ebook img

The geometry of curvature homogeneous pseudo-Riemannian manifolds PDF

389 Pages·2007·1.677 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The geometry of curvature homogeneous pseudo-Riemannian manifolds

The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds ICP Advanced Texts in Mathematics ISSN 1753-657X Series Editor: Dennis Barden (Univ. of Cambridge, UK) Published Vol. 1 Recent Progress in Conformal Geometry by Abbas Bahri & Yong Zhong Xu Vol. 2 The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds by Peter B. Gilkey EH - The Geometry of Curvature.pmd 2 2/22/2007, 3:55 PM ICP Advanced Texts in Mathematics – Vol. 2 The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds Peter B. Gilkey University of Oregon, USA Imperial College Press ICP Published by Imperial College Press 57 Shelton Street Covent Garden London WC2H 9HE Distributed by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. THE GEOMETRY OF CURVATURE HOMOGENEOUS PSEUDO-RIEMANNIAN MANIFOLDS ICP Advanced Texts in Mathematics — Vol. 2 Copyright © 2007 by Imperial College Press All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN-13978-1-86094-785-8 ISBN-101-86094-785-9 Printed in Singapore. EH - The Geometry of Curvature.pmd 1 2/22/2007, 3:55 PM February7,2007 9:33 WSPC/BookTrimSizefor9inx6in aGilkeyCurvHomogenBook-v21e Preface This book arose out of a desire to investigate the relationship between certain algebraic properties of the curvature tensor and the underlying ge- ometry of a pseudo-Riemannian manifold. In Chapter 1, we discuss the geometry of the Riemannian curvature tensor. Basic geometrical notions are presented in Section 1.2. In Section 1.3, a passage to the algebraic context is given by introducing algebraic curvature tensorswhich arealgebraicobjectswith the samesymmetries as thatoftheRiemanncurvaturetensor. Onesaysthatapseudo-Riemannian manifold is curvature homogeneous if the curvature tensor \looksthe same at each point". This notion is made precise in Section 1.4. Section 1.5 presentssomeresultsfromlinearalgebraandSection1.6providesconcepts fromdi(cid:11)erentialgeometrythatwillbeneededsubsequently. InSection1.7, the geometry of the Jacobi operator is discussed and in Section 1.8, corre- spondingresultsforthe curvatureoperatoraregiven. Chapter1concludes in Section 1.9 with some general facts concerning the spectral geometry of the curvature tensor. Chapter 2 deals with curvature homogeneous generalized plane wave manifolds. This is a class of manifolds that are geodesically complete, whose exponential map is surjective, and which have a number of other properties. In Section 2.2, we present the main geometrical results con- cerning this class of manifolds. The remainder of Chapter 2 deals with speci(cid:12)c examples. Sections 2.3, 2.4 and 2.5 deal with manifolds of signa- ture (2;2), (2;4), and (p;p), respectively. Section 2.6 treats generalized planewavemanifoldswith (cid:13)atfactors, Section2.7discussesNik(cid:20)cevi(cid:19)cman- ifolds,andSection2.8presentsDunn manifolds. Sections2.9and2.10deal with k-curvature homogeneous manifolds. Chapter3discussesexampleswhicharenotgeneralizedplanewaveman- v February7,2007 9:33 WSPC/BookTrimSizefor9inx6in aGilkeyCurvHomogenBook-v21e vi The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds ifolds. Section 3.2 discusses Lorentz manifolds, Section 3.3 treats Walker manifolds of signature (2;2), Section 3.4 deals with questions of geodesic completenessandRicciblowup,andSection3.5presentsFiedlermanifolds. Chapter4ismorealgebraicinnature. InSection4.2,wepresentvarious topological results. In Section 4.3, we use the Nash embedding theorem to providegeneratorsforthespaceofalgebraiccurvaturetensorsandalgebraic covariant derivative tensors. Sections 4.4 and 4.5 treat Jordan Osserman algebraiccurvature tensorsandSzabo(cid:19)covariantderivativealgebraiccurva- ture tensors, respectively. In Section 4.6, we study questions in conformal geometry. Section 4.7 deals with Stanilov models. Section 4.8 treats com- plex geometry. Chapter 5 contains a discussion of complex models which are both Os- serman and complex Osserman; the classi(cid:12)cation is complete except in a few exceptional dimensions and ranks. Chapter 6 