RESEARCHARTICLE The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser R.DietmarMüller1*,XiaodongQin1,DavidT.Sandwell2,AdrianaDutkiewicz1,Simon E.Williams1,NicolasFlament1,StefanMaus3,MariaSeton1 1 EarthByteGroup,SchoolofGeosciences,TheUniversityofSydney,Sydney,NSW2006,Australia, 2 ScrippsInstitutionofOceanography,LaJolla,California,92093,UnitedStatesofAmerica,3 CIRES, UniversityofColoradoatBoulder,Boulder,Colorado,80309,UnitedStatesofAmerica *[email protected] Abstract Thepaceofscientificdiscoveryisbeingtransformedbytheavailabilityof‘bigdata’and OPENACCESS openaccess,opensourcesoftwaretools.Theseinnovationsopenupnewavenuesforhow scientistscommunicateandsharedataandideaswitheachotherandwiththegeneralpub- Citation:MüllerRD,QinX,SandwellDT,Dutkiewicz A,WilliamsSE,FlamentN,etal.(2016)TheGPlates lic.Here,wedescribeoureffortstobringtolifeourstudiesoftheEarthsystem,bothatpres- Portal:Cloud-BasedInteractive3DVisualizationof entdayandthroughdeepgeologicaltime.TheGPlatesPortal(portal.gplates.org)isa GlobalGeophysicalandGeologicalDatainaWeb gatewaytoaseriesofvirtualglobesbasedontheCesiumJavascriptlibrary.Theportal Browser.PLoSONE11(3):e0150883.doi:10.1371/ journal.pone.0150883 allowsfastinteractivevisualizationofglobalgeophysicalandgeologicaldatasets,draped overdigitalterrainmodels.TheglobesuseWebGLforhardware-acceleratedgraphicsand Editor:JuanA.Añel,UniversidadedeVigo,SPAIN arecross-platformandcross-browsercompatiblewithcompletecameracontrol.Theglobes Received:December6,2015 includeavisualizationofahigh-resolutionglobaldigitalelevationmodelandtheverticalgra- Accepted:February19,2016 dientoftheglobalgravityfield,highlightingsmall-scaleseafloorfabricsuchasabyssalhills, Published:March9,2016 fracturezonesandseamountsinunprecedenteddetail.Theportalalsofeaturesglobespor- trayingseafloorgeologyandaglobaldatasetofmarinemagneticanomalyidentifications. Copyright:©2016Mülleretal.Thisisanopen accessarticledistributedunderthetermsofthe TheportalisspecificallydesignedtovisualizemodelsoftheEarththroughgeologicaltime. CreativeCommonsAttributionLicense,whichpermits Thesespace-timeglobesincludetectonicreconstructionsoftheEarth’sgravityandmag- unrestricteduse,distribution,andreproductioninany neticfields,andseveralmodelsoflong-wavelengthsurfacedynamictopographythrough medium,providedtheoriginalauthorandsourceare credited. time,includingtheinteractiveplottingofverticalmotionhistoriesatselectedlocations.The globesputtheon-the-flyvisualizationofmassivedatasetsatthefingertipsofend-usersto DataAvailabilityStatement:Thedatadisplayedon thevirtualglobesareallpublishedandfreely stimulateteachingandlearningandnovelavenuesofinquiry. available,butatanumberofdifferentinternetsites. Linkstoallrelevantsitescanbefoundontheweb pagesfortheindividualvirtualglobesontheGPlates Portalathttp://portal.gplates.org/.Summary:Gravity grid,http://topex.ucsd.edu/grav_outreach/,Owner: Introduction ScrippsInstitutionofOceanography,Contact:David Sandwell,[email protected];Magneticgrid,http:// Geosciencereliesheavilyonthevisualizationofgeospatialdata,helpingustomakefundamen- geomag.org/models/emag2.html,Owner:National talnewinferencesabouttheEartharoundus,andhowithasevolved.Morethan100yearsago, OceanicandAtmosphericAdministrationoftheU.S. AlfredWegener[1]proposedthetheoryofcontinentaldriftbyestablishingpreviouslyunrec- DepartmentofCommerce,Contact:StefanMaus, [email