The Geometry and Physics of Abelian Gauge Groups in F-Theory Jan Keitel Mu¨nchen 2015 The Geometry and Physics of Abelian Gauge Groups in F-Theory Jan Keitel Dissertation an der Fakult¨at fu¨r Physik der Ludwig-Maximilians-Universita¨t Mu¨nchen vorgelegt von Jan Keitel aus Oberursel Mu¨nchen, 2015 Erstgutachter: Prof. Dr. Dieter Lu¨st Zweitgutachter: PD Dr. Ralph Blumenhagen Tag der mu¨ndlichen Pru¨fung: 14.07.2015 Zusammenfassung Diese Arbeit befasst sich mit der Geometrie und den effektiven physikalischen Theorien Abel- scher Eichgruppen in F-Theorie-Kompaktifizierungen. Um passende Calabi-Yau Mannigfaltigkeiten mit Torus-Faserung zu konstruieren, nutzen wir Methoden der torischen Geometrie. Wir bestimmen Komponenten dieser Calabi-Yau- Mannigfaltigkeiten, die dazu geeignet sind, unabh¨angig voneinander untersucht zu werden. Dies erlaubt die Entwicklung von Methoden zur Konstruktion großer Zahlen von Mannigfal- tigkeiten, die zu gegebenen Eichgruppen fu¨hren. In dem selben Rahmen erreichen wir eine teilweiseKlassifizierungtorischerEichgruppen.Wirzeigen,dassderFeldinhaltdergew¨ohnlich betrachtetenF-Theorie-ModellestarkenEinschr¨ankungenunterliegt.UmdieseBegrenzungen zu umgehen, entwickeln wir einen Algorithmus mittels dessen wir Torus-Faserungen, die als “complete intersections” definiert sind, untersuchen k¨onnen. Unter Benutzung dieses Algo- rithmus entdecken wir mehrere neuartige F-Theorie-Kompaktifizierungen. Zuletzt zeigen wir, wie Torus-Faserungen ohne Schnitt durch ein Netzwerk sukzessiver geometrischer U¨berg¨ange mit Faserungen mit mehreren Schnitten verbunden werden k¨onnen. Um die effektive Physik solcher Kompaktifizierungen bei niedrigen Energien zu untersu- chen, nutzen wir die Dualit¨at zwischen M-Theorie und F-Theorie. Nach der Bestimmung der effektiven Wirkung von F-Theorie mit Abelschen Eichgruppen in sechs Dimensionen verglei- chen wir die quantenkorrigierten Chern-Simons-Kopplungen mit topologischen Gr¨oßen der Kompaktifizierungsmannigfaltigkeit. Dies erlaubt es uns, den Materieinhalt der Theorien zu bestimmen. Unter bestimmten Bedingungen beweisen wir, dass gravitative und gemischte Anomalien in F-Theorie automatisch abwesend sind. Weiterhin berechnen wir die effektive Wirkung von F-Theorie-Kompaktifizierungen ohne Schnitt und schlagen vor, dass die Abwe- senheiteinessolchenSchnittsdiePr¨asenzeineszus¨atzlichenmassivenEichfeldeszurFolgehat. ZuletztzeigenwirdurchAusweitungunsererAnalyseaufvierDimensionen,dassU¨berbleibsel dieses massiven Eichfeldes sich in diskreten Symmetrien und entsprechenden Auswahlregeln fu¨r die Yukawa-Kopplungen der effektiven Theorie auswirken. Abstract In this thesis we study the geometry and the low-energy effective physics associated with Abelian gauge groups in F-theory compactifications. To construct suitable torus-fibered Calabi-Yau manifolds, we employ the framework of toric geometry. By identifying appropriate building blocks of Calabi-Yau manifolds that can be studied independently, we devise a method to engineer large numbers of manifolds that give rise to a specified gauge group and achieve a partial classification of toric gauge groups. Extending our analysis from gauge groups to matter spectra, we prove that the matter content of the most commonly studied F-theory set-ups is rather constrained. To circumvent such limitations, we introduce an algorithm to analyze torus-fibrations defined as complete intersections and present several novel kinds of F-theory compactifications. Finally, we show how torus-fibrations without section are linked to fibrations with multiple sections through a network of successive geometric transitions. In order to investigate the low-energy effective physics resulting from our compactifica- tions, we apply M- to F-theory duality. After determining the effective action of F-theory with Abelian gauge groups in six dimensions, we compare the loop-corrected Chern-Simons terms to topological quantities of the compactification manifold to read off the massless mat- ter content. Under certain assumptions, we show that all gravitational and mixed anomalies are automatically canceled in F-theory. Furthermore, we compute the low-energy effective action of F-theory compactifications without section and suggest that the absence of a sec- tion signals the presence of an additional massive Abelian gauge field. Adjusting our analysis to four dimensions, we show that remnants of this massive gauge field survive as discrete symmetries that impose selection rules on the Yukawa couplings of the effective theory. Acknowledgments First and foremost, I would like to express my deep gratitude to Thomas W. Grimm for taking me on as a member of his group and providing a level of supervision that I have rarely seen elsewhere. Not only did he immediately suggest research problems tailored towards my interests to me and constantly provided invaluable support with them, but he also initiated severalcollaborationsfromwhichIhave hugelybenefitedandthatIhave thoroughlyenjoyed. Thomashasmadeanenormousefforttoequipmewiththenecessaryskillstoperformresearch on my own and has never faltered in his support, regardless of my own professional choices. I am very grateful to Dieter Lu¨st for providing such a productive and friendly environment to do research at this institute and for kindly offering to be my official supervisor and first referee at the Ludwig-Maximilians-Universit¨at. Furthermore, I am deeply indebted to Ralph Blumenhagen for valuable discussions over the course of my PhD and for generously agreeing to serve as my second referee. Most of what I know about toric geometry I have learned from Volker Braun and I would like to sincerely thank him for his expert advise and the many hours he patiently and cheerfully spent explaining mathematics and Sage to me. A special thanks goes to In˜aki Garc´ıa-Etxebarria as well as to Lara B. Anderson, Andreas Kapfer, Raffaele Savelli, and Matthias Weissenbacher for interesting and fruitful collaborations. Finally, I would like to thank Federico Bonetti, Tom G. Pugh, and Diego Regalado for the numerous discussions and the many enjoyable times that we have had in our group. Last, but most certainly not least, I am tremendously grateful to my parents and my brother for the continuous and unwavering support that I have always received.
Description: