ebook img

The generalized golden proportions, a new theory of real numbers, and ternary mirror-symmetrical ... PDF

20 Pages·2007·0.31 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The generalized golden proportions, a new theory of real numbers, and ternary mirror-symmetrical ...

Chaos,SolitonsandFractals33(2007)315–334 www.elsevier.com/locate/chaos The generalized golden proportions, a new theory of real numbers, and ternary mirror-symmetrical arithmetic Alexey Stakhov TheInternationalCluboftheGoldenSection,6McCrearyTrail,Bolton,ON,CanadaL7E2C8 Accepted4January2006 CommunicatedbyProfessorG.Iovane Abstract Weconsidertwoimportantgeneralizationsofthegoldenproportion:goldenp-proportions[StakhovAP.Introduc- tionintoalgorithmicmeasurementtheory.SovietRadio,Moscow,1977[inRussian]]and‘‘metallicmeans’’[Spinadel VW.Lafamiliadenu´merosmeta´licosenDisen˜o.PrimerSeminarioNacionaldeGra´ficaDigital,Sesio´ndeMorfolog´ıa y Matema´tica, FADU, UBA, 11–13 Junio de 1997, vol. II, ISBN 950-25-0424-9 [in Spanish]; Spinadel VW. New smarandachesequences.In:Proceedingsofthefirstinternationalconferenceonsmarandachetypenotionsinnumber theory, 21–24 August 1997. Lupton: American Research Press; 1997, p. 81–116. ISBN 1-879585-58-8]. We develop a constructive approach to the theory of real numbers that is based on the number systems with irrational radices (Bergman’s number system and Stakhov’s codes of the golden p-proportions). It follows from this approach ternary mirror-symmetrical arithmetic that isthe basis ofnew computer projects. (cid:2)2006Elsevier Ltd. Allrights reserved. 1. Introduction AtheoryofFibonaccinumbersandthegoldensectionisanimportantbranchofmodernmathematics[1–3].Letus consider the basic notions of this theory. It is known from the ancient times that a problem of the ‘‘division of a line segment AB witha pointC inthe extreme andmiddle ratio’’ reducesto the following: AB CB ¼ . ð1Þ CB AC Thisproblemcametousfromthe‘‘EuclideanElements’’.Inmodernsciencetheproblemisknownasthegoldensection problem. Itssolutionreduces to thefollowing algebraic equation: x2¼xþ1. ð2Þ E-mailaddress:[email protected] URL:www.goldenmuseum.com 0960-0779/$-seefrontmatter (cid:2)2006ElsevierLtd.Allrightsreserved. doi:10.1016/j.chaos.2006.01.028 316 A.Stakhov/Chaos,SolitonsandFractals33(2007)315–334 Itspositive root p ffiffiffi 1þ 5 s¼ ð3Þ 2 iscalled the goldenproportion, thegoldenmean,orthe goldenratio. Itfollowsfrom (2)the following remarkableidentity for thegolden ratio: sn¼sn(cid:2)1þsn(cid:2)2¼s(cid:3)sn(cid:2)1; ð4Þ where ntakes its valuesfromthe set: 0,±1,±2,±3,... TheFibonacci numbers F ¼f1;1;2;3;5;8;13;21;34;55;...g ð5Þ n are anumerical sequencegivenbythe following recurrence relation: F ¼F þF ð6Þ n n(cid:2)1 n(cid:2)2 withthe initial terms F ¼F ¼1. ð7Þ 1 2 TheLucas numbers L ¼f1;3;4;7;11;18;29;47;76;...g ð8Þ n are anumerical sequencegivenbythe following recurrence relation: L ¼L þL ð9Þ n n(cid:2)1 n(cid:2)2 withthe initial terms L ¼1; L ¼3. ð10Þ 1 2 TheFibonacciandLucasnumberscanbeextendedtothenegativevaluesoftheindexn.The‘‘extended’’Fibonacci andLucasnumbers are presented inTable 1. AscanbeseenfromTable1,thetermsofthe‘‘extended’’sequencesF andL haveanumberofwonderfulmath- n n ematical properties. For example, for the odd n=2k+1 the terms of the sequences F and F coincide, that is, n (cid:2)n F =F ,andfortheevenn=2ktheyareequalandofoppositesign,thatis,F =(cid:2)F .AstotheLucasnum- 2k+1 (cid:2)2k(cid:2)1 2k (cid:2)2k bersL ,hereall are opposite,that is,L =L ; L =(cid:2)L . n 2k (cid:2)2k 2k+1 (cid:2)2k(cid:2)1 Inthelastdecadesthistheoryanditsapplicationsweredevelopingintensively.Inthisconnectiontheworksonthe generalization of Fibonacci numbers and golden proportion are of the greatest interest. There are two of the most important generalizations of the golden proportion. The first of them, which was called the golden p-proportions (p=0,1,2,3,...), was made by the present author in a book [4] published in 1977. The author’s works [4–21] in this fielddevelopsandgeneralizesthetheoryofFibonaccinumbersandthegoldenproportionandgivesmanyinteresting applicationsof the goldenp-proportions to the differentfieldsof mathematics andcomputer science. Anothergeneralizationofthegoldenproportioncalledthemetallicmeansormetallicproportionswasdevelopedby theArgentineanmathematicianVeraSpinadelintheseriesofthepapersandbooks[22–32].ThefirstSpinadel’spaper in thisarea[22]was published in 1997. Thefirstpurposeofthepresentpaperistodiscusstwoimportantgeneralizationsofthegoldenproportionsstatedin the works [4–32]. The second purpose is to show how these generalizations, in particular, a concept of the golden p- proportions[4]caninfluencethedevelopmentofnumbertheory.Thethirdpurposeistoputforwardanoriginalcom- puterarithmeticproject namelythe ternarymirror-symmetrical arithmetic developedin [12]. Table1 The‘‘extended’’FibonacciandLucasnumbers n 0 1 2 3 4 5 6 7 8 9 10 F 0 1 1 2 3 5 8 13 21 34 55 n F 0 1 (cid:2)1 2 (cid:2)3 5 (cid:2)8 13 (cid:2)21 34 (cid:2)55 (cid:2)n L 2 1 3 4 7 11 18 29 47 76 123 n L 2 (cid:2)1 3 (cid:2)4 7 (cid:2)11 18 (cid:2)29 47 (cid:2)76 123 (cid:2)n A.Stakhov/Chaos,SolitonsandFractals33(2007)315–334 317 2. Generalizationsof thegoldenproportions 2.1.The goldenp-proportions Intheauthor’sbook[4]thefollowinggeometricproblemcalledaproblemofthegoldenp-sectionwasformulated.Let usconsideragivennumberp=0,1,2,3,...anddividealinesegmentABwithapointCinthefollowingproportion: CB (cid:3)AB(cid:4)p ¼ . ð11Þ AC CB As isshownin [4],a solutionof the problem (11)reduces tothe following algebraic equation: xpþ1¼xpþ1; ð12Þ where p=0,1,2,3,... Apositiveroots ofEq.(12)wasnamedin[4]thegoldenp-proportionbecauseforthecasep=1theroots coincides p p withtheclassicalgoldenproportion(3).Eq.(12)wasnamedin[16]the‘‘golden’’algebraicequationbecauseforthecase p=1 Eq.(12)reduces to Eq.(2). Note that for the case p=0 the number s =s =2 and for the case p=1, s =s =1. It means that on the p 0 p 1 numericalaxisbetweenthenumericalconstants2and1thereareaninfinitenumberofthenumericalconstantss that p are positive roots ofthe ‘‘golden’’ algebraic equation (12). Itfollows directlyfrom (12)the following identitythat connects the goldenp-proportions degrees: sn¼sn(cid:2)1þsn(cid:2)p(cid:2)1¼s (cid:3)sn(cid:2)1. ð13Þ p p p p p Notethat forthe casep=1 the identity(13) reducesto identity (4). The golden p-proportions s can be got from the combinatorial consideration [4]. Let us consider Pascal triangle p (Table2). Note that the binomial coefficient Ck is on the intersection of the nth column (n=0,1,2,3,...) and the kth row n (k=0,1,2,3,...) ofPascal triangle. Itis well knownthat the followingidentity thatconnects the binomialcoefficients withthe binarynumbers: 2n¼C0þC1þC2þ(cid:4)(cid:4)(cid:4)þCn. ð14Þ n n n n LetusshiftnoweveryrowofPascaltrianglebyonecolumntotherightwithrespecttopreviousrowandconsider the following‘‘deformed’’ Pascaltriangle(Table3). Table2 Pascaltriangle 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 1 3 6 10 15 21 28 36 1 4 10 20 35 56 84 1 5 15 35 70 126 1 6 21 56 126 1 7 28 84 1 8 36 1 9 1 1 2 4 8 16 32 64 128 256 512 Table3 The‘‘deformed’’Pascaltriangle 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 1 3 6 10 15 21 28 36 1 4 10 20 35 56 1 5 15 35 1 6 1 1 2 3 5 8 13 21 34 55 89 144 318 A.Stakhov/Chaos,SolitonsandFractals33(2007)315–334 Ifwesumbinomialcoefficientsofthe‘‘deformed’’PascaltrianglebycolumnswegetunexpectedlyFibonaccinumbers 