protected];SRTL15Plus ognisedassociationsbetweengeologicalandfossildatafromwidelydispersedcontinents,and PLOSONE|DOI:10.1371/journal.pone.0150883 March9,2016 1/17 Cloud-BasedInteractive3DVisualizationofGeodatainaWebBrowser topography,http://topex.ucsd.edu/www_html/srtm30_ fittingtogetherthebathymetricoutlinesofthesecontinentsdefinedwithinmapsoftheEarth. plus.html,Owner:ScrippsInstitutionof Today,scientistshavevastquantitiesofdataattheirdisposaltopursuenewtheoriesofthe Oceanography,Contact:DavidSandwell, Earthsystem—theEarth’ssurfaceiscontinuouslymonitoredbysatellites,geologicalsampling [email protected];Seafloorlithologygrid,http:// fromlandandseaisbeingassembledintocommunitydatabases,geophysicalimagingprobes www.earthbyte.org/seafloor-lithology-of-the-ocean- basins/,Owner:TheUniversityofSydney,Contact: present-daydeepEarthstructure,andsupercomputingresourcespowerdynamicsimulations AdrianaDutkiewicz,[email protected]. ofthephysicalprocessesshapingtheworldaroundus,overtimescalesuptohundredsofmil- au;Platereconstructionsusedtoreconstructthe lionsofyears.Theseadvancesalsocreatenewproblemstosolve—howcanscientistsefficiently gravityandmagneticgrids,http://www.earthbyte.org/ shareandcommunicatethesedatasetswitheachother,andwithnon-specialists,tomaximise global-continental-and-ocean-basin-reconstructions- thepublicbenefitofthelargeeffortsundertakenincreatingthesedatasets? since-200-ma/,Owner:TheUniversityofSydney, Virtualglobeshavechangedthewayweinteractwithspatialdata,largelyduetothepopu- Contact:DietmarMüller,[email protected]. au;Dynamictopographygrids,http://www.earthbyte. larityofGoogleEarth[2]andNASAWorldWind[3].Followingthebroaduptakeofthese org/a-review-of-observations-and-models-of- technologiesbyscientistsandend-users,alternativetechnologiesforvirtualglobeshavebeen dynamic-topography-2013/,Owner:TheUniversityof developedthatarefasterfordisplayingofverylargedatasets(e.g.,fordetailed3Dtexturedcity Sydney,Contact:NicolasFlament,nicolas. models[4]),workwellonhand-helddevices,andcanfunctionentirelywithinaweb-browser. [email protected];Magneticanomaly Thesealternativetechnologiesalsoprovidepowerfuladditionalfunctionality,forinstanceuse identifications,http://www.soest.hawaii.edu/PT/ GSFML/ML/index.html,Owner:Numerousauthorsof ofcustomimageryandterrainmodelswithgreateruser-controlofverticalexaggeration;aded- paperslistedonwebsiteabove,Contact:Maria icatedinfrastructurefordisplayingtime-dependentdatasets;andtheabilitytoproducecustom Seton,[email protected]. user-interfaces,specificallydesignedtoshowcasetheresultsofaparticularstudyorproject. Funding:Thisprojectwassupportedbythe TheseandotherrequirementshavepromptedthedevelopmentoftheCesiumsoftwarelibrary AuScopeNationalCollaborativeResearch (cesiumjs.org). InfrastructureandaBigDataKnowledgeDiscovery Here,wedescribenoveldevelopmentsintheuseofCesiumvirtualglobestoenableweb- project(SIEFprojectRP04-174),Australian basedvisualizationandknowledgediscoveryforarangeofapplicationsinthegeosciences.We ResearchCouncilgrantFT130101564(MS), havecreatedtoolsthatallowend-userstointeractwithdatasetsthatdescribetheEarthasitis AustralianResearchCouncilgrantFL0992245 now,basedonremotesensingdata,marinegeophysicaldataandanovelapproachofmapping (RDM),ScienceIndustryEndowmentFundgrantRP 04-174RDM,andanARCLaureateFellowship seafloorlithology.Inaddition,ourvirtualglobesallowtheusertovisualizeEarth’splatetec- (FL0992245)andtheAuscopeNationalCollaborative tonicevolutionthroughdata-drivenreconstructionsofsupercontinentdispersalandglobal ResearchInfrastructure.Theauthorsalso numericalmodelsdescribinghowmantleconvectionhasshapedtheEarth’ssurfacethrough acknowledgesupportbytheNectarCloudandthe time.Wediscussthetechnicaldetailsrequiredtoimplementthesetools,andillustratehow AustralianNationalDataService(ANDS). theycanhelptoincreasepublicengagementwithgeoscience,andpromotecross-disciplinary CompetingInterests:Theauthorshavedeclared researchbymakinggeospatialdatasetsmoreaccessibletoawideaudiencewithinthescientific thatnocompetinginterestsexist. community. TechnicalBackground SystemArchitecture Cesiumisanopen-sourceJavaScriptlibrarybuiltontheWebGraphicsLibrary(WebGL)for interactivevisualizationof3Dglobesand2Dmapsinawebbrowser.WebGLisawebstan- dard,designedandmaintainedbytheKhronosGroup(www.khronos.org),forlow-level3D graphicsApplicationProgrammingInterface(API)basedonOpenGLES2.0–astandardAPI for2Dand3Dgraphicsonembeddedsystems[5].ThewebbrowsersimplementWebGLAPI asaDocumentObjectModel(DOM)interfaceinHTML5[6]Canvaselements,whichallows JavaScriptprogramstoutilizeGraphicsProcessingUnit(GPU)for3Dgraphicshardware acceleration.WebGLsupportiswidelyavailableinmodernbrowsers,suchasGoogleChrome, MozillaFirefox,Safari,andothers.Asavirtualglobeandmapengine,Cesiumutilizesa WebGLAPItoprovidefast,cross-platform,cross-browserandplugin-free3Drenderingfunc- tionality,whichmakesitidealforthedevelopmentofinteractive3Dglobalgeophysicaland geologicaldatavisualizationwebapplications. TheGPlatesPortal(portal.gplates.org)isdesignedwithathree-layeredarchitectureconsist- ingofpresentation,logicanddatalayers.Thelayerisalogicalconceptofcomponentgroups, PLOSONE|DOI:10.1371/journal.pone.0150883 March9,2016 2/17 Cloud-BasedInteractive3DVisualizationofGeodatainaWebBrowser Fig1.TheGPlatesPortal’smultilayeredarchitecture.Athree-layeredarchitectureconsistsof presentation,logicanddatalayers.ThepresentationlayerincludestheGraphicalUserInterface(GUI)and themaincanvasfor3Drendering.ThelogiclayercontainsanumberofwebserviceswritteninPythonand deployedinDjangoWebFramework[7].Thedatalayerfocusesonthestorageandretrievalofdata. doi:10.1371/journal.pone.0150883.g001 whichdividesalargesystemintodifferentareasoffunctionalitysothatthecomplexityofthe systemcanbeminimizedandeachlayercanbedesignedandimplementedseparatelyandeffi- ciently.Thismultilayerarchitecturealsoprovidesthehighestlevelofencapsulationandisola- tion,whichdecouplesthesystemandreducestherippleeffectofchangestothesystem.Fig1 illustratesthemultilayeredsystemarchitectureoftheGPlatesPortal. ThepresentationlayerincludestheGraphicalUserInterface(GUI)andthemaincanvasfor 3Drendering.TheGUIisdevelopedwithHTML5,JavaScriptandCascadeStyleSheet(CSS) andcanbeusedtocontrolthemaincanvasanddisplayadditionalinformation.ThejQuery JavaScriptlibraryisusedtohelpwiththeclient-sidescriptingandtheCesiumlibraryisusedto drawthe3DvirtualglobeandmapsonanHTML5Canvas. ThelogiclayercontainsanumberofwebserviceswritteninPythonanddeployedinDjango