ebook img

The Geometry of Spacetime: An Introduction to Special and General Relativity (Instructor Solution Manual, Solutions) PDF

116 Pages·1999·2.589 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Geometry of Spacetime: An Introduction to Special and General Relativity (Instructor Solution Manual, Solutions)

Solutions: The Geometry of Spacetime JamesCallahan DVI file created at 16:06, 20 January 2011 DVI file created at 16:06, 20 January 2011 iii Preface ThisbookconsistsofdetailedsolutionstotheexercisesinmytextTheGeometryof Spacetime(Springer, NewYork, 2000). MyWeb site, http://maven.smith.edu/˜callahan/ containsadditionalmaterial, includingan errata fileforthetext, spacetime/errata.pdf This version of the solutions manual takes into account all corrections to the text foundin theerrata fileup to31 December2010. Giventhenatureofthematerial,itislikelythatthesolutionsthemselvesstillhave someerrors. Iinvitereaders ofthisbooktocontact meat [email protected] to let meknowabout any errors orquestionsconcerning thesolutionsfound here. I willpostasolutionserratafile onmyWeb site. Thissolutionsmanual isavailableonlydirectlyfrom Springer, viaitsWeb site http://www.springer.com/instructors?SGWID=0-115-12-333200-0 J. Callahan January 2011 DVI file created at 16:06, 20 January 2011 iv DVI file created at 16:06, 20 January 2011 Contents 1 RelativitybeforeEinstein 1 1.1 Spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 GalileanTransformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 TheMichelson–MorleyExperiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Maxwell’sEquations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 SpecialRelativity—Kinematics 5 2.1 Einstein’sSolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 HyperbolicFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 MinkowskiGeometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 PhysicalConsequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 SpecialRelativity—Kinetics 20 3.1 Newton’sLawsofMotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 CurvesandCurvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 AcceleratedMotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 ArbitraryFrames 30 4.1 UniformRotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 LinearAcceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3 NewtonianGravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.4 GravityinSpecialRelativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5 SurfacesandCurvature 39 5.1 TheMetric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2 IntrinsicGeometryontheSphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3 DeSitterSpacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.4 CurvatureofaSurface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6 IntrinsicGeometry 53 6.1 TheoremaEgregium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.2 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3 CurvedSpacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.4 Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.5 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7 GeneralRelativity 80 7.1 TheEquationsofMotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.2 TheVacuumFieldEquations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.3 TheMatterFieldEquations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 v DVI file created at 16:06, 20 January 2011 vi CONTENTS 8 Consequences 98 8.1 TheNewtonianApproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 8.2 SphericallySymmetricFields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 8.3 TheBendingofLight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 8.4 PerihelionDrift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 DVI file created at 16:06, 20 January 2011 Solutions: Chapter 1 Relativity before Einstein 1.1 Spacetime respectively, for v = 2,0,+10. The order is what we 0 − wouldexpect. z 3. The worldline of M is z = vt+l . This meets the 1.a) worldlineofthesignal(i.e.,z=t)whent =z=vt +l . 1 1 0.1 Thus l t (1 v)t =l , or t = . 0.5 1. − 1 1 1 v − b) The maximum z occurs where 0=z =2t 3t2, or AttheeventE ,z=z =t . Theworldlineofthereflected ′ 1 1 1 t=2/3.Atthattime,z=(2/3)2 (2/3)3=4/2−7. signalisthereforez z = (t t )orz= t+2t . This 1 1 1 − − − − − meetstheworldlineofG(i.e. z=vt)when c) Thevelocityatdepartureisz(0)=0. Thevelocityat ′ returnisz(1)= 1. 2t 2l ′ 1 − vt =z= t +2t , or t = = . d) Replacing the factor (1 t) by (1 t)2 in z(t) will 2 −2 1 2 1+v 1−v2 − − makez(1)=0. Then,forexample,anygraphoftheform ′ 1.2 Galilean Transformations z=kt2(1 t)2 hasthecorrectvelocities;whenk=4,the − maximumvalueofzis1. 1. According to R, the spatial distance between E and 1 g2gr.ivaaet)isonzB′(getic)vae=ussz−e(tgz)t′′=+(t)v0=g.t2−B/2egc+aaunvsd0et+zz′((h00.))==hv,0a,nionttheegrraintitoen- adEni2sdtiastnh0ce.ecAboceoctrwodreidneianntgethsteoomfGEi,s2thva.ereco(o2r,d−in2avt)e,saonfdEs1oatrhee(s1p,a−tiva)l − b) z 2. LetMbethematrixwhosecolumnsarethevectorsX 70 andY, inthatorder. Itisastandardresultoflinearalge- 60 brathatdetM=A(X,Y);seeExercise4, 5.1(Solutions § 50 page40). In particular, the parallelogramdeterminedby XandY isoriented:ithaspositiveorientationifdetM>0 40 andnegativeorientationifdetM<0.IfdetM=0,thepar- 30 allelogramcollapsestoalinesegment(andhasarea0). 20 Now use the given matrix L to construct the product matrixLM. Bythedefinitionofmatrixmultiplication,this 10 isamatrixwhosecolumnsareL(X)andL(Y),inthator- t der.Therefore, 0 1 2 3 4 5 Fromlefttoright,thethreegraphshavev = 2,0,+10. 0 − A(L(X),L(Y))=detLM=detL detM=detL A(X,Y). · · c) Anobjecthitsthegroundwhen gt2/2+v t+h=0, 0 − ThusLreversesorientationifdetL<0andcollapsesthe or imagetoalinesegmentifdetL=0. t= −v0− v20+2gh =3.301,3.499,4.665 3. A linear transformation L preserves areas if detL= qg 1.BecausedetSv=1,Svpreservesareas. − ± 1 DVI file created at 16:06, 20 January 2011 2 SOLUTIONS:CHAPTER1. RELATIVITYBEFOREEINSTEIN 1.3 The Michelson–Morley Experi- 4.a) Wehave ment 1 0 1 0 1 0 S S = = =S , v w v 1 w 1 v+w 1 v+w (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) and similarly, S S =S =S . Therefore S S = 1.a) The figure below is similar to the SPACE diagram w v w+v v+w v v S S =S =I,implyingS =S 1. − onpage18ofthetext,exceptthatitshowsthemovement v v 0 v v− − − ofG(thesourceoflight)andthemirrorthatliesparallel b) We have S S =S =S =S S . The previous w v w+v v+w v w to the track of G over time. Note that, at every instant, workshowsthatthemapv S :R G isanontogroup v 2 the line from G to the mirror remains perpendicular to 7→ → homomorphism.Sincethekernelofthismapisjustv=0, the direction of motion as given by the vector v. After thehomomorphismisanisomorphism. time T /2, G and the mirror have travelled vT /2 light- second⊥s to the right. By the Pythagorean the⊥orem, the 5.a) ThegiveninformationimpliesthatG’s positionat lightrayfromGtothemirrorhasthereforetravelled timet =t isx=0,y=v t, z=v t. Thustheeventwith y z coordinates(t ,x ,h ,z )inG’sframehascoordinates l 2+v2T2/4light-seconds. ⊥ t=t , x=x , y=h +v t , z=z +v t q M y z at time T^ /2 inR’sframe.Ifwesetasidethex=x coordinate,thiscan bewritteninmatrixformas t 1 0 0 t 1 0 0 y = v 1 0 h , so S = v 1 0 , y v y z v 0 1z  v 0 1 z z        l withv=(v ,v ). y z b) Directcalculationgives 1 0 0 1 0 0 vT^ /2 vT^ /2 S S = v 1 0 w 1 0 v w  y  y  G G G v 0 1 w 0 1 z z at time 0 v at time T^  1 0 0  = vy+wy 1 0 =Sv+w=Sw+v. That light ray is reflected back to G (after G has trav-   vz+wz 0 1 elled to the righta totalof vT light-seconds), travelling   an equal distance and time o⊥n its return. But the dis- In particular, S S =S =I =S S , implying S = v v 0 v v v tance travelled, in light-seconds, is numerically equal to S 1. − − − v− thetraveltimeT ,inseconds: ⊥ c) ThegroupG iscommutativebecausew+v=v+w. 3 T =2 l 2+v2T2/4seconds. 6. InExercise5a,above,changethex-coordinateofG’s ⊥ ⊥ position at time t = t to x = vxt , and change the x- Hence q coordinate of the event to x=x +v t . This makes the x T2 T2 T2 matrixformoftherelationbetweenR’scoordinatesofthe =l 2+v2 or 1 v2 =l 2, ⊥ ⊥ ⊥ 4 4 − 4 eventandG’scoordinatesequalto fromwhichitfollowsthat (cid:0) (cid:1) 1 0 0 0 2l Sv=vvx 10 01 00, T⊥= √1 v2 y − vz 0 0 1 Finally, the distance fromG to M andbackis D =2l ,     sotheaveragespeedoflightisD /T =√1 v2⊥. with v = (vx,vy,vz). An immediate calculation gives ⊥ ⊥ − SvSw=Sv+w=SwSv, somultiplicationin G4 is commu- b) Thetraveltime T is the timet2 thatwasdetermined tative. Furthermore,asinExercise5,S S =S =I,so inthesolutiontoExekrcise1of 1.1. BecauseD =2l , G isagroup. v −v 0 theaveragespeedoflightisD /§T =1 v2,not1k. 4 k k − DVI file created at 16:06, 20 January 2011 1.4. MAXWELL’SEQUATIONS 3 c) ByTaylor’stheorem, Each vertical line is mapped to itself by both F and S . v v But S simply translates points on the line t =a by the 1 1 v =1+v2+O(v4), =1+1v2+O(v4), amountav, while F also compressesthem by the factor 1 v2 √1 v2 2 v − − √1 v2. Both mapsturnhorizontallinesinto lineswith − asv 0. Therefore,T T = slopev. → k− ⊥ 2l 1 1 =l v2+O(v4)=v2(l +O(v2)) 4.a) Thevectors(1, 1)t (whereVt is the transposeof 1 v2−√1 v2 V)lieonthetwoworld±lines.Theimageworldlinesthere- (cid:18) − − (cid:19) forecontainthevectors asv 0. Weusethefactthatv2O(v2)=O(v4)asv 0. → → 1 0 1 1 2.a) z = . v √1 v2 1 v √1 v2 (cid:18) − (cid:19)(cid:18)± (cid:19) (cid:18) ± − (cid:19) Theslopesoftheseworldlinesare v √1 v2 m = ± − =v 1 v2. t ± 1 ± − p b) Thegraphof w=√1 v2 is the unitcircle centered − at(0,0)inthe(v,w)-plane;thereforeitliesabovetheline w = 1 v on the interval 0 < v < 1. In other words, − √1 v2>1 vthere.Hence − − ThemapC compressestheimageverticallybythefactor v √1 v2. The image grid thus consists of rectangles of m+=v+ 1 v2>v+1 v=1. − − − size1×√1−v2paralleltothecoordinateaxes. Because √1 v2>p1andv>0onthesamedomain, − − − b) Matrixmultiplicationgives m =v 1 v2>0 1= 1. 1 0 1 0 1 0 − − − − − SvCv= = =Fv; The maximum valupe of m (v) occurs when 0 = v 1! 0 √1 v2! v √1 v2! + − − (m )(v) = 1 v/√1 v2. Hence v = 1/√2 and + ′ − − however, m (1/√2)=√2. + 1 0 5. If Fv is to be valid, it must be consistent with the CvSv= =Fv Michelson–Morleyexperiment.Thatis,theimageworld- v√1 v2 √1 v2!6 − − lines of photons must have slopes 1. Exercise 4b ± whenv=0. demonstratesthatthisisnotsoifv>0. 6 3. 