1,1,2,3,5,8,13,...Herethesumofthebinomialcoefficientsofthenthrowisequaltothe(n+1)thFibonaccinumber F (F =F +F ;F =F =1). n+1 n+1 n n(cid:2)1 1 2 Itiseasyto prove thatthe Fibonacci number F canbe represented viabinomialcoefficients as follows: n+1 F ðnþ1Þ¼C0þC1 þC2 þC3 þc4 þ(cid:4)(cid:4)(cid:4) ð15Þ 1 n n(cid:2)1 n(cid:2)2 n(cid:2)3 n(cid:2)4 If we shift every row of the initial Pascal triangle in p columns to the right with respect to the previous row (p=0,1,2,3,...),thenwegetatableofbinomialcoefficients(anew‘‘deformed’’Pascaltriangle).Ifwesumbinomial coefficientsofanew‘‘deformed’’PascaltrianglecalledPascalp-trianglewewillgettheso-calledgeneralizedFibonacci numbers orFibonacci p-numbers[4] thatare givenwith the followingrecurrence relation: F ðnþ1Þ¼F ðnÞþF ðn(cid:2)pÞ for n>p; ð16Þ p p p F ð1Þ¼F ð2Þ¼(cid:4)(cid:4)(cid:4)¼F ðpþ1Þ¼1. ð17Þ p p p Itwasprovedin[4]thattheratiooftheadjacentFibonaccip-numbersF (n)/F (n(cid:2)1)forthecasen!1tendsto p p thegoldenp-proportions .Itmeansthatthenumberss expresssomedeepmathematicalpropertiesofPascaltriangle. p p Itwasprovedin[4]thattheFibonaccip-numberF (n+1)canberepresentedviabinomialcoefficientsasfollows: p F ðnþ1Þ¼C0þC1 þC2 þC3 þC4 þ(cid:4)(cid:4)(cid:4) ð18Þ p n n(cid:2)p n(cid:2)2p n(cid:2)3p n(cid:2)4p It is clear that the Fibonacci p-numbers given with (16)–(18) are a wide generalization of the ‘‘binary’’ numbers 1,2,4,8,16,...(p=0)andFibonaccinumbers1,1,2,3,5,8,13,...(p=1).Notethattheformulas(14)and(15)arepar- tialcasesof theformula (18) forthe cases p=0 and p=1,respectively. The notions of the golden p-proportions and Fibonacci p-numbers became a source of the original mathematical concepts,inparticular,‘‘Golden’’AlgebraicEquations[17],GeneralizedPrincipleoftheGoldenSection[20],General- ized Binet Formulas and Lucas p-numbers [18], Harmony Mathematics [9,21], Algorithmic Measurement Theory [4,5,7], Codesof theGolden Proportion[6,14] andsoon. 2.2.The metallic means family ofVera Spinadel In 1997, the Argentinean mathematician Vera Spinadel considered a very interesting generalization of Fibonacci numbers andthe goldenproportion [22–32]. Letusconsider thefollowing recurrence formula: Gðnþ1Þ¼pGðnÞþqGðn(cid:2)1Þ; ð19Þ where pand q are naturalnumbers. From (19)weget Gðnþ1Þ Gðn(cid:2)1Þ q ¼pþq ¼pþ . ð20Þ GðnÞ GðnÞ GðnÞ Gðn(cid:2)1Þ Takingthe limits in bothmembers andassuming thatlim Gðnþ1Þ existsand isequalto a real numberx,we have n!1 GðnÞ q x¼pþ ð21Þ x or x2(cid:2)px(cid:2)q¼0. ð22Þ Thealgebraic equation (22)hasa positive solution pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pþ p2þ4q rq¼ . ð23Þ p 2 Thismeansthat Gðnþ1Þ lim ¼rq. ð24Þ n!1 GðnÞ p Formula (23) forms a metallic means family (MMF) of Vera Spinadel. All the members of the MMF are positive quadraticirrational numbersrq thatare the positive solutions of quadraticequations ofthe type (22). p Letusbeginwithx2(cid:2)px(cid:2)1=0.ThenitisveryeasytofindthemembersoftheMMFthatsatisfythisequation, expandingthemin continuedfractions.Infact,if p=q=1,formula (21) canbewritten as follows: A.Stakhov/Chaos,SolitonsandFractals33(2007)315–334 319 1 r1¼1þ . ð25Þ 1 x Replacingiteratively the valueof xof the second term,we have 1 r1¼1þ ; 1 1 1þ 1þ(cid:4)(cid:4)(cid:4) thatis, r1¼½1;1;1;...(cid:5)¼½(cid:2)1(cid:5). ð26Þ 1 Itisclearthatexpression(26)definesthegoldenproportionintheformofapurelyperiodiccontinuedfraction,thatis, p ffiffiffi 1þ 5 r1¼s¼ ¼½(cid:2)1(cid:5). 1 2 Analogously,if p=2and q=1,we obtainthe silver mean r1¼1þpffi2ffiffi¼2þ 1 ¼½(cid:2)2(cid:5) ð27Þ 2 1 2þ 1 2þ 1 2þ 2þ... another purelyperiodiccontinued fraction. Ifp=3 andq=1, we getthe bronzemean p ffiffiffiffiffi 3þ 13 r1¼ ¼½(cid:2)3(cid:5). 