ebook img

The Geometry Toolbox for Graphics and Modeling PDF

305 Pages·1998·69.668 MB·\305
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Geometry Toolbox for Graphics and Modeling

The Geometry Toolbox for Graphics and Modeling Editorial, Sales, and Customer Service Office A K Peters, Ltd. 63 South Avenue Natick. MA 01760 http:llwww.akpeters.com Copyright C 1998 by A K Peters, Ltd. All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized In any form, electronic or mechanical, Including photocopying, recording, or by any Information storage and retrieval system, without written per· miSsion from the copyright owner. Ubnlly of Congrna cataloglng-tn-Publlc:Mion Data Farin, Gerald E. The geometry toolbox for graphics and modeling I Gerald Farin, Dianne Hansford. p. em. Includes bibliographical references and index. ISBN 1·56881·074-1 1. Geometry-Study and teaching. 2. Computer graphics. I. Hansford, Dianne. II. Title QA462.F26 1997 516.3'5-dc21 97-41259 CIP Printed In the United States of America ~~ 0099~ 10987654321 To our advisors R.E. Barnhill and W. Boehm Contents Preface xiii Descartes' Discovery 1 Chapter 1 1.1 Local and Global Coordinates: 2D . . . . . . . • . 2 1.2 Going from Global to Local . • . . . . • . . . . • . • . • 6 1.3 Local and Global Coordinates: 3D . . . . . . . . . . . . . 7 1.4 Stepping Outside the Box . . . . . . . . . . . . . . . . . 9 1.5 Creating Coordinates . • . . . . . . . . . . . . . . . . . . 9 1.6 Exercises . . . . . . . . . . . . . . . . • . . . . . 11 Here and There: Points and Vectors in 20 13 Chapter 2 2.1 Points and Vectors . . . . . . . . . . . . . . . . . 14 2.2 What's the Difference? . . . . . . . . . . . . . . . 15 23 Vector Fields . • . . . . . . . . . . . . . . . . . . . . . . 17 24 Combining Points . . . . . . . . . . . . . . . . . . . . . . 18 2.5 Length of a Vector . . . . . . . . . . . . . . . . . . . • . 20 2.6 Independence . . . . . . . . . . . . . . . . . . . . . . . . 23 2.7 Dot Product . . . . . . . . . . . . . • . . . . . . . . . . . 24 2.8 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.9 Exercises . . . . . . . . . . . . . . . . . . . . . . 29 Lining Up - 20 lines 31 Chapter3 3.1 Defining a Line . . . . . . . . . . . . . . . . . . . 32 3.2 Parametric Equation of a Line . . . • . . . . . . . 33 3.3 Implicit Equation of a Line . . . . . . . . . . . . . . . . . 35 3.4 Explicit Equation of a Line. . . . . . . . . . . . . . . . . 37 3.5 Converting between Parametric and Implicit Equations . . 38 3.6 Distance of a Point to a Line . . . . . . . . . . . . . . . . 40 3.7 The Foot of a Point . . . . . . . . . • . . . . . . . . . . . 44 3.8 A Meeting Place - Computing Intersections . . . . . . . 45 3.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . SO vii viii Chapter 4 linear Maps in 20 53 4.1 Skew Target Boxes . . . . . . . . . . . . . . . . . . . . . 53 4.2 The Matrix Form . . . . . . • . . . . . . . . . . . . . . . 55 4.3 More about Matrices . . . . . . . . . . . . . . . . . . . • 56 4.4 Scalings • . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.5 Reflections • . . . . . . . . . . . . . . . . . • . . • . . . 61 4.6 Rotations . . . • . . . . . . . . . . . . . • . . . . . . . . 63 4.7 Shears . . . . . . . . . . . . . . . . . . . . • . . . . . . . 64 4.8 Projections • . . . . . . . . . . . . . . . . . . . . . . . . 66 4.9 Areas and Unear Maps: Determinants . . . . . . . . . . . 68 4.10 Composing Linear Maps . . . . . . . . . . . . . . . . . . 71 4.11 More on Matrix Multiplication . . . . . . . . . . . . . . . 74 4.12 Working with Matrices . . . . . . . . . . . . . . . . . • . 76 4.13 Exercises . . . • . . . . . . . . . . . . . . • . . . . . . . 77 Chapter 5 2 x 2 linear Systems 79 5.1 Coordinate Transformations . . . . . . . . . . . . . . • • 79 5.2 The Matrix Form . . . . . . . . . . . . . • • . . • . . • . 81 5.3 A Direct Approach: Cramer's Rule . . . . . . . . • . . . 82 5.4 Gauss Elimination . . . . . • . . • . • . . . . • . • . . . 82 S.S Undoing Maps: Inverse Matrices . . • . . . . . . • . . • 85 5.6 Unsolvable Systems . . . . . . • . . . . . . • . . . . . . . 90 5.7 Underdetennined Systems . . . . . . • . • . . . . . . . . 91 5.8 Homogeneous Systems • . . . . . . . . . . . . . . . . . . 91 5.9 Numerical Strategies: Pivoting . • . . . . . . . • . . . . . 92 5.10 Defining a Map . . . . . . . . . . . . . . . . . • . . . . . 94 5.11 Exercises . . . . . . . • . . . . . . . . . • . . . . . . . . 94 Chapter 6 Moving Things Around: Affine Maps 97 6.1 Affine and Linear Maps . . . . . . . . . • . . • . . . . . 97 6.2 Translations . . . . . . . . . . . • • • . . . . . . . . . • . 99 6.3 More General Affine Maps . . . . . . . • • . . . . . . . . 100 6.4 Mapping Triangles to Triangles . . • . . . . . . . . . . . 101 6.5 Composing Affine Maps . . . . • . . . . . . • . . . . . . 103 6.6 Exercises . . . . . . . . . . . . • . . . . • . . . • . . . . 107 Chapter 7 Eigen Things 109 7. I Fixed Directions . . . . . • • . . . . . . • . . . . . . • . 110 7.2 Eigenvalues . . . . . . . . . . . . . • . . . • . • . . . • . 111 7.3 Eigenvectors . . • . . . . . . . . . . . . . • . . . . . . . . 112 7.4 Special Cases . . . . . . . . . . . • . • . . . . . • . . . • 114 7.5 The Geometry of Symmetric Matrices . . . . . . . . . . . 116 ix 7.6 Repeating Maps. . . . . . . . . . . . . . . . . . . . . . . 118 7.7 The Condition of a Map . . . . . . . • . . . . . . . . . . 120 7.8 Higher Dimensional Eigen Things . . . . . . . . . . . . . 121 7. 9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Breaking It Up: Triangles 125 Chapter 8 8.1 Barycentric Coordinates . . . . . . . . . . . . . . . . . . 126 8.2 Affine Invariance . . . . . . . . . . . . . . . . . . . . . . 128 8.3 Some Special Points . . . . . . . . . . . . . • . . . . . . 128 8.4 2D Triangulations . . . . . . . . . . . . . . . . . . . . . . 130 8.5 A Data Structure . . . . . . . . . . . • . . . . . . . . . . 131 8.6 Point Location . . . . . . . . . . . . . . . . . . . . . . . 132 8.7 3D Triangulations . . . . . . . . . . . . . . . . ..... . 133 8.8 Exercises . . . . . . . . . . . . . . . . . . • . . . . . . . 135 Conics 137 Chapter 9 9.1 The General Conic . . . .. .. . .. . . . .. .. . . . . 138 9.2 Analyzing Conics . . . . . . . . . . . . . • . . . . . . . . 141 9.3 The Position of a Conic . . . . . . • . . . . . . . . . . . 142 9.4 Exercises 144 30 Geometry 147 Chapter 10 10.1 From 2D to 3D . . . . . . . . . . . . . . . . . . . . . . . 147 10.2 Cross Product . . . . . . . . . . . . . . . . . . . . . . . . 149 10.3 Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 10.4 Planes . . • . . . . . . . . . . . . . . . . . . . . . . . . • 154 I 0.5 Scalar Triple Product . . . . . . . . . • . . . . . . . . . . 15 9 10.6 Exercises 160 Interactions in 30 161 Chapter 11 11.1 Distance of Point and Plane 162 11.2 The Distance between Two Lines . . . . • . . . . . . . . 163 11.3 Lines and Planes: Intersections . . . . . . . . . . . . . . . 164 11.4 Intersecting a Triangle and a Line . . . . . . . . . . . . . 166 11.5 Lines and Planes: Reflections . . . . . . . . . . . . . . . 167 11.6 Intersecting Three Planes . . . . . • . . . . . . . . . . . . 167 11.7 Intersecting Two Planes. . . . . . . . . . . . . . . . . . . 169 11.8 Exercises . . . . . . . . . . . . . . . . . . • . . . • . . . 169

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.