ebook img

The geometric mean is a Bernstein function PDF

0.6 MB·English
by  Feng Qi
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The geometric mean is a Bernstein function

THE GEOMETRIC MEAN IS A BERNSTEIN FUNCTION FENGQI,XIAO-JINGZHANG,ANDWEN-HUILI 3 1 0 Abstract. Inthepaper,theauthorsestablish,byusingCauchyintegralfor- 2 mula in the theory of complex functions, an integral representation for the n geometricmeanofnpositivenumbers. Fromthisintegralrepresentation, the a geometric mean is proved to be a Bernstein function and a new proof of the J wellknownAGinequalityisprovided. 9 2 ] 1. Introduction A C We recall some notions and definitions. h. Definition 1.1 ([15, 26]). A function f is said to be completely monotonic on an t interval I if f has derivatives of all orders on I and a m ( 1)nf(n)(t) 0 (1.1) − ≥ [ for x I and n 0. ∈ ≥ 1 The class of completely monotonic functions on (0, ) is characterized by the v ∞ famous Hausdorff-Bernstein-Widder Theorem below. 8 4 Proposition1.1([26,p.161,Theorem12b]). Anecessary andsufficientcondition 8 that f(x) should be completely monotonic for 0<x< is that 6 ∞ . ∞ 1 f(x)= e−xtdα(t), (1.2) 0 Z0 3 where α(t) is non-decreasing and the integral converges for 0<x< . 1 ∞ : Definition 1.2 ([18, 20]). A function f is said to be logarithmically completely v i monotonic on an interval I if its logarithm lnf satisfies X ( 1)k[lnf(t)](k) 0 (1.3) r − ≥ a for k N on I. ∈ It has been proved in [3, 8, 18, 20] that a logarithmically completely monotonic function on an interval I must be completely monotonic on I. Definition 1.3 ([24, 26]). A function f : I ( , ) [0, ) is called a ⊆ −∞ ∞ → ∞ Bernstein function on I if f(t) has derivatives of all orders and f′(t) is completely monotonic on I. The class of Bernstein functions can be characterized by 2010 Mathematics Subject Classification. Primary26E60, 30E20;Secondary26A48,44A20. Keywordsandphrases. Integralrepresentation;Geometricmean;Cauchyintegralformula;Bern- stein function; AG inequality; new proof; Completely monotonic function; Logarithmicallycom- pletelymonotonicfunction;Stieltjesfunction. Thispaperwastypeset usingAMS-LATEX. 1 2 F.QI,X.-J.ZHANG,ANDW.-H.LI Proposition 1.2 ([24, p. 15, Theorem 3.2]). A function f : (0, ) R is a ∞ → Bernstein function if and only if it admits the representation ∞ f(x)=a+bx+ 1 e−xt dµ(t), (1.4) − Z0 where a,b 0 and µ is a measure on (0, (cid:0)) satisfyin(cid:1)g ≥ ∞ ∞ min 1,t dµ(t)< . { } ∞ Z0 In [5, pp. 161–162, Theorem 3] and [24, p. 45, Proposition 5.17], it was dis- coveredthat the reciprocalof any Bernstein function is logarithmically completely monotonic. Definition 1.4 ([1]). Iff(k)(t)forsomenonnegativeintegerk iscompletelymono- tonic on an interval I, but f(k−1)(t) is not completely monotonic on I, then f(t) is called a completely monotonic function of k-th order on an interval I. It is obvious that a completely monotonic function of first order is a Bernstein function if and only if it is nonnegative on I. Definition 1.5 ([24, p. 19, Definition 2.1]). If f :(0, ) [0, ) can be written ∞ → ∞ in the form a ∞ 1 f(x)= +b+ dµ(s), (1.5) x s+x Z0 then it is called a Stieltjes function, where a,b 0 are nonnegative constants and ≥ µ is a nonnegative measure on (0, ) such that ∞ ∞ 1 dµ(s)< . 