3 2 p Forp=4;q=1,themetallicmeanr1¼2þ ffi5ffiffi¼½(cid:2)4(cid:5)¼s3,astrikingresultrelatedtothecontinuedfractionexpansion 4 of oddpowers of the golden proportion. Itis easytoverify thatthe following metallicmeans are p p p r1¼5þ ffi2ffiffi9ffiffi¼½(cid:2)5(cid:5); r1¼3þpffi1ffiffi0ffiffi¼½(cid:2)6(cid:5); r1¼7þ ffi5ffiffi3ffiffi¼½(cid:2)7(cid:5); r1¼4þpffi1ffiffi7ffiffi¼½(cid:2)8(cid:5); r1¼9þ ffi8ffiffi5ffiffi 5 2 6 7 2 8 9 2 p ¼½(cid:2)9(cid:5); r1 ¼5þ ffi2ffiffi6ffiffi¼½1(cid:2)0(cid:5). 10 If,instead,weconsiderequationx2(cid:2)x(cid:2)q=0,wehaveforq=1,againthegoldenproportion.Ifp=1andq=2, we obtain the copper mean r2¼2¼½2;(cid:2)0(cid:5), a periodic continued fraction. If p=1 and q=3, we get the nickel mean, 1 r3¼lim Gðnþ1Þ¼1þpffi1ffi3ffiffi¼½2;(cid:2)3(cid:5).Analogously 1 n!1 GðnÞ 2 r4 ¼½2;1;1;3(cid:5); r5 ¼½2;1;3(cid:5); r6¼3¼½3;0(cid:5); r7¼½3;5(cid:5); r8¼½3;2;1;2;5(cid:5); 1 1 1 1 1 r9 ¼½3;1;1;5(cid:5); r10 ¼½3;1;2;2;1;5(cid:5); r11 ¼½3;1;5(cid:5); r12 ¼4¼½4;(cid:2)0(cid:5) 1 1 1 1 andall thesemembersof the MMFare of the form[m;n ;n ;...]. 1 2 Vera Spinadel shows in her works [22–32] a number of interesting applications of the metallic means: Pisot and Salemnumbers, quasi-crystalsand soon. 3. Bergman’s number system In1957, the American mathematician George Bergman introduced the positional number system of the following kind[33]: X A¼ asi; ð28Þ i i whereAissomerealnumberanda istheithdigitbinarynumeral,0or1,i=0,±1,±2,±3,siistheweightoftheith pffiffi i digit,s¼1þ 5is the baseorradix of the numbersystem (3). 2 Remindthat the classical‘‘binary’’ number systemused widelyin modern computers hasthe followingform: X A¼ a2i; ð29Þ i i whereAissomerealnumberanda istheithdigitbinarynumeral,0or1,i=0,±1,±2,±3,2iisaweightoftheithdigit, i 2 isthe baseorradix of the number system(20). 320 A.Stakhov/Chaos,SolitonsandFractals33(2007)315–334 Atfirstglance,theredoesnotexistanydifferencebetweenformulas(28)and(29)butitisonlyatthefirstglance.A principal distinction between these number systems consists in the fact that Bergman used the irrational number pffiffi s¼1þ 5(thegoldenproportion)asthebaseofthenumbersystem(28).ThatiswhyBergmancalleditanumbersystem 2 with an irrational base or ‘‘Tau System’’. Although Bergman’s paper [33] contained a result of great importance for number system theory, however, in that period it simply was not noted either by mathematicians or engineers. In theconclusionofhispaper[33]Bergmanwrote:‘‘Idonotknowofanyusefulapplicationforsystemssuchasthis,except asa mental exerciseandpastime, though itmay beofsome service in algebraic number theory’’. Letusconsiderrepresentationsofnumbersinthe‘‘TauSystem’’(28).Itisclearthattheabridgedrepresentationof number Agivenwith(28) hasthefollowing form: A¼a a ...a a ;a a ...a . ð30Þ n n(cid:2)1 1 0 (cid:2)1 (cid:2)2 (cid:2)m Arepresentation (30)is called a ‘‘golden’’ representationof A. We can see that the ‘‘golden’’ representation of A is some binary code combination, which is separated with a comma into two parts, the left-hand part a a ...a a corresponding to the ‘‘weights’’ sn,sn(cid:2)1,...,s1,s0=1 and n n(cid:2)1 1 0 the right-hand part a a ...a corresponding to the ‘‘weights’’ with negative powers: s(cid:2)1,s(cid:2)2,...,s(cid:2)m. Note that (cid:2)1 (cid:2)2 (cid:2)m the ‘‘weights’’si (i=0,±1,±2,±3,...) are givenwiththe mathematical formula (4). The‘‘TauSystem’’(28)overturnsourtraditionalideasaboutnumbersystemsandhasthefollowingunusualprop- erties[33]: (1) Onemayrepresentin (28)someirrationalnumbers (thepowers ofthe golden ratiosi andtheirsums) byusing finite numbers of bits that it is impossible in classical number systems (decimal, binary etc.). For example, the p ffiffiffi ‘‘golden’’ representation 100101 is the abridged notation of the irrational number 8þ3 5. The radix s of the ‘‘Tau System’’is represented intraditional manner, thatis p ffiffiffi 1þ 5 s¼ ¼10. 