Solutions: The Geometry of Spacetime JamesCallahan DVI file created at 16:06, 20 January 2011 DVI file created at 16:06, 20 January 2011 iii Preface ThisbookconsistsofdetailedsolutionstotheexercisesinmytextTheGeometryof Spacetime(Springer, NewYork, 2000). MyWeb site, http://maven.smith.edu/˜callahan/ containsadditionalmaterial, includingan errata fileforthetext, spacetime/errata.pdf This version of the solutions manual takes into account all corrections to the text foundin theerrata fileup to31 December2010. Giventhenatureofthematerial,itislikelythatthesolutionsthemselvesstillhave someerrors. Iinvitereaders ofthisbooktocontact meat [email protected] to let meknowabout any errors orquestionsconcerning thesolutionsfound here. I willpostasolutionserratafile onmyWeb site. Thissolutionsmanual isavailableonlydirectlyfrom Springer, viaitsWeb site http://www.springer.com/instructors?SGWID=0-115-12-333200-0 J. Callahan January 2011 DVI file created at 16:06, 20 January 2011 iv DVI file created at 16:06, 20 January 2011 Contents 1 RelativitybeforeEinstein 1 1.1 Spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 GalileanTransformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 TheMichelson–MorleyExperiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Maxwell’sEquations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 SpecialRelativity—Kinematics 5 2.1 Einstein’sSolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 HyperbolicFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 MinkowskiGeometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 PhysicalConsequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 SpecialRelativity—Kinetics 20 3.1 Newton’sLawsofMotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 CurvesandCurvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 AcceleratedMotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 ArbitraryFrames 30 4.1 UniformRotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 LinearAcceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3 NewtonianGravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.4 GravityinSpecialRelativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5 SurfacesandCurvature 39 5.1 TheMetric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2 IntrinsicGeometryontheSphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3 DeSitterSpacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.4 CurvatureofaSurface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6 IntrinsicGeometry 53 6.1 TheoremaEgregium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.2 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3 CurvedSpacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.4 Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.5 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7 GeneralRelativity 80 7.1 TheEquationsofMotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.2 TheVacuumFieldEquations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.3 TheMatterFieldEquations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 v DVI file created at 16:06, 20 January 2011 vi CONTENTS 8 Consequences 98 8.1 TheNewtonianApproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 8.2 SphericallySymmetricFields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 8.3 TheBendingofLight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 8.4 PerihelionDrift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 DVI file created at 16:06, 20 January 2011 Solutions: Chapter 1 Relativity before Einstein 1.1 Spacetime respectively, for v = 2,0,+10. The order is what we 0 − wouldexpect. z 3. The worldline of M is z = vt+l . This meets the 1.a) worldlineofthesignal(i.e.,z=t)whent =z=vt +l . 