1+s ∞ Z0 The set of logarithmically completely monotonic functions on (0, ) contains ∞ all Stieltjes functions, see [3] or [22, Remark 4.8]. In other words, all the Stieltjes functions are logarithmically completely monotonic on (0, ). ∞ In the newly-published paper [7], a new notion “completely monotonic degree” of nonnegative functions was naturally introduced and initially studied. We also recall that the extended mean value E(r,s;x,y) may be defined as r(ys xs) 1/(s−r) E(r,s;x,y)= − , rs(r s)(x y)=0; (1.6) s(yr xr) − − 6 (cid:20) − (cid:21) yr xr 1/r E(r,0;x,y)= − , r(x y)=0; (1.7) r(lny lnx) − 6 (cid:20) − (cid:21) 1 xxr 1/(xr−yr) E(r,r;x,y)= , r(x y)=0; (1.8) e1/r yyr − 6 (cid:18) (cid:19) E(0,0;x,y)=√xy, x=y; (1.9) 6 E(r,s;x,x)=x, x=y; where x and y are positive numbers and r,s R. Because this mean was first ∈ definedin[25],soitisalsocalledStolarsky’smean. Manyspecialmeanvalueswith two variables are special cases of E, for example, E(r,2r;x,y)=M (x,y), (power mean or Ho¨lder mean) r E(1,p;x,y)=L (x,y), (generalized or extended logarithmic mean) p THE GEOMETRIC MEAN IS A BERNSTEIN FUNCTION 3 E(1,1;x,y)=I(x,y), (identric or exponential mean) E(1,2;x,y)=A(x,y), (arithmtic mean) E(0,0;x,y)=G(x,y), (geometric mean) E( 2, 1;x,y)=H(x,y), (harmonic mean) − − E(0,1;x,y)=L(x,y). (logarithmic mean) FormoreinformationonE,pleaserefertothemonograph[4],thepapers[9,10,11], and closely-related references therein. It is easy to see that the arithmetic mean A (t)=A(x+t,y+t)=A(x,y)+t x,y is a trivial Bernstein function of t ( min x,y , ) for x,y >0. ∈ − { } ∞ It is not difficult to see that the harmonic mean 2 H (t)=H(x+t,y+t)= (1.10) x,y 1 + 1 x+t y+t for t ( min x,y , ) and x,y >0 with x=y meets ∈ − { } ∞ 6 2 x2+y2+2(x+y)t+2t2 (x y)2 H′ (t)= =1+ − >1. (1.11) x,y (x+y+2t)2 (x+y+2t)2 (cid:2) (cid:3) It is obvious that the derivative H′ (t) is completely monotonic with respect x,y to t. As a result, the harmonic mean H (t) is a Bernstein function of t on x,y ( min x,y , ) for x,y >0 with x=y. − { } ∞ 6 In [21, Remark 6], it was pointed out that the reciprocal of the identric mean 1 (x+t)x+t 1/(x−y) I (t)=I(x+t,y+t)= (1.12) x,y e (y+t)y+t (cid:20) (cid:21) for x,y > 0 with x = y is a logarithmically completely monotonic function of 6 t ( min x,y , ) and that the identric mean I (t) for t > min x,y with x,y ∈ − { } ∞ − { } x = y is also a completely monotonic function of first order (that is, a Bernstein 6 function). In [17, p. 616], it was concluded that the logarithmic mean L (t)=L(x+t,y+t) (1.13) x,y isincreasingandconcaveint> min x,y forx,y >0withx=y. Morestrongly, − { } 6 itwasprovedin[19,Theorem1]thatthelogarithmicmeanL (t)forx,y >0with x,y x=yisacompletelymonotonicfunctionoffirstorderint ( min x,y , ),that 6 ∈ − { } ∞ is, the logarithmic mean L (t) is a Bernstein function of t ( min x,y , ). x,y ∈ − { } ∞ Recently, the geometric mean G (t)=G(x+t,y+t)= (x+t)(y+t) (1.14) x,y was proved in [23] to be a Bernstein function opf t on ( min x,y , ) for x,y >0 − { } ∞ with x=y, and its integral representation 6 x y ∞ ρ((x y)s) G (t)=G(x,y)+t+ − − e−ys 1 e−st ds (1.15) x,y 2π s − Z0 (cid:0) (cid:1) 4 F.QI,X.-J.ZHANG,ANDW.-H.LI for x>y >0 and t> y was discovered, where − 1/2 ρ(s)= q(u) 1 e−(1−2u)s e−usdu − Z0 1/2 1(cid:2) (cid:3) (1.16) = q u eus e−us e−s/2du 2 − − Z0 (cid:18) (cid:19) 0 (cid:0) (cid:1) ≥ on (0, ) and ∞ 1 1 q(u)= 1 (1.17) u − − 1/u 1 r − on (0,1). p Let a = (a ,a ,...,a ) for n N, the set of all positive integers, be a given 1 2 n ∈ sequence of positive numbers. Then the arithmetic and geometric means A (a) n and G (a) of the numbers a ,a ,...,a are defined respectively as n 1 2 n n 1 A (a)= a (1.18) n k n k=1 X and n 1/n G (a)= a . (1.19) n k ! k=1 Y It is general knowledge that G (a) A (a), (1.20) n n ≤ with equality if and only if a =a = =a . 1 2 n ··· Therehasbeenalargenumber,presumablyoveronehundred,ofproofsoftheAG inequality (1.20) in the mathematical literature. The most complete information, so far, can be found in the monographs [2, 4, 12, 13, 14, 16] and a lot of references therein. In this paper, we establish, by using Cauchy integral formula in the theory of complex functions, an integral representation of the geometric mean n 1/n G (a+z)= (a +z) , (1.21) n k " # k=1 Y where a=(a ,a ,...,a ) satisfies a >0 for 1 k n and 1 2 n k ≤ ≤ z C ( , min a ,1 k n ]. k ∈ \ −∞ − { ≤ ≤ } From this integral representation, it is immediately derived that the geometric mean G (a+t) for t ( min a ,1 k n , ) is a Bernstein function, where n k ∈ − { ≤ ≤ } ∞ a+t = (a +t,a +t,...,a +t), and a new proof of the AG inequality (1.20) is 1 2 n provided. 2. Lemmas In order to prove our main results, we need the following lemmas. THE GEOMETRIC MEAN IS A BERNSTEIN FUNCTION 5 Lemma2.1(Cauchyintegralformula[6,p.113]). LetD beaboundeddomain with piecewise smooth boundary. If f(z) is analytic on D, and f(z) extends smoothly to the boundary of D, then 1 f(w) f(z)= dw, z D. (2.1) 2πi w z ∈ I∂D − Lemma 2.2. For z C ( , min a ,1 k n ] with a = (a ,a ,...,a ) k 1 2 n ∈ \ −∞ − { ≤ ≤ } and a >0, the principal branch of the complex function k f (z)=G (a+z) z, (2.2) a,n n − where a+z =(a +z,a +z,...,a +z), meets 1 2 n lim f (z)=A (a). (2.3) a,n n z→∞ Proof. By L’Hoˆspital’s rule in the theory of complex functions, we have a lim f (z)= lim z G 1+ 1 a,n n z→∞ z→∞ z − (cid:26) (cid:20) (cid:18) (cid:19) (cid:21)(cid:27) n 1/n G (1+az) 1 d n = lim − = lim (1+a z) =A (a), k n z→0 z z→0dz" # k=1 Y where1+a = 1+a1,1+a2,...,1+an and1+az=(1+a z,1+a z,...,1+a z). z z z z 1 2 n Lemma 2.2 is thus proved. (cid:3) (cid:0) (cid:1) Lemma 2.3. Let a = (a ,a ,...,a ) with a > 0 for 1 k n and let [a] 1 2 n k ≤ ≤ be the rearrangement of the positive sequence a in an ascending order, that is, [a]= a ,a ,...,a and a a a . For z C ( ,0], let [1] [2] [n] [1] [2] [n] ≤ ≤···≤ ∈ \ −∞ (cid:0) (cid:1) h (z)=G [a] a +z z, (2.4) n n [1] − − where [a] a +z = z,a a +z,(cid:0)...,a a +(cid:1) z . Then the principal branch [1] [2] [1] [n] [1] − − − of h (z) satisfies n (cid:0) (cid:1) lim h ( t+iε)= n ε→0+ℑ − n 1/n ℓπ a a t sin , t a a ,a a " [k]− [1]− # n ∈ [ℓ]− [1] [ℓ+1]− [1] (2.5) 0,kY=1(cid:12)(cid:12) (cid:12)(cid:12) t (cid:0)a[n] a[1] (cid:3) ≥ − for 1 ℓ n 1. ≤ ≤ − Proof. For t (0, ) a a ,1 ℓ n 1 and ε>0, we have [ℓ+1] [1] ∈ ∞ \ − ≤ ≤ − (cid:8) (cid:9) h ( t+iε)=G [a] a t+iε +t iε n n [1] − − − − n (cid:0) 1 (cid:1) =exp ln a a t+iε +t iε "n [k]− [1]− # − k=1 X (cid:0) (cid:1) n 1 =exp ln a a t+iε +iarg a a t+iε +t iε (n k− [1]− [k]− [1]− ) − k=1 X(cid:2) (cid:12) (cid:12) (cid:0) (cid:1)(cid:3) (cid:12) (cid:12) 6 F.QI,X.-J.ZHANG,ANDW.-H.LI n 1 ℓπ exp ln a a t + i +t,t a a ,a a  n [k]− [1]− n ! ∈ [ℓ]− [1] [ℓ+1]− [1] k=1 →exp 1 Xn ln(cid:12)(cid:12)a a t(cid:12)(cid:12)+πi +t,t>a(cid:0) a (cid:1) n [k]− [1]− ! [n]− [1] k=1  n X (cid:12)(cid:12) 1/n (cid:12)(cid:12) ℓπ a a t exp i +t,t a a ,a a = kY=n1(cid:12)(cid:12)a[k]−a[1]−t(cid:12)(cid:12)!1/nexp((cid:18)πin)+(cid:19)t,t>a∈(cid:0) [ℓa]− [1] [ℓ+1]− [1](cid:1) [k] [1] [n] [1] − − ! − as ε→0+.kYA=s1(cid:12)(cid:12)a result, we h(cid:12)(cid:12)ave lim h ( t+iε)= n ε→0+ℑ − n 1/n ℓπ a a t sin , t a a ,a a ;  [k]− [1]− ! n ∈ [ℓ]− [1] [ℓ+1]− [1] 0,kY=1(cid:12)(cid:12) (cid:12)(cid:12) t>(cid:0)a[n] a[1]. (cid:1) − For t=a[ℓ+1]−a[1] for 1≤ℓ≤n−1, we have n 1 1 h ( t+iε)=exp ln a a t+iε + ln(iε) +t iε n − "n [k]− [1]− n # − k6=ℓ+1 X (cid:0) (cid:1) n 1 1 π =exp ln a a t+iε exp ln ε + i +t iε "nk6=ℓ+1 [k]− [1]− # (cid:20)n(cid:18) | | 2 (cid:19)(cid:21) − X (cid:0) (cid:1) n 1 1 π exp ln a a t lim exp ln ε + i +t → "nk6=ℓ+1 [k]− [1]− #ε→0+ (cid:20)n(cid:18) | | 2 (cid:19)(cid:21) X (cid:0) (cid:1) =t as ε 0+. Hence, when t=a a for 1 ℓ n 1, we have [ℓ+1] [1] → − ≤ ≤ − lim h ( t+iε)=0. n ε→0+ℑ − The proof of Lemma 2.3 is completed. (cid:3) 3. The geometric mean is a Bernstein function We now turn our attention to establishing an integralrepresentationof the geo- metric mean G (a+z) and to showing that the geometric mean is a Bernstein n function. Theorem 3.1. Let a = (a ,a ,...,a ) with a > 0 for 1 k n and let [a] 1 2 n k ≤ ≤ denote the rearrangement of the sequence a in an ascending order, that is, [a] = a ,a ,...,a and a a a . For z C ( , min a ,1 [1] [2] [n] [1] [2] [n] k ≤ ≤ ··· ≤ ∈ \ −∞ − { ≤ k n ], the principal branch of the geometric mean G (a +z) has the integral n (cid:0) ≤ } (cid:1) representation 1 n−1 ℓπ a[ℓ+1] n 1/n dt G (a+z)=A (a)+z sin (a t) , (3.1) n n k − π Xℓ=1 n