WebFramework[7].TheApacheHTTPServerisusedtohandletheHTTPprotocolbetween theDjangoWebFrameworkandclients.TheHTTPrequestsaredispatchedtocorresponding webservicesbytheDjangoWebFrameworkandtheHTTPresponsesaredeliveredbacktocli- entsthroughthesamestack. Thedatalayerfocusesonthestorageandretrievalofdata.Asetofdatasourceadaptersis createdtodecouplethewebservicesfromthedatastoragedetails.Thedatasourceadaptersread aDataSourceDescription(DSD)fileinJSONformattoretrieveandfeeddatabacktowebser- vices.Thewebservicesonlyinteractwithanabstractinterfaceofdatasourceadapters,soany changestothedatastoragearecompletelytransparenttothewebservice.Thisdecoupling allowsustochangethedatastoragedetailswithoutaffectingthewebservices.Currently,our datasourcesincludefilesonlocalvolumes,tablesinaPostGIS[8]database,objectsinAmazon SimpleStorageService(S3)[9]andsomeexternaldatasourceshostedbycollaborators. Benefitsofthe“SoftwareasaService”model Easyaccess. Userscanstartusingtheapplicationswithouthavingtogothroughasoftware installationprocess.Theapplicationscanbeeasilyaccessed,especiallyforuserswhohaveto facethestrictsoftwareinstallationpolicyoftenimposedbyITdepartmentofsome corporations. PLOSONE|DOI:10.1371/journal.pone.0150883 March9,2016 3/17 Cloud-BasedInteractive3DVisualizationofGeodatainaWebBrowser Automaticupgradeandmaintenance. Becausethesoftwareapplicationsarecentrally hosted,theycanbeeasilyupgradedbytheserviceproviders.Allusersusethesameversionofa software,whichmakescollaborationbetweenuserseasierbecausetherearenoproblemswith softwareversionmismatches.Bugfixescanbedeliveredquicklyandeasily.Usersdonothave towaitforthenextreleasetogetthebugsfixed. Connectivityandresourcessharing. IntheInternetera,itisimportantthatresourcesare connectedandshared.Theresources,suchascomputation,storageandsoftwarefunctionality, canbeutilizedmoreefficientlyinaconnectedenvironmentanduserscancollaboratemore efficientlybecausedataareconnectedandshared. Platformindependence. UsersonlyneedanInternetconnectionandawebbrowserto accesstheGPlatesPortal.Thereisnosignificantplatformrestriction.TheCesiumwebapplica- tionsharnessmoderntechnologytogiveusersaninteractive3Dexperience.Userscanrotate theglobe,adjusttheangleofview,changetheheightscale,andzoomintotheverydetailsof highresolutionrasterandterrain.Someportalapplicationsareabletocalculatedataataspeci- fiedtime/ageaccordingtotheuserinput. CloudHosting. TheGPlatesPortalishostedinthecloud.Cloudhostingprovidesthefol- lowingadvantages,comparedwithtraditionalon-premisesinstallation: 1. Scalabilityandflexibility.Thetraffictoourwebservicesishighlyvariable.Spikesinthe numberofpagerequestscoincidewiththepublicationofdatasetsassociatedwithhigh- impactjournalarticles,whenthearticlesattractwide-spreadmediaattentionandgeneral publicinterest.Inlightofthevariableusage,itisimportantforthesystemtoadjustits capabilityon-demand.TheCloud’sAutoScalingserviceallowsustoscalethesystem’s capacityupordownautomaticallyaccordingtotheconditions.Thisautoscalingabilityis importanttoensurethequalityofourwebserviceswithoutincurringasubstantialinfra- structurecost. 2. Lowercostandpayasyougo.Usingcloudhostingkeepsthecostofhardwarepurchase andmaintenancetoaminimum.Furthermore,unneededvirtualmachinesintheCloud canbeterminatedatanytime,thuseliminatingtheissuesrelatedtodisposalofcomputer hardware. 