1.4 Maxwell’s Equations z 1.a) Let A = (a ,a ,a ), B = (b ,b ,b ), C = 1 2 3 1 2 3 (c ,c ,c );then 1 2 3 t b b b b b b B C= 2 3 , 3 1 , 1 2 . × c2 c3 c3 c1 c1 c2 (cid:18)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12)(cid:19) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Thefirstcomponen(cid:12)tofA (cid:12) ((cid:12)B C)(cid:12)is(cid:12)therefor(cid:12)e (cid:12) ×(cid:12) (cid:12) × (cid:12) (cid:12) (cid:12) b b b b a 1 2 a 3 1 2 c1 c2 − 3 c3 c1 (cid:12) (cid:12) (cid:12) (cid:12) =(cid:12)(cid:12)b1(a2c2(cid:12)(cid:12)+a3c(cid:12)(cid:12)3) c1((cid:12)(cid:12)a2b2+a3c3) The map F first compresses the image vertically by the (cid:12) (cid:12) (cid:12) − (cid:12) v =b (a c +a c +a c ) c (a b +a b +a b ) factor √1 v2 (this is the action of Cv) and then car- 1 1 1 2 2 3 3 − 1 1 1 2 2 3 3 − =(A C)b (A B)c . ries out a vertical shear with slope v (the action of S ). 1 1 v · − · DVI file created at 16:06, 20 January 2011 4 SOLUTIONS:CHAPTER1. RELATIVITYBEFOREEINSTEIN (Theunderlinedtermsthathavebeenaddedtotheexpres- 5. The relation between the Greek and the Roman vari- sionoffseteachother.)Inasimilarwaywecanshowthat ablesis thesecondandthirdcomponentsofA (B C)are t vz z vt × × t = − , z = − ; (A C)b2 (A B)c2 √1 v2 √1 v2 · − · − − and (A C)b (A B)c , 3 3 therefore · − · respectively. ¶t 1 ¶t v b) Let(cid:209) =A=BandF=C. Usingthefactthat(cid:209) can tt = ¶ t = √1 v2, tz= ¶ z = √1− v2, betreatedlikeavectorinvectorequations,togetherwith ¶z −v ¶z 1− theidentity z t = ¶ t = √1− v2, z z= ¶ z = √1 v2. − − A (B C)=B(A C) (B C)C × × · − · UsingE(t,z)=E(t ,z ),wefind (notethereorderedfactorsinthefirstterm),wehave (cid:209) ((cid:209) F)=(cid:209) ((cid:209) F) ((cid:209) (cid:209) )F=(cid:209) ((cid:209) F) (cid:209) 2F. Et =Et tt+Ez z t = Et −vEz , × × · − · · − √1 v2 − 1 2. Let F = (P,Q,R), where P(x,y,z), Q(x,y,z) and Ett = Ett tt+Etz z t vEzt tt vEzz z t R(x,y,z)aresmoothfunctions.Bydefinition, √1 v2 − − − (cid:209) F=(Ry Qz,Pz Rx,Qx Py); = Ett −2vE(cid:0)tz +v2Ezz , (cid:1) × − − − 1 v2 subs(cid:209) cri(p(cid:209)tsdeFn)o=te(pRayrtialQdze)rxiv+at(iPvzes.RAxg)ayi+n,(bQyxdefiPny)itzion, Ez=Et tz+Ez−z z= −√vE1t +vE2z · × − − − − =Ryx−Qzx+Pzy−Rxy+Qxz−Pyz Ezz= 1 vEtt tz vEtz z z+Ezt tz+Ezz z z =0, √1 v2 − − − v2Ett 2(cid:0)vEtz +Ezz (cid:1) bythecommutativityofpartialdifferentiation(forexam- = − . 1 v2 ple,R =R ,etc.). yx xy − ¶ E 3. FromMaxwell’sequation(cid:209) ×H= ¶ t +Jweobtain 6.a) Letu=z±ct,sout =±c,uz=1;then ¶ E ¶ ¶ 0=(cid:209) ·((cid:209) ×H)=(cid:209) · ¶ t +(cid:209) ·J= ¶ t(cid:209) ·E+(cid:209) ·J, ¶ th(z±ct)=h′(u)·ut =±ch′(u), (cid:18) (cid:19) again using the commutativity of partial differentia- ¶ 2 h(z ct)= ch (u) u =c2h (u), tion. This equation, together with Maxwell’s equation ¶ t2 ± ± ′′ · t ′′ (cid:209) E=r ,implies ¶ · h(z ct)=h(u) u =h(u), ¶r = (cid:209) J. ¶ z ± ′ · z ′ ¶ t − · ¶ 2 h(z ct)=h (u) u =h (u), 4. Theseequalitiesfollow fromthe chain rule. Because ¶ t2 ± ′′ · t ′′ z =z=vt, we havez =1 andz = v. Because t =t andE(t,z)=E(t ,z zvt ),wefindt − forany(sufficientlydifferentiable)functionh(u). Hence, − ifE(t,z)= f(z ct)+g(z+ct),then ¶ E ¶ E ¶z − Ez= ¶ z = ¶z ¶ z =Ez , Ett =c2(f(z−ct)+g(z+ct))=c2Ezz. ¶ Ez ¶ Ez ¶z Ezz= ¶ z = ¶z ¶ z =Ezz , b) Itisastandardfactthatthegraphofw= f(z−ct0)is thegraphofw= f(z)translatedbytheamountct . Thus ¶ E ¶ E ¶t ¶ E ¶z 0 thespikemovestothepointz=ct attimet,soittravels Et = ¶ t = ¶t ¶ t + ¶z ¶ t =Et −vEz withvelocityc. Ett = ¶¶Ett −v¶¶Etz =Ett −vEtz −v Ezt −vEzz tcr)ansTlhateedgrbayphocftw. T=hef(szp+ikectm0)oivsetshteogzra=phocftwat=timfe(zt), 0 =Ett 2vEtz +v2Ezz . (cid:0) (cid:1) soittravelsw−ithvelocity c. − − − DVI file created at 16:06, 20 January 2011

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.