Za[ℓ] (cid:12)(cid:12)kY=1 − (cid:12)(cid:12) t+z (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) THE GEOMETRIC MEAN IS A BERNSTEIN FUNCTION 7 wherea+z =(a +z,a +z,...,a +z). Consequently,thegeometricmeanG (a+t) 1 2 n n is a Bernstein function on ( min a ,1 k n , ). k − { ≤ ≤ } ∞ Proof. By standard arguments, it is not difficult to see that lim [zh (z)]=0 and h (z)=h (z), (3.2) n n n z→0+ where h (z) is defined by (2.4). n For any fixed point z C ( ,0], choose 0 < ε < 1 and r > 0 such that 0<ε< z <r, and consid∈er th\e−po∞sitively oriented contour C(ε,r) in C ( ,0] | | \ −∞ consisting of the half circle z = εeiθ for θ π,π and the half lines z = x iε ∈ −2 2 ± for x 0 until they cut the circle z = r, which close the contour at the points ≤ | | (cid:2) (cid:3) r(ε) iε, where 0<r(ε) r as ε 0. See Figure 1. − ± → → y |z|=r −r(ε) +εi z=x+εi ε z=εeiθ x O −r(ε)−εi z=x−εi −ε −r Figure 1. The contour C(ε,r) By Cauchy integral formula, that is, Lemma 2.1, we have 1 h (w) n h (z)= dw n 2πi w z IC(ε,r) − 1 −π/2 iεeiθh εeiθ arg[−r(ε)+iε] ireiθh reiθ = dθ+ dθ (3.3) 2πi εeiθ z reiθ z (cid:20)Zπ/2 (cid:0)− (cid:1) Zarg[−r(ε)−iε] (cid:0)− (cid:1) 0 h (x+iε) −r(ε) h (x iε) n n + dx+ − dx . x+iε z x iε z Z−r(ε) − Z0 − − (cid:21) By the limit in (3.2), it follows that −π/2 iεeiθh εeiθ n lim dθ =0. (3.4) ε→0+Zπ/2 εeiθ−(cid:0) z (cid:1) 8 F.QI,X.-J.ZHANG,ANDW.-H.LI By virtue of the limit (2.3) in Lemma 2.2, we deduce that arg[−r(ε)+iε] ireiθh reiθ π ireiθh reiθ n n lim dθ = lim dθ εr→→0∞+Zarg[−r(ε)−iε] reiθ −(cid:0) z (cid:1) r→∞Z−π reiθ −(cid:0) z (cid:1) (3.5) =2A [a] a πi, n [1] − where[a] a[1] = 0,a[2] a[1],...,a[n] a[1] . Uti(cid:0)lizingthe(cid:1)secondformulain(3.2) − − − and the limit (2.5) in Lemma 2.3 results in (cid:0) (cid:1) 0 h (x+iε) −r(ε) h (x iε) n n dx+ − dx x+iε z x iε z Z−r(ε) − Z0 − − 0 h (x+iε) h (x iε) n n = − dx x+iε z − x iε z Z−r(ε)(cid:20) − − − (cid:21) 0 (x iε z)h (x+iε) (x+iε z)h (x iε) n n = − − − − − dx (x+iε z)(x iε z) Z−r(ε) − − − 0 (x z)[h (x+iε) h (x iε)] iε[h (x iε)+h (x+iε)] n n n n = − − − − − dx (x+iε z)(x iε z) Z−r(ε) − − − 0 (x z) h (x+iε) ε h (x+iε) n n =2i − ℑ − ℜ dx (x+iε z)(x iε z) Z−r(ε) − − − 0 lim h (x+iε) 2i ε→0+ℑ n dx → x z Z−r − r lim h ( t+iε) = 2i ε→0+ℑ n − dt − t+z Z0 ∞ lim h ( t+iε) 2i ε→0+ℑ n − dt →− t+z Z0 n−1 ℓπ a[ℓ+1]−a[1] n 1/n dt = 2i sin a a t (3.6) − ℓ=1 n Za[ℓ]−a[1] "k=1 [k]− [1]− # t+z X Y(cid:12) (cid:12) asε 0+ andr . Substituting e(cid:12)quations(3.4)(cid:12),(3.5), and(3.6)into (3.3)and → →∞ simplifying generate 1 n−1 ℓπ a[ℓ+1]−a[1] n 1/n dt h (z)=A [a] a sin a a t . (3.7) n n − [1] −π ℓ=1 n Za[ℓ]−a[1] "k=1 [k]− [1]− # t+z (cid:0) (cid:1) X Y(cid:12) (cid:12) From (2.2) and (2.4), it is easy to obtain that (cid:12) (cid:12) f (z)=h z+a +a . a,n n [1] [1] Combining this with (3.7) and changing(cid:0)the var(cid:1)iables of integrals, it is immediate to deduce that f (z)=A [a] a +a a,n n [1] [1] − 1(cid:0)n−1 ℓ(cid:1)π