1 1 0.1 Thus l t (1 v)t =l , or t = . 0.5 1. − 1 1 1 v − b) The maximum z occurs where 0=z =2t 3t2, or AttheeventE ,z=z =t . Theworldlineofthereflected ′ 1 1 1 t=2/3.Atthattime,z=(2/3)2 (2/3)3=4/2−7. signalisthereforez z = (t t )orz= t+2t . This 1 1 1 − − − − − meetstheworldlineofG(i.e. z=vt)when c) Thevelocityatdepartureisz(0)=0. Thevelocityat ′ returnisz(1)= 1. 2t 2l ′ 1 − vt =z= t +2t , or t = = . d) Replacing the factor (1 t) by (1 t)2 in z(t) will 2 −2 1 2 1+v 1−v2 − − makez(1)=0. Then,forexample,anygraphoftheform ′ 1.2 Galilean Transformations z=kt2(1 t)2 hasthecorrectvelocities;whenk=4,the − maximumvalueofzis1. 1. According to R, the spatial distance between E and 1 g2gr.ivaaet)isonzB′(getic)vae=ussz−e(tgz)t′′=+(t)v0=g.t2−B/2egc+aaunvsd0et+zz′((h00.))==hv,0a,nionttheegrraintitoen- adEni2sdtiastnh0ce.ecAboceoctrwodreidneianntgethsteoomfGEi,s2thva.ereco(o2r,d−in2avt)e,saonfdEs1oatrhee(s1p,a−tiva)l − b) z 2. LetMbethematrixwhosecolumnsarethevectorsX 70 andY, inthatorder. Itisastandardresultoflinearalge- 60 brathatdetM=A(X,Y);seeExercise4, 5.1(Solutions § 50 page40). In particular, the parallelogramdeterminedby XandY isoriented:ithaspositiveorientationifdetM>0 40 andnegativeorientationifdetM<0.IfdetM=0,thepar- 30 allelogramcollapsestoalinesegment(andhasarea0). 20 Now use the given matrix L to construct the product matrixLM. Bythedefinitionofmatrixmultiplication,this 10 isamatrixwhosecolumnsareL(X)andL(Y),inthator- t der.Therefore, 0 1 2 3 4 5 Fromlefttoright,thethreegraphshavev = 2,0,+10. 0 − A(L(X),L(Y))=detLM=detL detM=detL A(X,Y). · · c) Anobjecthitsthegroundwhen gt2/2+v t+h=0, 0 − ThusLreversesorientationifdetL<0andcollapsesthe or imagetoalinesegmentifdetL=0. t= −v0− v20+2gh =3.301,3.499,4.665 3. A linear transformation L preserves areas if detL= qg 1.BecausedetSv=1,Svpreservesareas. − ± 1 DVI file created at 16:06, 20 January 2011 2 SOLUTIONS:CHAPTER1. RELATIVITYBEFOREEINSTEIN 1.3 The Michelson–Morley Experi- 4.a) Wehave ment 1 0 1 0 1 0 S S = = =S , v w v 1 w 1 v+w 1 v+w (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) and similarly, S S =S =S . Therefore S S = 1.a) The figure below is similar to the SPACE diagram w v w+v v+w v v S S =S =I,implyingS =S 1. − onpage18ofthetext,exceptthatitshowsthemovement v v 0 v v− − − ofG(thesourceoflight)andthemirrorthatliesparallel b) We have S S =S =S =S S . The previous w v w+v v+w v w to the track of G over time. Note that, at every instant, workshowsthatthemapv S :R G isanontogroup v 2 the line from G to the mirror remains perpendicular to 7→ → homomorphism.Sincethekernelofthismapisjustv=0, the direction of motion as given by the vector v. After thehomomorphismisanisomorphism. time T /2, G and the mirror have travelled vT /2 light- second⊥s to the right. By the Pythagorean the⊥orem, the 5.a) ThegiveninformationimpliesthatG’s positionat lightrayfromGtothemirrorhasthereforetravelled timet =t isx=0,y=v t, z=v t. Thustheeventwith y z coordinates(t ,x ,h ,z )inG’sframehascoordinates l 2+v2T2/4light-seconds. ⊥ t=t , x=x , y=h +v t , z=z +v t q M y z at time T^ /2 inR’sframe.Ifwesetasidethex=x