contains an introduc- tion to Stanilov{Tsankov theory; this is a discussion of Jacobi Tsankov manifolds, skew Tsankov manifolds, Stanilov{Videv manifolds, and Jacobi Videvmanifolds. Chapters5and6arejointworkwithM.Brozos-Va(cid:19)zquez. Eachchapter is divided into sections; the (cid:12)rst section of a chapter pro- vides an outline to the subsequent material in the chapter. Many sections are further divided into subsections. Theorems, lemmas, corollaries, and so forth are labeled by section. Equations which are cited are labeled by section; equations which are not cited are not labeled. Much of this book reports on previous joint workwith variousauthors. It is an honor and a privilege to acknowledge the contribution made by these colleagues: N. Bla(cid:20)zi(cid:19)c,N. Bokan, M. Brozos-Va(cid:19)zquez,J.D(cid:19)(cid:16)az-Ramos, C. Dunn, B. Fiedler, E. Garc(cid:19)(cid:16)a-R(cid:19)(cid:16)o, R. Ivanova, J. V. Leahy, Z. Raki(cid:19)c, H. Sadofsky, U. Semmelman, U. Simon, G. Stanilov, I. Stavrov, A. Swann, L. Vanhecke, V. Videv, and T. Zhang. In addition to pleasant professional collaborationsthey have also enriched the personal life of the author. TheauthorexpresseshisappreciationtotheMaxPlanckInstituteinthe Mathematical Sciences (Leipzig, Germany) where most of the writing and research took place. The author acknowledges with pleasure the support and encouragementof LorraineDavis, Susana Lo(cid:19)pez-Ornat, Gwen Steigel- man,andArnieZweig;withouttheseindividuals, the bookwouldnothave been written. The book is dedicated to my father and mother. P. B. Gilkey February7,2007 9:33 WSPC/BookTrimSizefor9inx6in aGilkeyCurvHomogenBook-v21e Contents Preface v 1. The Geometry of the Riemann Curvature Tensor 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Basic Geometrical Notions . . . . . . . . . . . . . . . . . . . 4 1.2.1 Vector spaces with symmetric inner products . . . . 4 1.2.2 Vector bundles, connections, and curvature . . . . . 6 1.2.3 Holonomy and parallel translation . . . . . . . . . . 10 1.2.4 A(cid:14)ne manifolds, geodesics, and completeness . . . . 11 1.2.5 Pseudo-Riemannian manifolds . . . . . . . . . . . . . 12 1.2.6 Scalar Weyl invariants . . . . . . . . . . . . . . . . . 15 1.3 Algebraic Curvature Tensors and Homogeneity . . . . . . . 16 1.3.1 Algebraic curvature tensors . . . . . . . . . . . . . . 17 1.3.2 Canonical curvature tensors . . . . . . . . . . . . . . 21 1.3.3 The Weyl conformal curvature tensor . . . . . . . . . 23 1.3.4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.3.5 Various notions of homogeneity . . . . . . . . . . . . 26 1.3.6 Killing vector (cid:12)elds . . . . . . . . . . . . . . . . . . . 27 1.3.7 Nilpotent curvature . . . . . . . . . . . . . . . . . . . 28 1.4 Curvature Homogeneity { a Brief Literature Survey. . . . . 28 1.4.1 Scalar Weyl invariants in the Riemannian setting . . 28 1.4.2 Relating curvature homogeneity and homogeneity . . 29 1.4.3 Manifolds modeled on symmetric spaces . . . . . . . 30 1.4.4 Historical survey . . . . . . . . . . . . . . . . . . . . 31 1.5 Results from Linear Algebra . . . . . . . . . . . . . . . . . . 32 1.5.1 Symmetric and anti-symmetric operators . . . . . . . 32 vii February7,2007 9:33 WSPC/BookTrimSizefor9inx6in aGilkeyCurvHomogenBook-v21e viii The Geometry ofCurvature Homogeneous Pseudo-Riemannian Manifolds 1.5.2 The spectrum of an operator . . . . . . . . . . . . . 32 1.5.3 Jordan normal form . . . . . . . . . . . . . . . . . . 33 1.5.4 Self-adjoint maps in the higher signature setting. . . 34 1.5.5 Technical results concerning di(cid:11)erential equations . . 35 1.6 Results from Di(cid:11)erential Geometry . . . . . . . . . . . . . . 38 1.6.1 Principle bundles . . . . . . . . . . . . . . . . . . . . 39 1.6.2 Geometric realizability . . . . . . . . . . . . . . . . . 39 1.6.3 The canonical algebraiccurvature tensors . . . . . . 41 1.6.4 Complex geometry . . . . . . . . . . . . . . . . . . . 47 1.6.5 Rank 1-symmetric spaces . . . . . . . . . . . . . . . 51 1.6.6 Conformal complex space forms . . . . . . . . . . . . 53 1.6.7 Ka(cid:127)hler geometry . . . . . . . . . . . . . . . . . . . . 54 1.7 The Geometry of the Jacobi Operator . . . . . . . . . . . . 54 1.7.1 The Jacobi operator . . . . . . . . . . . . . . . . . . 