a[ℓ+1]−a[1] n 1/n dt sin a a t − π ℓ=1 n Za[ℓ]−a[1] "k=1 [k]− [1]− # t+z+a[1] X Y(cid:12) (cid:12) 1 n−1 ℓπ a[ℓ+1] (cid:12) n 1(cid:12)/n dt =A ([a]) sin a t , n − π ℓ=1 n Za[ℓ] "k=1| [k]− |# t+z X Y THE GEOMETRIC MEAN IS A BERNSTEIN FUNCTION 9 from which and the facts that n n A ([a])=A (a) and a t = a t, n n [k] k | − | | − | k=1 k=1 Y Y the integral representation (3.1) follows. Differentiating with respect to z on both sides of (3.1) yields 1 n−1 ℓπ a[ℓ+1] n 1/n dt G′ (a+z)=1+ sin a t , n π ℓ=1 n Za[ℓ] "k=1| k− |# (t+z)2 X Y which implies that G′ (a+t) is completely monotonic, and so the geometric mean n G (a+t) is a Bernstein function. Theorem 3.1 is proved. (cid:3) n 4. A new proof of the AG inequality As an application of the integral representation (3.1) in Theorem 3.1, we can easily deduce the AG inequality (1.20) as follows. Taking z =0 in the integral representation (3.1) yields 1 n−1 ℓπ a[ℓ+1] n 1/ndt G (a)=A (a) sin a t A (a), (4.1) n n k n − π ℓ=1 n Za[ℓ] "k=1| − |# t ≤ X Y from which the inequality (1.20) follows. From (4.1), it is also immediate that the equality in (1.20) is valid if and only if a = a = = a , that is, a = a = = a . The proof of the AG [1] [2] [n] 1 2 n ··· ··· inequality (1.20) is complete. References [1] R.D.Atanassov andU. V.Tsoukrovski, Some properties of a class of logarithmically com- pletely monotonic functions,C.R.Acad.BulgareSci.41(1988), no.2,21–23. [2] E.F.Beckenbach andR.Bellman,Inequalities,Springer,Berlin,1983. [3] C.Berg,Integral representation of some functionsrelated tothe gamma function,Mediterr. J. Math. 1 (2004), no. 4, 433–439; Available online at http://dx.doi.org/10.1007/ s00009-004-0022-6. [4] P. S. Bullen, Handbook of Means and Their Inequalities, Mathematics and its Applications (Dordrecht)560,KluwerAcademicPublishers,Dordrecht,2003. [5] C.-P.Chen,F.Qi,andH.M.Srivastava,Some properties of functionsrelated tothegamma and psi functions, Integral Transforms Spec. Funct. 21 (2010), no. 2, 153–164; Available onlineathttp://dx.doi.org/10.1080/10652460903064216. [6] T. W. Gamelin, Complex Analysis, Undergraduate Texts in Mathematics, Springer, New York-Berlin-Heidelberg,2001. [7] B.-N. Guo and F. Qi, A completely monotonic function involving the tri-gamma function and with degree one, Appl.Math. Comput. 218(2012), no.19, 9890–9897; Availableonline athttp://dx.doi.org/10.1016/j.amc.2012.03.075. [8] B.-N. Guo and F. Qi, A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function, Politehn. Univ. BucharestSci.Bull.Ser.AAppl.Math.Phys.72(2010), no.2,21–30. [9] B.-N. Guo and F. Qi, A simple proof of logarithmic convexity of extended mean values, Numer. Algorithms 52 (2009), no. 1, 89–92; Available online at http://dx.doi.org/10. 1007/s11075-008-9259-7. [10] B.-N.Guo and F.Qi, The function (bx−ax)/x: Logarithmic convexity and applications to extended mean values, Filomat25(2011), no.4,63–73; Availableonlineathttp://dx.doi. org/10.2298/FIL1104063G. [11] B.-N. Guo and F. Qi, The function (bx −ax)/x: Ratio’s properties, Available online at http://arxiv.org/abs/0904.1115. 10 F.QI,X.-J.ZHANG,ANDW.-H.LI [12] G. H. Hardy, J. E. Littlewood, and G. P´olya, Inequalities, 2nd ed., Cambridge University Press,Cambridge,1952. [13] J.-C. Kuang, Cha´ngy`ong Bu`dˇengsh`ı (Applied Inequalities), 3rd ed., Sh¯and¯ong K¯exu´e J`ıshu` Chu¯bˇan Sh`e (Shandong Science and Technology Press), Ji’nan City, Shandong Province, China,2004.(Chinese) [14] D.S.Mitrinovi´c,Analytic Inequalities,Springer,NewYork-Heidelberg-Berlin,1970. [15] D.S.Mitrinovi´c,J.E.Peˇcari´c,andA.M.Fink,Classical and NewInequalities inAnalysis, KluwerAcademicPublishers,1993. [16] D.S.Mitrinovi´candP.M.Vasi´c,Sredine,Matematiˇcka Biblioteka40,Beograd,1969. [17] F.Qi,AnewlowerboundinthesecondKershaw’sdoubleinequality,J.Comput.Appl.Math. 214(2008),no.2,610–616;Availbaleonlineathttp://dx.doi.org/10.1016/j.cam.2007.03. 016. [18] F. Qi and C.-P. Chen, A complete monotonicity property of the gamma function, J. Math. Anal.Appl.296(2004), no.2,603–607; Availableonlineathttp://dx.doi.org/10.1016/j. jmaa.2004.04.026. [19] F.QiandS.-X.Chen,Completemonotonicityofthelogarithmicmean,Math.Inequal.Appl. 10(2007), no.4,799–804; Availableonlineathttp://dx.doi.org/10.7153/mia-10-73. [20] F. Qi and B.-N. Guo, Complete monotonicities of functions involving the gamma and digamma functions, RGMIA Res. Rep. Coll. 7 (2004), no. 1, Art. 8, 63–72; Available on- lineathttp://rgmia.org/v7n1.php. [21] F.Qi,S.Guo,andS.-X.Chen,AnewupperboundinthesecondKershaw’sdoubleinequality and its generalizations, J. Comput. Appl. Math. 220 (2008), no. 1-2, 111–118; Available onlineathttp://dx.doi.org/10.1016/j.cam.2007.07.037. [22] F.Qi,C.-F.Wei,andB.-N.Guo,Completemonotonicityofafunctioninvolvingtheratioof gamma functions and applications, BanachJ.Math.Anal.6(2012), no.1,35–44. [23] F. Qi, X.-J. Zhang, and W.-H. Li, Some Bernstein functions and integral representations concerningharmonicandgeometricmeans,availableonlineathttp://arxiv.org/abs/1301. 6430. [24] R. L. Schilling, R. Song, and Z. Vondraˇcek, Bernstein Functions, de Gruyter Studies in Mathematics37,DeGruyter,Berlin,Germany,2010. [25] K.B.Stolarsky,Generalizations of the logarithmic mean,Math.Mag.48(1975), 87–92. [26] D.V.Widder,The Laplace Transform,PrincetonUniversityPress,Princeton,1946. (F.Qi)DepartmentofMathematics,SchoolofScience,Tianjin PolytechnicUniver- sity,Tianjin City, 300387,China E-mail address: [email protected], [email protected], [email protected] URL:http://qifeng618.wordpress.com (X.-J. Zhang) Department of Mathematics, School of Science, Tianjin Polytechnic University,Tianjin City,300387,China E-mail address: [email protected] (W.-H.Li)Departmentof Mathematics,Schoolof Science, Tianjin PolytechnicUni- versity,Tianjin City, 300387,China E-mail address: [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.