coordinate,thiscan bewritteninmatrixformas t 1 0 0 t 1 0 0 y = v 1 0 h , so S = v 1 0 , y v y z v 0 1z v 0 1 z z l withv=(v ,v ). y z b) Directcalculationgives 1 0 0 1 0 0 vT^ /2 vT^ /2 S S = v 1 0 w 1 0 v w y y G G G v 0 1 w 0 1 z z at time 0 v at time T^ 1 0 0 = vy+wy 1 0 =Sv+w=Sw+v. That light ray is reflected back to G (after G has trav- vz+wz 0 1 elled to the righta totalof vT light-seconds), travelling an equal distance and time o⊥n its return. But the dis- In particular, S S =S =I =S S , implying S = v v 0 v v v tance travelled, in light-seconds, is numerically equal to S 1. − − − v− thetraveltimeT ,inseconds: ⊥ c) ThegroupG iscommutativebecausew+v=v+w. 3 T =2 l 2+v2T2/4seconds. 6. InExercise5a,above,changethex-coordinateofG’s ⊥ ⊥ position at time t = t to x = vxt , and change the x- Hence q coordinate of the event to x=x +v t . This makes the x T2 T2 T2 matrixformoftherelationbetweenR’scoordinatesofthe =l 2+v2 or 1 v2 =l 2, ⊥ ⊥ ⊥ 4 4 − 4 eventandG’scoordinatesequalto fromwhichitfollowsthat (cid:0) (cid:1) 1 0 0 0 2l Sv=vvx 10 01 00, T⊥= √1 v2 y − vz 0 0 1 Finally, the distance fromG to M andbackis D =2l , sotheaveragespeedoflightisD /T =√1 v2⊥. with v = (vx,vy,vz). An immediate calculation gives ⊥ ⊥ − SvSw=Sv+w=SwSv, somultiplicationin G4 is commu- b) Thetraveltime T is the timet2 thatwasdetermined tative. Furthermore,asinExercise5,S S =S =I,so inthesolutiontoExekrcise1of 1.1. BecauseD =2l , G isagroup. v −v 0 theaveragespeedoflightisD /§T =1 v2,not1k. 4 k k − DVI file created at 16:06, 20 January 2011 1.4. MAXWELL’SEQUATIONS 3 c) ByTaylor’stheorem, Each vertical line is mapped to itself by both F and S . v v But S simply translates points on the line t =a by the 1 1 v =1+v2+O(v4), =1+1v2+O(v4), amountav, while F also compressesthem by the factor 1 v2 √1 v2 2 v − − √1 v2. Both mapsturnhorizontallinesinto lineswith − asv 0. Therefore,T T = slopev. → k− ⊥ 2l 1 1 =l v2+O(v4)=v2(l +O(v2)) 4.a) Thevectors(1, 1)t (whereVt is the transposeof 1 v2−√1 v2 V)lieonthetwoworld±lines.Theimageworldlinesthere- (cid:18) − − (cid:19) forecontainthevectors asv 0. Weusethefactthatv2O(v2)=O(v4)asv 0. → → 1 0 1 1 2.a) z = . v √1 v2 1 v √1 v2 (cid:18) − (cid:19)(cid:18)± (cid:19) (cid:18) ± − (cid:19) Theslopesoftheseworldlinesare v √1 v2 m = ± − =v 1 v2. t ± 1 ± − p b) Thegraphof w=√1 v2 is the unitcircle centered − at(0,0)inthe(v,w)-plane;thereforeitliesabovetheline w = 1 v on the interval 0 < v < 1. In other words, − √1 v2>1 vthere.Hence − − ThemapC compressestheimageverticallybythefactor v √1 v2. The image grid thus consists of rectangles of m+=v+ 1 v2>v+1 v=1. − − − size1×√1−v2paralleltothecoordinateaxes. Because √1 v2>p1andv>0onthesamedomain, − − − b) Matrixmultiplicationgives m =v 1 v2>0 1= 1. 1 0 1 0 1 0 − − − − − SvCv= = =Fv; The maximum valupe of m (v) occurs when 0 = v 1! 0 √1 v2! v √1 v2! + − − (m )(v) = 1 v/√1 v2. Hence v = 1/√2 and + ′ − − however, m (1/√2)=√2. + 1 0 5. If Fv is to be valid, it must be consistent with the CvSv= =Fv Michelson–Morleyexperiment.Thatis,theimageworld- v√1 v2 √1 v2!6 − − lines of photons must have slopes 1. Exercise 4b ± whenv=0. demonstratesthatthisisnotsoifv>0. 6 3. 