2 (2) The‘‘golden’’representationsofnaturalnumbershaveaformoffractionalnumbersandconsistofafinitenum- ber ofbits. Table4 gives the ‘‘golden’’ representationsof somenatural numbers in (28). (3) Eachnon-zeronumberhavemany‘‘golden’’representationsin(28).Herethedifferent‘‘golden’’representations ofthesamerealnumberAcanbegotonefromanotherbyusingthespecialtransformations,‘‘convolution’’and ‘‘devolution’’,carriedoutontheinitial‘‘golden’’representation.Thesespecialcodetransformationsarebasedon theidentity(4).The‘‘devolution’’isdefinedasthefollowingtransformationcarriedoutonthethreeneighboring digits of theinitial ‘‘golden’’ representation 100!011. ð31Þ Forexample,we canperformthe following ‘‘devolutions’’ overthe ‘‘golden’’ representation ofthe number: 5¼1000; 1001¼0110; 0111¼0101; 1111 ðmaximal formÞ. ð32Þ The‘‘convolution’’ iscalled a back transformation,that is 011!100. ð33Þ Table4 The‘‘golden’’representationsofnaturalnumbers N Pasi Abridgednotation i i 1 s0 1,0 2 s1+s(cid:2)2 10,01 3 s2+s(cid:2)2 100,01 4 s2+s0+s(cid:2)2 101,01 5 s3+s(cid:2)1+s(cid:2)4 1000,1001 6 s3+s1+s(cid:2)4 1010,0001 7 s4+s(cid:2)4 10000,0001 8 s4+s0+s(cid:2)4 10001,0001 9 s4+s1+s(cid:2)2+s(cid:2)4 10010,0101 10 s4+s2+s(cid:2)2+s(cid:2)4 10100,0101 A.Stakhov/Chaos,SolitonsandFractals33(2007)315–334 321 For example, we can perform the following ‘‘convolutions’’ over the ‘‘golden’’ representation 0101, 1111 taken from example(32): 5¼0101; 1111¼0110; 0111¼1000; 1001 ðminimal formÞ. ð34Þ The notions of ‘‘convolution’’ and ‘‘devolution’’ form the basis of two special ‘‘golden’’ representations called a ‘‘minimal form’’ and a ‘‘maximal form’’ [6]. If we perform all possible ‘‘convolutions’’ in the ‘‘golden’’ representation ofnumberAwewillcometothe‘‘minimalform’’ofA(seetheexample(34));ifweperformallpossible‘‘devolutions’’ inthe‘‘golden’’representationsofAwewillcometothe‘‘maximal’’form(seetheexample(33)).Notethatthe‘‘min- imal’’ and ‘‘maximal’’ forms are the extreme ‘‘golden’’ representations possessing the following specific properties namely, (a)in the ‘‘minimal’’ there are nocontiguous 1’s; (b)in the‘‘maximal’’ formthere are nocontiguous 0’s. 4. Codesof thegoldenproportion Letusconsider aninfinitesetof the ‘‘standard segments’’ basedon thegolden p-proportion s p G ¼fsng; ð35Þ p p wheren¼0;(cid:6)1;(cid:6)2;(cid:6)3...; snarethegoldenp-proportionpowersconnectedamongthemselveswiththeidentity(13). p Theset(35)‘‘generates’’thefollowingconstructivemethodoftherealnumberArepresentationcalledthecodeofthe goldenp-proportion[6] X A¼ asi; ð36Þ i p i where a 2{0,1}and i=0,±1,±2,±3,... i Letusconsiderthepartialcasesofthenumberrepresentation(36).Itisclearthatforthecasep=0theformula(36) reducesto(29).Forthecasep=1theformula(36)reducestoBergman’snumbersystem(28).Forothercasesofpthe formula(36)‘‘generates’’aninfinitenumberofnewpositionalrepresentationscalledcodesofthegoldenp-proportions. 5. Anewapproach togeometric definition ofreal numbers 5.1.Euclidean definition ofnatural numbers Anumberisoneofthemostimportantmathematicalconcepts.Duringmanymillenniathisconceptiswidenedand mademoreprecise.Adiscoveryofirrationalnumbersledtotheconceptofrealnumbersthatincludenaturalnumbers, rationalandirrationalnumbers.Furtherdevelopmentofthenumberconceptisconnectedwithintroductionofcomplex numbersandtheirgeneralizations,thehypercomplexnumbers.Letusstartfromtheconceptofnaturalnumberscon- cept that underlies the basis of number theory. We know from the ‘‘Euclidean Elements’’ the following ‘‘geometric approach’’ to thenatural number definition. Let S¼f1;1;1;...g ð37Þ beaninfinitesetofgeometricsegmentscalled‘‘Monads’’or‘‘Units’’.ThenaccordingtoEuclidwecandefineanatural number Nas a sumof ‘‘Monads’’ N ¼1þ1þ1þ...