) | {z } wheneverW includesO . I Remarks4.2. i.) FortheP(ϕ) modelonthedeSitterspace,property(10),whichencodesfinite 2 speedoflight,wasestablishedinTheorem10.1.1in[2]. ii.) The circle S1, which we use to identify the free field and the interacting field, couldbereplacedbyanyspace-likegeodesicΛS1,Λ SO (1,2). 0 ∈ 5 The Haag-Kastler Axioms AssumewehavedefinedanetO A(O)oflocalalgebrasaccordingtoDefi- 7→ nition4.1,withtherotationsbeingimplementedbythefreerepresentation(9). In case this net respects finite speed of light, it will also satisfy the following Haag-Kastleraxioms: Theorem5.1. ThenetO A(O)sharesthefollowingproperties: 7→ i.) (Locality). Thelocalalgebrassatisfy A(O ) A(O )′ if O O′ . 1 ⊂ 2 1 ⊂ 2 HereO′denotesthespace-likecomplementofOindSandA(O)′isthecommu- tantofA(O)inB(F). 8 ii.) (Covariance). The representation U: Λ U(Λ) act geometrically, i.e., for 7→ Λ SO (1,2), 0 ∈ U(Λ)A(O)U(Λ)−1 =A(ΛO). iii.) (ExistenceandUniquenessoftheVacuum[3]). Thereexistsaunique(upto aphase)unitvectorΩ F,which ∈ a.) isinvariantundertheactionofU(SO (1,2)); 0 b.) satisfies the geodesic KMS condition: for every wedge W = ΛW , Λ 1 ∈ SO (1,2),thepartialstate 0 . ω↾A(W)(A)= Ω,AΩ , A A(W), h i ∈ satisfiestheKMS-conditionatinversetemperatureβ = 2πrwithrespect totheone-parametergroupt U(Λ (t/r)),t R. W 7→ ∈ iv.) (Additivity). ForXadoubleconeorawedge,thereholds A(X)= A(O). (11) O⊂X _ The right hand side denotes the von Neumann algebra generated by the local algebras associated to double cones O contained in X. (It thus makes sense to defineA(X)forarbitraryregionsXbyEqu.(11).) iv′.) (Weakadditivity).ForeachdoubleconeO dSthereholds ⊂ A(ΛO)=A(dS) =B(F) . Λ∈S_O0(1,2) (cid:0) (cid:1) v.) (Time-slice axiom [5]). Let G be a causally complete region and let U be a neighborhoodofageodesicCauchysurfaceofGsuchthatG=U′′. Then A(U)=A(G), wherebothalgebrasaredefinedviaEq.(11). Inparticular,thealgebraofobserv- ables located withinan arbitrary small time–slice coincideswith thealgebra of allobservables. Proof. If O and O aretwo space-like separatedcausallycomplete, open and 1 2 boundedregions,thenthereexistsawedgeW =ΛW suchthat 1 O W and O W′. 1 2 ⊂ ⊂ Nowtheinteractingnetinheritswedgeduality A(W′)=A(W)′ fromtheidentityA (W′)=A (W )′ using(7). Thesefactsimplylocality. ◦ 1 ◦ 1 9 Next,letusprovecovariance. LetΛ SO (1,2)befixed. Byconstruction, 0 ∈ thesetofallwedgesequals{ΛW |Λ SO (1,d)}. Thus 1 0 ∈ A(ΛO)= A(ΛW)= α A(W) Λ ΛO⊂ΛW O⊂W \ \ (cid:0) (cid:1) =α A(W) =α A(O) , Λ Λ (cid:16)O\⊂W (cid:17) (cid:0) (cid:1) provingcovariance.Fortheproofofpropertyiii.)wereferthereaderto[2]. Next,wewillestablishpropertyiv.). Theinclusion A(X) A(O). ⊃ O⊂X _ is a consequence of isotony. Moreover, if X is a double cone, then X itself is among the double cones on the right hand side, so the inclusion automat- ⊂ ically holds. It remains to prove the inclusion if X is a wedge. If X = W , 1 ⊂ thenA(X)coincideswithA (X),forwhichtheadditivitypropertyfortheone- ◦ particlespaceimplies A (X)= A (RO ), ◦ ◦ I RR∈I_S⊂OI(+2) . whereIisany(arbitrarilysmall)intervalcontainedinI+ =W1 S1,andOI = ∩ I′′. Thus, A(X)= A(RO ) A(O). I ⊂ RR∈I_S⊂OI(+2) O_⊂X Thus,forX=W theinclusion holds. Bycovariance,italsoholdsifXisany 1 ⊂ otherwedge. Propertyiv′.)follows forma similar argument: for eachdouble cone O ⊂ dSthereexistsaLorentztransformationΛ SO (1,2)suchthatO=Λ O for 0 0 0 I ∈ someopenintervalI S1. Now ⊂ A ΛO = A ΛΛ O 0 I Λ∈S_O0(2,1) (cid:0) (cid:1) Λ∈S_O0(2,1) (cid:0) (cid:1) = A ΛO A RO I I ⊃ Λ∈S_O0(2,1) (cid:0) (cid:1) R∈S_O(2) (cid:0) (cid:1) = A RO =B(F). ◦ I R∈S_O(2) (cid:0) (cid:1) Again, the last equality relies on the additivity property for the one-particle space.Hence,propertyiv′.)isestablished. 10