3. Launchvirtualmachineatdesignatedlocations.Thereisanobviouspatterninthedistribu- tionofuserlocations,whicharemostlywithinAustralasia,EuropeandtheUSA.TheCloud allowsustolaunchvirtualmachinesinthesedesignatedregionstoimprovethespeedof networkaccess. FreeSoftwareforGlobeDesign Oneofthebasicprinciplesofthescientificmethodisthatresearchresultsshouldbereproduc- ibleandindependentlyverifiable[10]andoneofthekeycomponentsofreproducibilityis opensoftware.FreesoftwareisusedinthedevelopmentoftheGPlatesPortal,whichgives readerseasyaccesstothetoolsrequiredtorepeatthemethoddescribedinthispaper.The3D renderingengine,CesiumVersion1.7.1(http://cesiumjs.org/downloads.html),isreleased undertheApache2.0license.Thereconstructionengine,GPlates/PyGPlatesVersion1.5 (http://gplates.org/download.html),isreleasedunderGPLv2.TheauxiliaryPythonprograms inS1ArchivearereleasedunderGPLv2inaccordancewithGPlates.ThematplotlibPython libraryversion1.5.1(http://matplotlib.org/1.5.1/index.html)isreleasedunderthePythonSoft- wareFoundation(PSF)license. PLOSONE|DOI:10.1371/journal.pone.0150883 March9,2016 4/17 Cloud-BasedInteractive3DVisualizationofGeodatainaWebBrowser Fig2.Workflowfordesigningavirtualglobe.ThedetailsinvolvedinthisworkflowaresummarizedinS1Text. doi:10.1371/journal.pone.0150883.g002 VirtualGlobeDesignandConstruction Introduction Virtualglobedesignandconstructionconsistsof4majorsteps(Fig2):(1)preparingimagery tiles,(2)preparingterraintiles,(3)servingimageryandterraintilesovertheinternet,and(4) buildingtheapplication.Thedetailedmethodologyinvolvedindesignandconstruction, includingpythonscripts,isavailableinS1Textandsupplementarypythonscriptsarearchived inS1Archive. Designandfunctionalityofindividualvirtualglobes Inthefollowingsectionswedescribeaseriesofvirtualglobesthatwehavecreatedaspartof theGPlatesPortal.Eachglobeisacompaniontoapublishedscientificresearcharticle.Indeed, eachglobecanberegardedasapowerfulsupplementaryresourcetothesestudies,allowing anyonewithawebbrowsertovisualizeandinteractwithlargedatasets,reconstructions,and geodynamicsimulationoutputthatcanonlybepartlyrepresentedwithinthelimitationsofa journalarticle. High-resolutiontopographyandbathymetry TherearemanyEarthprocessesthatcanonlybeunderstoodbymappingthetopographyofthe deepoceansathighresolution.Theseincludesmall-scalefeaturessuchasabyssalhills,small seamounts(<1kmtall),fracturesthatformontheouterwallsofdeepoceantrenches,andthe erosionalincisionsontheseawardslopesofthecontinentalmargins.Anewglobalgridofland topographyandoceanbathymetrycalledSRTM15_PLUS(15arcsecondresolution)was recentlydeveloped[11]followingthemethodsoftheSRTM30_PLUSgrid[12].Thelandtopog- raphyisbasedontheSRTM3mappingbythespaceshuttlein2000[13].Thisisaugmentedby PLOSONE|DOI:10.1371/journal.pone.0150883 March9,2016 5/17 Cloud-BasedInteractive3DVisualizationofGeodatainaWebBrowser high-latitudedatafromASTERstereotopographyandacombinationofCryoSAT-2andIce- SATaltimetrydatafortheicecapsofGreenlandandAntarctica.Thenewaspectofthegridis theglobalbathymetrywhichisbasedonpublicallyavailabledepthsoundingsfromawidearray ofsourcescombinedwiththelatestglobalbathymetricpredictionfromtheglobalmarinegrav- itygriddiscussedabove[14].Inparticular,high-resolution(100–200m)multibeamecho