þ1 ðN timesÞ. ð38Þ Despitethelimitingsimplicityofsuchdefinition,ithasplayedalargeroleinmathematicsandunderliesmanyuseful mathematicalconcepts,forexample,conceptsofprimeandcompositenumbers,andalsoconceptofdivisibility,oneof the mainconcepts ofnumber theory. 5.2.A constructive approachtothe number concept Itisknownastheso-called‘‘constructiveapproach’’tothenumberdefinitionofrealnumbersbasedonthe‘‘Dichot- omyPrinciple’’.Accordingtothe‘‘constructiveapproach’’anyconstructiverealnumberAissomemathematicalobject givenbythe mathematical formula (29). 322 A.Stakhov/Chaos,SolitonsandFractals33(2007)315–334 Anumber definition (29)hasthe followinggeometric interpretation. Let B¼f2ng ð39Þ bethesetofthegeometriclinesegmentsofthelength2n(n=0,±1,±2,±3,...).Thenallthegeometriclinesegments thatcanbe represented asthe finalsum(29) canbedefinedas constructive real numbers. Itisclearthatthedefinition(29)selectsfromthesetofallrealnumbersonlysomepartofrealnumbersthatcanbe representedintheform(29).Alltherestrealnumbersthatcannotberepresentedintheformofthesum(29)arecalled non-constructive.Itisclearthatallirrationalnumbers,inparticular,themathematicalconstantsp,e,thegoldenratio refertothenon-constructivenumbers.Butintheframeworkofthedefinition(29)wehavetorefertothenon-construc- tivenumberssomerationalnumbers(forexample,2/3,3/7andsoon)thatareknownasperiodicalfractionsthatcannot berepresented in the formof the finalsum(29). Notethatalthoughthenumberdefinition(29)restrictsconsiderablythesetofrealnumbersthisfactdoesnotdimin- ishitsimportancefromthe‘‘practical’’,computationalpointofview.Itiseasytoprovethatanynon-constructivereal numbercanberepresentedintheform(29)approximately;heretheapproximationerrorDwouldbedecreasedwithno limitifweincreaseanumberoftermsin(29).However,D50forallnon-constructiverealnumbers.Byessence,weuse in moderncomputers onlythe constructive realnumbers givenby(29). 5.3.Newton’s definition ofreal numbers Within many millennia the mathematicians developed and made more precise a concept of a number. In the 17th century during origin of modern science and mathematics the new methods of study of the ‘‘continuous’’ processes (integrationanddifferentiation)aredevelopedandaconceptofrealnumbersagaingoesoutontheforeground.Most clearlyanewdefinitionofthisconceptwasgivenbyIsaacNewton,oneofthemathematicalanalysisfounders,inhis ‘‘Arithmetica Universalis’’ (1707): ‘‘Weunderstandundernumbernotthesetofunitsbuttheabstractratioofanymagnitudetootheroneofthesame kind taken byusas the unit’’. This definition gives us a uniform definition of all real numbers, rational and irrational. If we consider now the ‘‘Euclidean definition’’ (38) from the point of view of ‘‘Newton’s definition’’ then the ‘‘Monad’’ 1 plays the role of theUnitinit.Inthe‘‘binary’’notation(29)thenumber2,theradixofthenumbersystem,playstheroleoftheUnit. 5.4.A newconstructive definition ofreal number FromNewton’spointofviewwecanconsiderthecodesofthegoldenp-proportiongivenby(36)asanewdefinition ofreal numbers. Weprovedabovethatthe‘‘binary’’numbersystem(29)andBergman’snumbersystem(28)arepartialcasesofthe codesofthegoldenp-proportion(36).Finally,letusconsiderthecasep!1.Forthiscaseitispossibletoshow,that s !1;itmeans thatthe positional representation (26)reduces in the limit tothe Euclidean definition (38). p Notethatforthecasep>0theradixs ofthepositionalnumbersystem(36)isanirrationalnumber.Itmeansthat p wehavecometothenumbersystemswithirrationalradicesthatareprincipallynewclassofthepositionalnumbersys- tems. Note that for the case p=1 the number system (36) reduces to Bergman’s number system (28) that was intro- duced by the American mathematician George Bergman in 1957 [33]. Note that Bergman’s number system (28) is the firstnumber system withirrationalradix in the history of mathematics. It follows from the given consideration that the positional representation (36) is a very wide generalization of the classicalbinarynumbersystem(29),Bergman’snumbersystem(28)andtheEuclidean definition(38)thatarepartial casesofthe general representation(36). 