ebook img

The Geometry of Special Relativity: A Concise Course PDF

153 Pages·2012·1.435 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Geometry of Special Relativity: A Concise Course

SpringerBriefs in Physics Editorial Board Egor Babaev, University of Massachusetts, USA Malcolm Bremer, University of Bristol, UK Xavier Calmet, University of Sussex, UK Francesca Di Lodovico, Queen Mary University of London, London, UK Maarten Hoogerland, Universiy of Auckland, Auckland, New Zealand Eric Le Ru, Victoria University of Wellington, Wellington, New Zealand James Overduin, Towson University, USA Vesselin Petkov, Concordia University, Canada Charles H.-T. Wang, University of Aberdeen, UK Andrew Whitaker, Queen’s University Belfast, UK For furthervolumes: http://www.springer.com/series/8902 Norbert Dragon The Geometry of Special Relativity— a Concise Course 123 NorbertDragon Institutfür Theoretische Physik Leibniz UniversitätHannover Appelstrasse 2 30167Hannover Germany ISSN 2191-5423 ISSN 2191-5431 (electronic) ISBN 978-3-642-28328-4 ISBN 978-3-642-28329-1 (eBook) DOI 10.1007/978-3-642-28329-1 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2012938635 (cid:2)TheAuthor(s)2012 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface So einfach wie möglich, aber nicht einfacher. Assimpleaspossible,butnotsimpler.ThisguidelineofAlbertEinsteinobliges inparticulareachpresentationofrelativisticphysics,asubjectwhichoftenpuzzles laymen,stirstheirimagination,andtantalizestheircomprehension,unnecessarily, because relativistic physics relies on simple geometric notions. Ifonewantstounderstandthebasicfeaturesofthetheoryofrelativitythenone does not need coordinates orvirtualsystemsofclocks,which fillthe universe, no more than millimeter paper and coordinate axes are required for Euclidean geometry. One only has to consider what observers see rather than to argue that this or that observer is right. Relativity is a physical, not a judicial theory. Theslowdownofmovingclocksandtheshorteningofamovingmeasuringrod unfold naturally from the principle of relativity, just as a tilted ladder is less high than an upright ladder. Clocks are no more mysterious than mileage meters, and showadistancebetweenstartandendwhichdependsonthewayinbetween.This istheunspectacularanswertotheseeminglyparadoxicalagingoftwins.Justasno one is puzzled by a triangle, where the straight line between two edges is shorter than the detour over the third edge, no one should be shocked by the conclusion andexperimentalverification,thataclockpicksupmoretimeonastraighthistory as compared to the twin clock of a traveler who takes a detour. Thefirsttwochaptersareintendedtobeunderstandableinessencealsotonon- physicists with little mathematical knowledge. Their simplicity, however, may be deceptive.Realunderstandingrequirescarefulconsiderationofthearguments,the equations,andthediagrams,preferablybyreadingequippedwithapencilandpaper. Thefollowingchapterspresumemathematicalknowledgewhichphysicistsand mathematicians acquire during their undergraduate years. To clarify more com- plicatedquestionsweintroducecoordinatesasfunctionsofthemeasuredtimesand directionsoflight raysanddeducetheLorentztransformationswhich relate these values to the ones which moving observers measure. These transformations determine how velocities combine, what pictures are seen by moving observers, and how the energy and momentum of a particle depend on its velocity. v vi Preface Chapter 4 assembles the basics of mechanics and applies them to relativistic particles. Stress is laid on the correspondence between physics and geometry, betweenconservedquantitieslikeenergy,momentumandangularmomentum,and symmetries like a shift in time or space or a rotation or a Lorentz transformation. Jet spaces, which are introduced and used in this investigation, may strike the readerasanunnecessarycomplication.Buttheyprovidetheclearestandtherefore simplest setting to exhibit the correspondence of conserved quantities and infini- tesimal symmetries. Chapter 5 presents electrodynamics as a relativistic field theory and in partic- ular shows that changes of the electric charges cause changes of the electromag- netic fields with the speed of light. The electrodynamic interactions are invariant under dilations,whichis whythey cannotexplain theparticularvaluesofparticle masses or the particular sizes of atoms. InthelastchapterwediscussthemathematicalpropertiesoftheLorentzgroup. ItactsonthedirectionsoflightraysjustastheMöbiustransformationsactonthe Riemann sphere. The text originated from courses which I taught on the subject and from my answerstoquestionswhichwerefrequentlyaskedinthenewsgroupde.sci.physik. After a few years the notes changed nearly no more and slumbered on my homepage with a few hundred interested visitors per year until Christian Caron fromSpringerVerlagencouragedmetohavethempublished.Whetherthiskissof aprinceawokeasleepingbeautyorafrog,stilltobethrownagainstthewall,isthe reader to judge. Helpful comments and patient listening were contributed by Frédéric Arenou, Werner Benger, Christian Böhmer, Christoph Dehne, Jürgen Ehlers, Christopher Eltschka, Chris Hillman, Olaf Lechtenfeld, Volker Perlick, Markus Pössel, and Bernd Schmidt. Ulrich Theis translated the early versions of the notes. Sincere thanksaregiventoUllaandHermannNicolaifortheirfriendlyhospitalityduring my stay at the Albert-Einstein-Institut der Max-Planck-Gesellschaft. Hannover, Germany, January 2012 Norbert Dragon Contents 1 Structures of Spacetime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Properties of the Vacuum. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Measuring Rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Limit Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4 Quantum Teleportation and Bell’s Inequality . . . . . . . . . . . . . . 15 2 Time and Distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1 Theorem of Minkowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Addition of Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 Time Dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4 Length Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.5 Doppler Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6 Spacetime Coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.7 Scalar Product and Length Squared. . . . . . . . . . . . . . . . . . . . . 40 2.8 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.1 Lorentz Transformation of Coordinates . . . . . . . . . . . . . . . . . . 49 3.2 Perception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3 Energy and Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 Relativistic Particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.1 Clocks on Worldlines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2 Free Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3 Action Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.4 Symmetries and Conserved Quantities . . . . . . . . . . . . . . . . . . . 77 4.5 Interlude in Linear Algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . 86 vii viii Contents 5 Electrodynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.1 Covariant Maxwell Equations. . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2 Energy and Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.3 The Electrodynamic Potentials . . . . . . . . . . . . . . . . . . . . . . . . 98 5.4 Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.5 Action Principle and Noether’s Theorems. . . . . . . . . . . . . . . . . 113 5.6 Charged Point Particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6 The Lorentz Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.1 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.2 Lorentz Transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.3 The Rotation Group SUð2Þ=Z . . . . . . . . . . . . . . . . . . . . . . . . 131 2 6.4 The Group SLð2;CÞ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.5 Möbius Transformations of Light Rays . . . . . . . . . . . . . . . . . . 136 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.