55 1.7.2 The higher order Jacobi operator . . . . . . . . . . . 57 1.7.3 The conformal Jacobi operator . . . . . . . . . . . . 59 1.7.4 The complex Jacobi operator . . . . . . . . . . . . . 60 1.8 The Geometry of the Curvature Operator . . . . . . . . . . 62 1.8.1 The skew-symmetric curvature operator . . . . . . . 62 1.8.2 The conformal skew-symmetric curvature operator . 65 1.8.3 The Stanilov operator . . . . . . . . . . . . . . . . . 66 1.8.4 The complex skew-symmetric curvature operator . . 66 1.8.5 The Szabo(cid:19) operator . . . . . . . . . . . . . . . . . . . 68 1.9 Spectral Geometry of the Curvature Tensor . . . . . . . . . 69 1.9.1 Analytic continuation. . . . . . . . . . . . . . . . . . 70 1.9.2 Duality. . . . . . . . . . . . . . . . . . . . . . . . . . 72 1.9.3 Bounded spectrum . . . . . . . . . . . . . . . . . . . 75 1.9.4 The Jacobi operator . . . . . . . . . . . . . . . . . . 78 1.9.5 The higher order Jacobi operator . . . . . . . . . . . 81 1.9.6 The conformal and complex Jacobi operators . . . . 82 1.9.7 The Stanilov and the Szabo(cid:19) operators . . . . . . . . 83 1.9.8 The skew-symmetric curvature operator . . . . . . . 84 1.9.9 The conformal skew-symmetric curvature operator . 86 2. Curvature Homogeneous Generalized Plane Wave Manifolds 87 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 2.2 Generalized Plane Wave Manifolds . . . . . . . . . . . . . . 90 2.2.1 The geodesic structure . . . . . . . . . . . . . . . . . 92 2.2.2 The curvature tensor . . . . . . . . . . . . . . . . . . 93 February7,2007 9:33 WSPC/BookTrimSizefor9inx6in aGilkeyCurvHomogenBook-v21e Contents ix 2.2.3 The geometry of the curvature tensor . . . . . . . . . 94 2.2.4 Local scalar invariants . . . . . . . . . . . . . . . . . 94 2.2.5 Parallelvector (cid:12)elds and holonomy . . . . . . . . . . 96 2.2.6 Jacobi vector (cid:12)elds . . . . . . . . . . . . . . . . . . . 96 2.2.7 Isometries . . . . . . . . . . . . . . . . . . . . . . . . 97 2.2.8 Symmetric spaces . . . . . . . . . . . . . . . . . . . . 99 2.3 Manifolds of Signature (2;2). . . . . . . . . . . . . . . . . . 101 2.3.1 Immersions as hypersurfaces in (cid:13)at space. . . . . . . 103 2.3.2 Spectral properties of the curvature tensor . . . . . . 105 2.3.3 A complete system of invariants . . . . . . . . . . . . 107 2.3.4 Isometries . . . . . . . . . . . . . . . . . . . . . . . . 109 2.3.5 Estimating k if min(p;q)=2 . . . . . . . . . . . . 114 p;q 2.4 Manifolds of Signature (2;4). . . . . . . . . . . . . . . . . . 115 2.5 Plane Wave Hypersurfaces of Neutral Signature (p;p) . . . 119 2.5.1 Spectral properties of the curvature tensor . . . . . . 123 2.5.2 Curvature homogeneity. . . . . . . . . . . . . . . . . 128 2.6 Plane Wave Manifolds with Flat Factors . . . . . . . . . . . 130 2.7 Nik(cid:20)cevi(cid:19)c Manifolds . . . . . . . . . . . . . . . . . . . . . . . 135 2.7.1 The curvature tensor . . . . . . . . . . . . . . . . . . 137 2.7.2 Curvature homogeneity. . . . . . . . . . . . . . . . . 139 2.7.3 Local isometry invariants. . . . . . . . . . . . . . . . 141 2.7.4 The spectral geometry of the curvature tensor . . . . 145 2.8 Dunn Manifolds. . . . . . . . . . . . . . . . . . . . . . . . . 149 2.8.1 Models and the structure groups . . . . . . . . . . . 151 2.8.2 Invariants which are not of Weyl type . . . . . . . . 155 2.9 k-Curvature Homogeneous Manifolds I . . . . . . . . . . . . 156 2.9.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . 159 2.9.2 A(cid:14)ne invariants. . . . . . . . . . . . . . . . . . . . . 162 2.9.3 Changing the signature . . . . . . . . . . . . . . . . . 164 2.9.4 Indecomposability. . . . . . . . . . . . . . . . . . . . 165 2.10k-Curvature Homogeneous Manifolds II . . . . . . . . . . . 166 2.10.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . 168 2.10.2 Isometry groups . . . . . . . . . . . . . . . . . . . . . 171 3. Other Pseudo-Riemannian Manifolds 181 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 3.2 Lorentz Manifolds . . . . . . . . . . . . . . . . . . . . . . . 182 3.2.1 Geodesics and curvature . . . . . . . . . . . . . . . . 185 3.2.2 Ricci blowup . . . . . . . . . . . . . . . . . . . . . . 187

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.