6.Some propertiesof thenumber systems with irrational radices 6.1.‘‘Constructive’’ and‘‘non-constructive’’ realnumbers Notethatexpression(36)dividesasetofrealnumbersintotwonon-overlappingsubsets,the‘‘constructive’’realnum- bers,whichcanberepresentedintheformofthefinalsum(36),andalltheremainingrealnumbers,whichcannotbe representedintheformofthesum(36)(the‘‘non-constructive’’realnumbers).Suchapproachtorealnumbersisdistin- guishedradicallyfromtheclassicalapproachwhenasetofrealnumbersisdividedintorationalandirrationalnumbers. A.Stakhov/Chaos,SolitonsandFractals33(2007)315–334 323 Really,all powers ofthe golden p-proportionof the kindsi ði¼0;(cid:6)1;(cid:6)2;(cid:6)3;...Þ,which are irrationalnumbers, p canberepresented in the form (36), thatis, theyreferto the subsetof the ‘‘constructive’’ numbers. Forexample, s1¼10 s(cid:2)1¼0:1; p p s2¼100 s(cid:2)2¼0:01; p p s3¼1000 s(cid:2)3¼0:001. p p Itfollowsfromthedefinition(36)thatallrealnumbers,whicharethesumofthegoldenp-proportionpowers,are ‘‘constructive’’numbersofthekind(36).Forexample,accordingto(36)therealnumberA¼s2þs(cid:2)1s(cid:2)3 canberep- p p p resentedin the following abridgedform: A¼100; 101. Notethatapossibilityofrepresentationofsomeirrationalnumbers(thepowersofthegoldenp-proportionandtheir sums) in theform of the finaltotality of bitsis the firstunusual propertyof the number systems (36). 6.2.Representation ofnatural numbers Letusconsider therepresentation of natural numbersin the form (36) X N ¼ asi; ð40Þ i p i where N issomenatural number, s is the radix ofnumber system (40), a 2{0,1},i=0,±1,±2,±3,... p i Itisprovedin[6]thatalltherepresentationsofthekind(40)arefinite,thatis,foragivenpP0anysum(40)con- sistsofafinitenumberofterms.Forexample,forthecasep=1(Bergman’snumbersystem)theinitialtermsofnatural series canberepresented as in Table1. Letusformulate thisresult as thefollowing theorem. Theorem 1. Allnaturalnumbersare‘‘constructive’’realnumbers,thatis,foragivenp=0,1,2,3,...anynaturalnumber canberepresented as a finitesum (40). 7. TheZ-,D-andZ -propertiesof naturalnumbers p Letusconsider nowthe representation of the arbitrarynatural number of Nin Bergman’s number system(28) X N ¼ asi. ð41Þ i i The representation(41)is called the s-codeof natural number N. LetusapplyBinet’s formula [1–3] p ffiffiffi L þF 5 si ¼ i i ð42Þ 2 to the s-code(41)and representthe formula (41)in the following form: X pffiffiffiX 2N ¼ aL þ 5 aF . ð43Þ i i i i i i Wecanseethattheleft-handpartoftheexpression(43)isanaturalnumber,whichisevenalways.Theright-hand partof(43)isthesumoftwoterms.TheformeristhesumoftheLucasnumberswiththebinarycoefficients.Because everyLucas number isaninteger (see Table1) thenanysumof Lucas numbersis integer. p ffiffiffi Letusconsidernowthelatterterm.Thisoneistheproductoftheirrationalnumber 5bythesumofFibonacci numberswiththebinarycoefficients0or1.BecauseeveryFibonaccinumberisaninteger(seeTable1)thenanysumof Fibonacci numbers is aninteger always.Thus,identity (43)asserts that thenatural (even) number 2N is equalto the sum of some integer (the sum of Lucas number with the binary coefficients) and the product of other integer (the p ffiffiffi sumof Fibonacci numbers withthe binarycoefficients) bythe irrational number 5. 