1.4 Maxwell’s Equations z 1.a) Let A = (a ,a ,a ), B = (b ,b ,b ), C = 1 2 3 1 2 3 (c ,c ,c );then 1 2 3 t b b b b b b B C= 2 3 , 3 1 , 1 2 . × c2 c3 c3 c1 c1 c2 (cid:18)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12)(cid:19) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Thefirstcomponen(cid:12)tofA (cid:12) ((cid:12)B C)(cid:12)is(cid:12)therefor(cid:12)e (cid:12) ×(cid:12) (cid:12) × (cid:12) (cid:12) (cid:12) b b b b a 1 2 a 3 1 2 c1 c2 − 3 c3 c1 (cid:12) (cid:12) (cid:12) (cid:12) =(cid:12)(cid:12)b1(a2c2(cid:12)(cid:12)+a3c(cid:12)(cid:12)3) c1((cid:12)(cid:12)a2b2+a3c3) The map F first compresses the image vertically by the (cid:12) (cid:12) (cid:12) − (cid:12) v =b (a c +a c +a c ) c (a b +a b +a b ) factor √1 v2 (this is the action of Cv) and then car- 1 1 1 2 2 3 3 − 1 1 1 2 2 3 3 − =(A C)b (A B)c . ries out a vertical shear with slope v (the action of S ). 1 1 v · − · DVI file created at 16:06, 20 January 2011 4 SOLUTIONS:CHAPTER1. RELATIVITYBEFOREEINSTEIN (Theunderlinedtermsthathavebeenaddedtotheexpres- 5. The relation between the Greek and the Roman vari- sionoffseteachother.)Inasimilarwaywecanshowthat ablesis thesecondandthirdcomponentsofA (B C)are t vz z vt × × t = − , z = − ; (A C)b2 (A B)c2 √1 v2 √1 v2 · − · − − and (A C)b (A B)c , 3 3 therefore · − · respectively. ¶t 1 ¶t v b) Let(cid:209) =A=BandF=C. Usingthefactthat(cid:209) can tt = ¶ t = √1 v2, tz= ¶ z = √1− v2, betreatedlikeavectorinvectorequations,togetherwith ¶z −v ¶z 1− theidentity z t = ¶ t = √1− v2, z z= ¶ z = √1 v2. − − A (B C)=B(A C) (B C)C × × · − · UsingE(t,z)=E(t ,z ),wefind (notethereorderedfactorsinthefirstterm),wehave (cid:209) ((cid:209) F)=(cid:209) ((cid:209) F) ((cid:209) (cid:209) )F=(cid:209) ((cid:209) F) (cid:209) 2F. Et =Et tt+Ez z t = Et −vEz , × × · − · · − √1 v2 − 1 2. Let F = (P,Q,R), where P(x,y,z), Q(x,y,z) and Ett = Ett tt+Etz z t vEzt tt vEzz z t R(x,y,z)aresmoothfunctions.Bydefinition, √1 v2 − − − (cid:209) F=(Ry Qz,Pz Rx,Qx Py); = Ett −2vE(cid:0)tz +v2Ezz , (cid:1) × − − − 1 v2 subs(cid:209) cri(p(cid:209)tsdeFn)o=te(pRayrtialQdze)rxiv+at(iPvzes.RAxg)ayi+n,(bQyxdefiPny)itzion, Ez=Et tz+Ez−z z= −√vE1t +vE2z · × − − − − =Ryx−Qzx+Pzy−Rxy+Qxz−Pyz Ezz= 1 vEtt tz vEtz z z+Ezt tz+Ezz z z =0, √1 v2 − − − v2Ett 2(cid:0)vEtz +Ezz (cid:1) bythecommutativityofpartialdifferentiation(forexam- = − . 1 v2 ple,R =R ,etc.). yx xy − ¶ E 3. FromMaxwell’sequation(cid:209) ×H= ¶ t +Jweobtain 6.a) Letu=z±ct,sout =±c,uz=1;then ¶ E ¶ ¶ 0=(cid:209) ·((cid:209) ×H)=(cid:209) · ¶ t +(cid:209) ·J= ¶ t(cid:209) ·E+(cid:209) ·J, ¶ th(z±ct)=h′(u)·ut =±ch′(u), (cid:18) (cid:19) again using the commutativity of partial differentia- ¶ 2 h(z ct)= ch (u) u =c2h (u), tion. This equation, together with Maxwell’s equation ¶ t2 ± ± ′′ · t ′′ (cid:209) E=r ,implies ¶ · h(z ct)=h(u) u =h(u), ¶r = (cid:209) J. ¶ z ± ′ · z ′ ¶ t − · ¶ 2 h(z ct)=h (u) u =h (u), 4. Theseequalitiesfollow fromthe chain rule. Because ¶ t2 ± ′′ · t ′′ z =z=vt, we havez =1 andz = v. Because t =t andE(t,z)=E(t ,z zvt ),wefindt − forany(sufficientlydifferentiable)functionh(u). Hence, − ifE(t,z)= f(z ct)+g(z+ct),then ¶ E ¶ E ¶z − Ez= ¶ z = ¶z ¶ z =Ez , Ett =c2(f(z−ct)+g(z+ct))=c2Ezz. ¶ Ez ¶ Ez ¶z Ezz= ¶ z = ¶z ¶ z =Ezz , b) Itisastandardfactthatthegraphofw= f(z−ct0)is thegraphofw= f(z)translatedbytheamountct . Thus ¶ E ¶ E ¶t ¶ E ¶z 0 thespikemovestothepointz=ct attimet,soittravels Et = ¶ t = ¶t ¶ t + ¶z ¶ t =Et −vEz withvelocityc. Ett = ¶¶Ett −v¶¶Etz =Ett −vEtz −v Ezt −vEzz tcr)ansTlhateedgrbayphocftw. T=hef(szp+ikectm0)oivsetshteogzra=phocftwat=timfe(zt), 0 =Ett 2vEtz +v2Ezz . (cid:0) (cid:1) soittravelsw−ithvelocity c. − − − DVI file created at 16:06, 20 January 2011