sounderdatafromoceanographicinstitutionsaroundtheworld[e.g.,Lamont,Scripps,Woods Hole,JAMSTEC,GEOMAR,IFREMER,etc.]coverabout11%oftheareaoftheoceansat15 arcsecondresolution(~500m).Theoldersingle-beamsoundingsfromaglobalcompilation maintainedattheUSNationalGeophysicalDataCenterprovide1kmspatialresolutionoveran additional6%oftheseafloor.Depthsontheremaining83%oftheseafloorareinterpolated fromtheglobalgravitygrid[15].Thiswidevarietyofdatawasassembledusingtheremove/ restoremethodtobootstrapfromtheSRTM15_PLUScompilation.Theassemblymadeexten- siveuseofGenericMappingTools[16]forgriddingaswellasmaskingland/oceanareas.The SRTM15_PLUSgridwillformthebasisforthenextversionofGoogleEarthandispublicly availableatftp://topex.ucsd.edu/pub/srtm15_plus/. Whileallofthesourcedataarepubliclyavailableandhavebeenanalyzed,theglobalassem- blyprovidesanewperspectiveonseveraltypesofoceanfeatures.First,thespatialvariationsin abyssalhillfabric,notwellresolvedat30arcseconds,arenowvisiblealongmostoftheseafloor spreadingridgeaxesaswellassomewellsurveyedareaswiththinsedimentcover.Theampli- tudeandorientationofthisabyssalfabricprovidesawindowintothepastspreadingrateand direction.SignificantnewmultibeamcoveragefromJAMSTECintheWesternPacificprovides remarkableresolutionoftheIzu-BoninandMarianatrenches,PhilippineSeaandPareceVela Basin(Fig3).ArecentcompilationofmultibeambathymetryfromGeoscienceAustralia (http://www.ga.gov.au/scientific-topics/marine/bathymetry)providesvastlyimproved Fig3.SRTM15PLUSCesiumglobenorthwardviewoftheregionaroundtheMarianaArcandTrench.Recentlyaddedmultibeambathymetrydata havesubstantiallyincreasedresolutionofsmall-scalefeaturesinthisregion. doi:10.1371/journal.pone.0150883.g003 PLOSONE|DOI:10.1371/journal.pone.0150883 March9,2016 6/17 Cloud-BasedInteractive3DVisualizationofGeodatainaWebBrowser resolutionofthecontinentalmarginsandcontinentalrisearoundAustralia.Newmultibeam- basedgridsfromGEOMARrevealthedetailedstructureoftheCentralChileTrenchandouter trenchwall. Seafloorlithology Theworld’soceanfloorisdrapedbyavastblanketofsediments,whichformsthelargestgeo- logicaldepositandthelargestcarbonsinkonEarth(Fig4).Thecompositionofthesesedi- mentsishighlyvariableandincludesremainsofplanktonthathavesettledthroughtheocean column,terrigenousparticlesderivedfromcontinentsandchemicalprecipitatesthathave formedinsituontheseafloor.Thedistributionofthesesedimentsiscriticalforunderstanding howEarthhasrespondedandcontinuestorespondtoenvironmentalchanges,thebehaviorof oceancurrents,theoccurrenceofmetaldepositsandtheassessmentofgeohazards.Therecent publicationofthefirstdigitalmapofseafloorsedimentsbasedontheanalysisandclassification ofnearly15,000surfacesedimentsamples[17],providesalongoverdueupdateonahighly generalizedhand-drawnmapofglobalseafloorsedimentsthatdatesbackto1974[18]andfea- turesinvirtuallyeverytextbookofmarinegeologyandoceanography.Thedigitalmapwascre- atedusingabespokemachine-learningalgorithm[17]andallowsthejointanalysisofthese categoricaldatawithoceanographicdatathatarefreelyavailable,forinstance,throughthe NationalOceanicandAtmosphericAdministration(NOAA)(www.nodc.noaa.gov/OC5/ WOD/pr_wod.html).Beingopen-access,thedigitalmapisavaluableresearchresourcefor Fig4.Cesiumglobeviewofseafloorsedimenttypesdrapedoveradigitalelevationmodelwithanoverlayofmajorrivers(bluelines).Several