324 A.Stakhov/Chaos,SolitonsandFractals33(2007)315–334 There arises a question: for what conditions identity (43) is true for arbitrary natural number N? The answer is unique. This is possible for the following condition: if the sum of Fibonacci numbers in the identity (43) equals to 0 identically,that is X aF ¼0. ð44Þ i i i Ontheotherhand,thenumber2Niseven.Ifwetakeintoconsiderationidentity(44)thenthesumofLucasnumbers in identity(44)hasto beeven always. LetusanalyzethesumofPaL andPaF inidentity(43).Thesesumswereobtainedasaresultofsubstitutionof i i i i i i Binet’s formula (42) into expression (41), which gives the representation of natural number N in Bergman’s number system(28).Itmeansthatallthebinarynumeralsa inthesumsofPaL andPaF coincidewiththecorresponding i i i i i i i coefficientsa,in the s-code(41). i Thus,asaresultofthisconsideration,wecametothefollowingmathematicaldiscoveryinnumbertheorythatwe canformulate as thefollowing theorems. Theorem 2 (Z-propertyofnaturalnumbers). IfwerepresentanynaturalnumberNinthes-code(41)andthenreplacein it all powers of the golden ratio si (i=0,±1,±2,±3,...) with the corresponding Fibonacci numbers F, then the sum i obtainedin thismanner has tobeequal to 0identically independently fromthe initialnatural number N. Theorem 3 (D-propertyofnaturalnumbers). IfwerepresentanynaturalnumberNinthes-code(41)andthenreplacein itallpowersofthegoldenratiosi(i=0,±1,±2,±3,...)withthecorrespondingLucasnumbersL,thenthesumobtainedin i thismanner hasto beanevennumber, whichequals tothe doublevalueofthe initial naturalnumber N. In[14]itis proved thefollowing theoremthat setsthe Z -property ofnatural numbers. p Theorem 4 (Z -property of natural numbers). If we represent any natural number N in the code of the golden p- p proportion (36) where p=1,2,3,..., and then replace in it all powers of the golden p-proportion si (p=1,2,3,...; p i=0,±1,±2,±3,...) with the corresponding Fibonacci p-numbers F (i), then the sum obtained in this manner has to be p equal to0 identically independently fromthe initial naturalnumber N. Of what practical importance could be these new fundamental properties of natural numbers, Z-property and D- property? To answer this question let us imagine some hypothetical computer network, which uses the s-code (41) or code of the golden p-proportion (40) for number representation. For this hypothetical case the new properties of naturalnumbersformulatedabovecanbeconsideredasanewuniversalcheckindicationofcodeinformationincomputer networks. 8.The F- andL-codes WecangettwonewrepresentationsofnaturalnumberNifweusethes-code(41)andtheZ-property(44).Taking into considerationthe Z-property(44),expression (43)canbe written in thefollowing form: 2N ¼XaL þXaF or N ¼Xa LiþFi ¼XaF ð45Þ i i i i i 2 i iþ1 i i i i asF ¼LiþFi [1–3]. iþ1 2 Theexpression (45)is called the F-code ofnatural number N [14]. Notethatthecorrespondingbinarynumeralsinthes-code(41)andintheF-code(45)coincide.Thismeansthatthe F-code(45)canbegotfromthes-code(41)ofthesamenaturalnumberNbyusingthesimplereplacingofthegolden ratiopowersiin the formula of (41)withthe Fibonacci number F , where i=0,±1, ±2,±3,... i+1 Letusrepresentnowthe F-code (45)in the followingform: X X X N ¼ aF þ2 aF ¼ aL ð46Þ i iþ1 i i i iþ1 i i i asL =F +2F [1–3]. i+1 i+1 i Theexpression (16)is called the L-codeof natural numberN [14]. Notethatthebinarynumeralsintherepresentations(41)and(46)coincide.ItfollowsfromthisthattheL-code(46) canbegotfromthes-code(41)ofthesamenaturalnumberNbysimplereplacingofthegoldenratiopowers inthes- i representation(41) withthe Lucasnumber L , where i=0,±1,±2,±3,... i+1

Description:
A theory of Fibonacci numbers and the golden section is an important branch of It follows from (2) the following remarkable identity for the golden ratio: Archimedes and Apollonius, for whom this idea was remained latent.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.