featuresofinterestarehighlighted. doi:10.1371/journal.pone.0150883.g004 PLOSONE|DOI:10.1371/journal.pone.0150883 March9,2016 7/17 Cloud-BasedInteractive3DVisualizationofGeodatainaWebBrowser geologists,oceanographersandclimatologists,andithasbyfarthehighestviewingrateofthe portal’svirtualglobesatanaverageof~500viewsperdaysinceAugust2015.Inits3Dvisuali- zationformatthatalsofeaturesanoptionaloverlayofworld’smajorrivers,itisapowerfuland excitingteachingtoolforalllevels.Asseafloorlithologyisdrapedoveradigitalterrainmap, theglobeallowstheviewertoexplorehowthedistributionofdifferentsedimenttypesvaries betweenoceanbasinsandwithlatitude,formingthebasisformakingconnectionswithavari- etyofprocessesthatgovernthedistributionofeitherbiogenicorlithogenoussediments.For instance,theglobecanbeusedtoexplorehowthetypeofseafloorsedimentdependsonprox- imitytomid-oceanridges,volcanicplateaus,differenttypesofcontinentalmargins(tectoni- callypassiveoractive),majorrivermouthsanddifferentclimaticzones. Verticalgravitygradient Gravitymodelsarepowerfultoolsformappingthestructureoftheoceanfloor,especiallyinthe deepoceanbasinswherethetopographyremainsunmappedbyshipsorisburiedbythicksedi- ments.Arecentlypublishedglobalmarinegravitymodel[14],whichistwiceasaccurateaspre- viousmodels,hasherebeencombinedwiththecontinentalgravitymodelEGM2008[19]to produceaglobalmodelforthefree-airgravityfield.Thedigitalfree-airgravitymodelwasused tocomputetheverticalgravitygradient,whichenhancessmall-scalegravityanomalies,related totectonicstructuressuchassmallseamountsandfaults,horstandgrabenstructuresatthesea- bedorburiedunderneaththeseafloor.Theverticalgravitygradientisparticularlyusefulfor visualizingdeepstructuresassociatedwithcontinentalmarginsandsedimentarybasins,where seismicimagingdataaresparseandexpensivetoobtain.Theverticalgravitygradientdataset wasusedtocreatethefirstoftheGPlatesPortalvirtualCesiumglobesinOctober2014;ithas sincebeenviewednearly100,000times(31stJanuary2016).Whilethousandsofmetersofwater obscureourviewofthearrayofgeologicalfeaturescharacterizingtheseabedandburiedsub- seafloorgeology,themarineportionofthisgloberevealsmanypreviouslyunknownseafloor andsub-seafloorstructures,includinganextinctmid-oceanridgefromtheJurassicPeriodin theGulfofMexico(nowburiedbyupto8kmofsediments)andahugeancientriftscarinthe SouthAtlanticOceanformedbyadeep-seated“hotspot”leadingtoacrackingoftheoceanfloor [14].Byprovidingaseamlessviewofthecombinedmarineandcontinentalgravityfield,this Cesiumglobeallowstheusertofollowstructuresfromthedeepoceanbasinstocontinental slopesandshelvestothecontinentsthemselves.Suchstructuresmayincludeoceanicfracture zones,manyofwhichhaveanoriginintectoniclineamentsinthecontinentalcrustwhich existedbeforecontinentalbreakup[20],aswellasmeteoriteimpactstructures(Fig5). Globalmagneticanomalies Ferrousmineralsinthecrustanduppermantlegiverisetomagneticanomalies.Thestrength andshapeoftheseanomaliesreflectsthemineralogyandthicknessofgeologicalformations. Sincemineralsbecomenon-magneticabovetheirCurietemperature,magnetizationhasalim- iteddepthextent,whichdependsonthelocaltemperaturegradientofthelithosphere.Mag- neticanomaliesthereforeprovideinsightintosubsurfacestructure,compositionandheatflow intheEarth'scrust.Anomaliestrendingparalleltotheisochrons(linesofequalage)inthe oceansrevealtheformation(seafloorspreading)anddestruction(subductionzones)ofoceanic crust,theformationofcontinentalcrustbyaccretionofvariousterranestocratonicareasand large-scalevolcanismoncontinentsandintheoceans. Magneticanomalydatahavebeencollectedbyships,aircraft,andlow-orbitingsatellitesfor morethanhalfacentury,providingglobalcoverageoftheEarth.TheEarthMagneticAnomaly Gridin2arcminuteresolution(EMAG2)istheresultofaninternationalcollaborationbased PLOSONE|DOI:10.1371/journal.pone.0150883 March9,2016 8/17 Cloud-BasedInteractive3DVisualizationofGeodatainaWebBrowser Fig5.CesiumglobesoutheastwardviewoftheGulfofMexicoandtheYucatanPeninsulawheretheverticalgravitygradientgrid,overlainbya digitalelevationmodel,revealstheburiedcircularstructurerelatedtotheChicxulubImpactCrater(CIC)thatledtotheextinctionofthedinosaurs andmanyotherspecies,straddlingthecoastlineoftheYucatanPeninsula[21].Impact-generatedmulti-ringgravityanomaliescanbeusedtocompute theimpact’ssizeandothercharacteristics[21].TheimagealsorevealstheburiedextinctJurassicmid-oceanridge(MOR)oftheGulfofMexico[14]. doi:10.1371/journal.pone.0150883.g005 oncontributionsfromoveronehundreddataprovidersworldwide[22].Theinputdatacon- sistedofboth2Dgridsand1Dprofiledatafromshipandairbornemeasurements.Thesewere processed,linelevelledandmergedat4kmaltitudeusingleastsquarescollocation.Twover- sionsoftheEMAG2gridwereproduced.Onewithconventionalisotropicgriddingandone withanisotropic(directional)griddingovertheoceans,inwhichtheanomalieswere“stretched out”inthedirectionofthelocalisochronsasgivenbytheoceaniccrustalagemodel[23].A comparisonofEMAG2withandwithoutdirectionalgriddingisshowninFig6.Finally,contri- butionswithspatialwavelengthslargerthan330kmwerereplacedwiththeCHAMPsatellite magneticanomalymodelMF6[24]. Globalmagneticanomalyidentifications Marinemagneticanomalyidentificationsareoneoftheprimarybuilding-blocksofglobalplate reconstructions,usedtodeterminetheageoftheoceaniccrustandtounderstandpastsea- floor-spreadingprocesses.Thesemagneticanomalyidentifications,oftencalled“magnetic picks”,areaspatio-temporalrepresentationofinterpretedmarinemagneticanomalies describedaboveagainstageomagneticreversaltimescale.Inthepast,mostglobalandregional compilationshavebeenpresentedasaseriesofmapswithnoaccompanyingdigitaldata.An open-source,community-driveninfrastructurecontainingover96,000publishedmagnetic anomalyidentificationswasrecentlyestablished[25].Therepositorycontainsconsistently describedandwell-documenteddatapointsthathaveundergoneinternalquality-control. Whileallthedatahavebeenmadeaccessibletothepublicviaadedicatedwebsite(www.soest. hawaii.edu/PT/GSFML),therepositorylacksavisualizationtoolforexpertandnon-expert userstoviewandinterrogatethedata.ThesedatacanbevisualizedintheCesiumglobeatthe PLOSONE|DOI:10.1371/journal.pone.0150883 March9,2016 9/17 Cloud-BasedInteractive3DVisualizationofGeodatainaWebBrowser Fig6.IdenticalviewillustratingthedifferencebetweentheEMAG2versionwithdirectionalgridding (top)andwithisotropicgridding(bottom).TheobserverlocationissouthofNewZealandlooking westwardattheSouthernOcean,withAntarcticaonthesouthernsideandAustraliaonnorthernsideineach image. doi:10.1371/journal.pone.0150883.g006 PLOSONE|DOI:10.1371/journal.pone.0150883 March9,2016 10/17
Description: