ebook img

The galaxy luminosity function of the Abell 496 cluster and its spatial variations PDF

12 Pages·2008·1.68 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The galaxy luminosity function of the Abell 496 cluster and its spatial variations

A&A479,335–346(2008) Astronomy DOI:10.1051/0004-6361:20077723 & (cid:1)c ESO2008 Astrophysics The galaxy luminosity function of the Abell 496 cluster (cid:1) and its spatial variations G.Boué1,C.Adami2,F.Durret1,3,G.A.Mamon1,4,andV.Cayatte5 1 Institutd’AstrophysiquedeParis(UMR7095:CNRS&UniversitéPierreetMarieCurie),98bisBdArago,75014Paris,France e-mail:[email protected] 2 LAM,TraverseduSiphon,13012Marseille,France 3 ObservatoiredeParis,LERMA,61Av.del’Observatoire,75014Paris,France 4 ObservatoiredeParis,GEPI(UMR8111:CNRS&UniversitéDenisDiderot),61Av.del’Observatoire,75014Paris,France 5 ObservatoiredeParis,sectionMeudon,LUTH,CNRS-UMR8102,UniversitéParis7,5Pl.Janssen,92195Meudon,France Received26April2007/Accepted27November2007 ABSTRACT Context.Thefaintendslopesofgalaxyluminosityfunctions(LFs)inclustersofgalaxieshavebeenobservedinsomecasestovary withclustercentricdistanceandshouldbeinfluencedbythephysicalprocesses(mergers,tides)affectingclustergalaxies.However, thereisawidedisagreementonthevaluesofthefaintendLFslopes,rangingfrom−1to−2.3inthemagnituderange−18<M <−14. r Aims.WeinvestigatetheLFintheveryrelaxedclusterAbell496. Methods.Our analysisisbasedon deepimages obtained atCFHTwithMegaPrime/MegaCam infour bands (u∗g(cid:3)r(cid:3)i(cid:3)) covering a 1×1deg2region,whichiscentredontheclusterAbell496andextendstonearitsvirialradius.TheLFsareestimatedbystatistically subtractingareferencefieldtakenasthemeanofthe4DeepfieldsoftheCFHTLSsurvey.Backgroundcontaminationisminimised bycuttingoutgalaxiesredderthantheobservedRedSequenceintheg(cid:3)−i(cid:3)versusi(cid:3)colour-magnitudediagram. Results.InAbell 496, theglobal LFsshow afaint endslopeof−1.55±0.06andvarylittlewithobserving band. Withoutcolour cuts, the LFs are much noisier but not significantly steeper. The faint end slopes show a statistically significant steepening from α =−1.4±0.1inthecentralregion(extendingtohalfavirialradius)to−1.8±0.1intheSouthernenvelopeofthecluster.Cosmic variance and uncertain star-galaxyseparation areour main limitingfactors in measuring thefaint end of the LFs.The large-scale environmentofAbell496,probedwiththefairlycomplete6dFGScatalogue,showsastatisticallysignificant36Mpclongfilamentat PA=137◦. Conclusions.OurLFsdonotdisplaythelargenumberofdwarfgalaxies(α≈−2)inferredbyseveralauthors,whoseanalysesmay sufferfromfieldcontaminationcausedbynon-existentorinadequatecolourcuts.Alternatively,differentclustersmayhavedifferent faintendslopes,butthisishardtoreconcilewiththewiderangeofslopesfoundforgivenclustersandforwidesetsofclusters. Keywords.galaxies:clusters:individual:Abell496–galaxies:luminosityfunctions,massfunction 1. Introduction The great majority of studies of the LF indicate faint end slopesintherange−0.9to−1.5,butthesemostlydidnotreach Clustersofgalaxiesrepresentanextremeenvironmentforgalaxy veryfaintmagnitudes(seeTable1inDeProprisetal.2003,and evolution, either in situ or through the accretion of galaxies referencestherein).Recentdeepimaginghasshedmorelighton withingroups,whicharesituatedinthefilamentarynetworkof theLFatfaintluminosities.TableA.1showsdeep(fainterthan ourhierarchicalUniverse. absolutemagnitudeM =−16)estimationsofthefaintendslope: Theanalysisofthegalaxyluminosityfunction(LF)in sev- most studies conclude to fairly shallow slopes α (cid:6) −1.3 (with eralwavebandsisagoodwaytosamplethehistoryofthefaint typical uncertainties of 0.1 to 0.2), while several point to faint galaxypopulation(e.g.Adamietal.2007)includingstarforma- end slopes as steep as α ≈ −2.3, which divergesin luminosity tion history, evolutionary processes and environmental effects. (unlesstheLFbecomesshalloweroriscutoffatsomeveryfaint Inparticular,theslopeofthefaintendoftheLFisadirectindi- luminosity). catoroftheimportanceofdwarfgalaxies,whichareexpectedto Partofthewiderangeoffaintendslopesmaybecausedby bemorefragileintheenvironmentofclusters. cosmic variance of the background counts. The range of faint endslopesoftheLFmayalsobeduetodifferentmassbuildup (cid:2) BasedonobservationsobtainedwithMegaPrime/MegaCam,ajoint historiesofclusters,throughsphericalandfilamentaryinfalland project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii majorcluster-clustermergers.However,someofthisdispersion Telescope(CFHT)whichisoperatedbytheNationalResearchCouncil inslopescouldbecausedbysystematicuncertaintiessuchasin (NRC)ofCanada,theInstitutNationaldesSciencesdel’Universofthe thestar/galaxyseparationorthroughdifferentsurfacebrightness Centre National de la Recherche Scientifique (CNRS) of France, and cuts. theUniversityofHawaii.Thisworkisalsopartlybasedondataprod- uctsproducedatTERAPIXandtheCanadianAstronomyDataCentre Spectroscopic-based LFs would alleviate this problem, aspartoftheCanada-France-Hawaii TelescopeLegacySurvey,acol- but until recently, such spectroscopic-based LFs do not ex- laborativeprojectofNRCandCNRS. tend fainter than M = −16. The exceptions are studies by ArticlepublishedbyEDPSciences 336 G.Bouéetal.:GalaxyluminosityfunctionofAbell496 Table1.Observationcharacteristics. Name Usefularea Exp.time PSF Obs. (deg2) (s) (FWHMinarcsec) Date u∗ g(cid:3) r(cid:3) i(cid:3) u∗ g(cid:3) r(cid:3) i(cid:3) Abell496 0.82 13680 7820 3780 3570 1.13 1.06 0.88 0.94 11/2003 Deep1 0.77 38946 24893 60854 134863 1.06 0.96 0.92 0.91 <09/2006 Deep2 0.79 5281 16655 31988 72734 0.89 0.96 0.90 0.91 <09/2006 Deep3 0.83 19146 21392 59574 109049 1.15 0.96 0.94 0.89 <09/2006 Deep4 0.82 50867 24262 72736 140981 1.03 0.98 0.88 0.87 <09/2006 W1 —– 2215 2436 1179 4189 1.04±0.09 0.96±0.05 0.86±0.11 0.85±0.12 <09/2006 Note:TheW1valuesaremeansoverthe19WidesubfieldsoftheWidefield. Rines & Geller (2007)and Mamonet al. (2008)who bothfind 2. Observationsanddatareduction shallowslopesforVirgoclustergalaxiesdownto M = −14,as r 2.1.MegaCamclusterdata wellasPenny&Conselice(2007)forthePerseusclustercore. Unfortunately, galaxy formation simulations do not yet Abell 496 is centred at J2000 equatorial coordinates probethegalaxyLFdowntosufficientlyfaintluminosities:the 04h33m37.1s,−13◦14(cid:3)46(cid:3)(cid:3). It has an angular virial radius deepeststudy,byLanzonietal.(2005),probedtheLFwiththe of 0.77◦ (virial radius of 1.9 Mpc), obtained by extrapolating GALICSsemi-analyticalgalaxyformationmodelonlydownto theradiusofoverdensity500(Markevitchetal.1999,measured M < −16.5 (they found α (cid:6) −1.3 in the B band and (cid:6)−1.4 relative to the critical density of the Universe) to the radius of B in the K band within the virial radii of clusters, and α (cid:6) −1.0 overdensity100. between1andtypically3virialradii). The MegaCam field covers an area correspondingto 2.3× 2.3 Mpc2 at the cluster redshift. We centred our images of Thepresentpaperaimsatclarifyingthe debateonthe faint Abell 496 on the cluster centre (i.e. on the cD galaxy). This endoftheLFandonunderstandingthedifferenteffectsofspher- means that we can cover the whole Abell 496 area and its im- ical and filamentary infall on the LF. Indeed, the influence of mediateinfallinglayerswithinthevirialradius. infallonthegalaxypopulation,inparticularontheLFisnotal- Abell 496 was observed at CFHT with the large field ways wellunderstood,exceptfora few clusters, such as Coma MegaPrime/MegaCam camera in November 2003 on program (e.g.Adamietal.2007).Toachievethisaim,wechosetoanal- 03BF12,P.I.Cayatte(seeTable1).Imageswerereducedbythe ysetheveryrelaxedcluster,Abell496,knowntobeveryregular TERAPIX pipeline using the standard reduction tool configu- bothatX-rayandopticalwavelengths,andalsofromadynam- ration. We refer the reader to http://terapix.iap.fr/for ical point of view (Durret et al. 2000). Our data cover a field reductiondetails. of view that is wide enough to reach the virial radius and thus Object extraction was made using the SExtractor pack- probea varietyof environments.TheLFs are computedafter a age (Bertin & Arnouts 1996) in the double-image mode. The better filtering of artefacts througha minimumgalaxywidth, a CFHTLSpipelineattheTERAPIXdatacentrecreatesaχ2 im- better filtering of backgroundgalaxies through the rejection of agebaseduponthequadraticsumoftheimagesinthedifferent galaxies redder than the Red Sequence of early-type galaxies, wavebands.Objectsarethendetectedonthisimage.Incontrast andmakeuseofathoroughanalysisoftheuncertaintiesdueto withtheCFHTLSimages,oursetofu∗g(cid:3)r(cid:3)i(cid:3) imagesforeachof cosmic variance, photometric errors and imperfect star/galaxy thetwoclusterspresentsimportantdifferencesintheirPSFs(see separation. Our general motivation is to obtain LFs in various Table 1). For this reason, we chose a different approach from regionsofAbell496andcomparethemwithpreviousworks. thatoftheTERAPIXdatacentre:insteadofusingtheχ2 image Thepaperisorganisedasfollows.WepresentourMegaCam as the reference image, we used the band with the best seeing dataanddatareductioninSect.2.InSect.3,wedescribehowwe in ourdata:r(cid:3).Detectionswereperformedinthisbandandob- compute LFs using large comparison fields from the CFHTLS ject characteristics were measured in all bands. The detections tostatisticallysubtractthefore-andbackgroundgalaxypopula- andmeasuresweremadeusingtheCFHTLSparameters,among tion. In Sect. 4, we present our results obtained for the LFs of which an absolute detection threshold of 0.4 ADU above the Abell 496in variousregions.In Sect. 5, we brieflydiscuss our background(µ<27.34inallbands),aminimaldetectionareaof resultsconcerningtheLFsintermsoflargescaleenvironmental 3pixelsanda7×7pixelGaussianconvolutionfilterof3pixels effects onthe cluster galaxypopulations.Finally, in Sect. 6 we ofFWHM.Ineachoftheu∗,g(cid:3),r(cid:3) andi(cid:3) outputcatalogues,we compare our LFs to other determinationsof the Abell 496 LF, only keptobjects with semi-minoraxeslarger than 1 pixeland andwediscussthediscrepancybetweenourmoderatefaintend meansurfacebrightnesswithinthehalf-lightradiusgreaterthan slope and the steep faint end slopes recently found by several µ=26.25inordertoremoveartefacts. authorsinseveralclusters. We measured Kron magnitudes (MAG_AUTO in SExtractor), with the default SExtractor settings. We used the photometric With a mean heliocentric velocity of 9885kms−1 (Durret calibrationgivenbytheTERAPIXdataprocessingcentre.Since et al. 2000), Abell 496 has a (luminosity) distance modulus of thefluxesindifferentbandsaremeasuredwithinthesameKron 35.73,andthescaleis0.636kpcarcsec−1(includingcosmologi- elliptical aperture, we derive colours by simply subtractingthe calcorrections1).WegivemagnitudesintheABsystem. magnitudes.Therefore,ourcoloursarenotaffectedbyaperture effects and are only slightly affected by the differences in the PSFbetweenthetwobandsinvolved. 1 WeusedthecosmologicalcorrectionsintheCMBframeasprovided Usingsimulations,wealsoestimatethecompletenesslevels intheNASA/IPACExtragalacticDatabase(NED). andreliabilitiesofourdetections(see e.g.Driveretal. 1998b). G.Bouéetal.:GalaxyluminosityfunctionofAbell496 337 This is crucial, since we intend to compare our data with 10000 stars CFHTLSdatathatwerenotobservedexactlyinthesamecondi- galaxies tions.Forthis,weusedtheSkyMakerpackage(Bertin&Fouqué all 2007)tobuildimageswiththesamenoiseandpointspreadfunc- tion as our MegaCam images on the one hand and CFHTLS 2 1000 g Deepimagesontheotherhand.TheobjectsfedintoSkyMaker e d were either spherical to flattened Sérsic bulges2 or thin expo- / x nential disks. The Sérsic shape and effective radius are speci- e d fied functions of luminosity that Mamon & Łokas (2005) ob- 1 100 0 tainedfromtheluminousgalaxiesofAbell496andComadata . 0 ofMárquezetal.(2000),whileforthedwarfsweconsideredthe / s relationsgivenbyBinggeli&Jerjen(1998).ThecentralB-band t n disksurfacemagnitudeswereextrapolatedfromaGaussiandis- u o 10 tributionµB(0) = 21.5±1.Thefractionofellipticalsis60%in c clustersandnullinthefield.Thegalaxyluminosityfunctionwas takenfromPopessoetal.(2006)fortheclusterandfromBlanton etal.(2003)forthefield. 1 Completeness (ratio of real detections to real sources) and reliability (ratio of real to total detections) were then mea- 1 10 suredbycross-correlationbetweentheSkyMakerinputandthe r (pixels) SExtractor output catalogue. We found that up to i(cid:3) = 23, for 50 both kindsof images,SExtractorfinds80%ofthe objects, and Fig.1. Distributionof half-lightradiiinthemagnitude bin22 < r(cid:3) < amongthedetectedobjects,only10%areartefacts. 22.5. Theverticallineshowsthestar/galaxyseparationdeduced from We then performed a star-galaxy separation. Instead of theBesançonmodel. using the neural-network star-galaxy classification method of SExtractor, we placed the detections in a diagram of size (i.e. Mr’ thehalflightradius)versusmagnitudeinthebandwiththebest −18 −17 −16 −15 −14 −13 seeing. Thevariationof thePSF overtheimageshasbeencor- rectedforusingatechniquesimilar tothatofMcCrackenetal. Besançon model star count (2003).Starsarethesmallestobjectsandarelocatedinawellde- stars in Abell 496 field finedstripuptor(cid:3) ≈21,thusallowingtheseparation.Atfainter 1000 magnitudes,starsandgalaxiesoverlapandindividualclassifica- 2 tion is no longer possible. For the magnitude range where the g e htiaclafllsigtahrt/graaldaixuyssdeisptarribatuitoino,naisssubmiminogdaGl,awusesipaenrfdoirsmtreibduatiosntastios-f ag/d m lTohgisr5i0sfiolrlubsotrtahtesdtarins aFnidg.g1alafoxrietsh,einfadiirfflyerfeaninttmmagangintuitduedebibnisn. 0.5 500 21<r(cid:3) <21.5. nts/ u Figure 2 compares our star counts with those from the o c Besançonmodel(Robinetal.2003).WerantheBesançonmodel six times in order to get the error on these counts. We did the samewithouralgorithm.Atbrightmagnitudes(r(cid:3) <21),thetwo distributionscoincide. However,at faint magnitudes(r(cid:3) > 21), ourstarcountsdecrease,whiletheBesançonmodelcountskeep 17 18 19 20 21 22 23 increasing.Thiscouldbeduetoasteeperfallofthestellarden- sity distribution in the direction of Abell 496, in comparison r’ with what is in the Besançon model. Alternatively, we may be Fig.2. Comparison of star counts obtained with the Besançon model wronglyclassifyingstarsasgalaxiesatr(cid:3) > 21,andatr(cid:3) = 22 (Robinetal.2003)(orangeshadedregion)andfromtheAbell496im- we may be overestimating the galaxy counts in the Abell 496 age(blacksolidhistogram)usingourstar-galaxyseparation. field.Ifweadoptthestar countsfromtheBesançonmodel,we wouldendupwith114,156and343fewergalaxiesatr(cid:3) =21.5, 22.0and22.5,respectively.However,iftherewereasmanystars all saturated stars, spikes and CCD edges. Galaxies and stars as predicted by the Besançon model, then, for 22 < r(cid:3) < 22.5 brighter than r(cid:3) = 18 occupy less than 2% of the pixels of our (seeFig.1),thedistributionofstellarhalflightradiiwouldrise image. to a maximum(nearr = 2.3pixels),falltoa minimum(near The final catalogue will be electronically available at the 50 2.6pixels),thenriseagain(tothelimitof2.8pixels).Itisdiffi- following address: http://cencosw.oamp.fr/and in a few culttounderstandwhatwouldcausethisfinalrise.Therefore,in monthstheimageswillbeavailableatthesameaddress. whatfollows,weadoptourownestimationofthestarcounts. We also corrected the magnitudes for Galactic extinc- 2.2.CFHTLScomparisonfielddata tion based on the Schlegel et al. (1998) maps. We finally computed the useful covered area (cf. Table 1), by masking We used the CFHTLS Deep (D1, D2, D3 and D4, i.e. 4 MegaCamfields) and Wide (W1, W2 andW3, 59 MegaCam 2 WemodifiedSkyMakertohandleSérsicprofilesratherthanjustthe fields)ascomparisonfielddata.BecausetheLFsarecomputed deVaucouleursprofile. by subtraction of the average of the 4 Deep fields (DFs) from 338 G.Bouéetal.:GalaxyluminosityfunctionofAbell496 Abell 496 analytical approximation 0.14 deep 1 u* 0.6 g’ 0.12 r’ i’ 0.4 0.1 ’-i’) 0.2 mag) 0.08 r r’)-( 0 σ ( 0.06 - ’ g ( 0.04 -0.2 0.02 -0.4 0 15 16 17 18 19 20 21 22 23 -0.6 mag 0 0.5 1 1.5 2 r’-i’ Fig.4.Magnitudeuncertaintiesestimatedfromoverlappingareasinthe 19CFHTLSW1fields(dottedanddashedcurves)withtheiranalytical Fig.3.Colour-colourdiagramfor17<r(cid:3) <20starsintheA496(open approximation(Eq.(1),solidcurves). redcircles)andD1(blackcrosses)fields,correctedforextinction,and withashiftoftheD1i(cid:3)photometryby+0.02mag. on average. Therefore, the W1 magnitude uncertainties should beupperlimitsfortheAbell496magnitudeuncertainties. Theseuncertaintiescanbeapproximatedby the Abell 496 field, objects were re-extracted from the 4 DFs (cid:1) (cid:2) m−m in exactlythesamemannerasintheclusterfield:i.e.,withthe σ =0.02+αexp 1 , (1) same detection waveband (r(cid:3) rather than χ2 images) the same m δm SExtractorparameters(includingthe same 0.4ADU threshold, where (α,m ,δ ) = (1.2,29.5,3.0),(2.5,29.0,1.5),(1.0,25.0, whichgiventhesamezeropointcorrespondstothesameabso- 1.0)and(1.01,2m5.0,1.0)foru∗g(cid:3)r(cid:3)i(cid:3) respectively.These expres- lutethreshold),andthe1pixelminimumsemi-minoraxis.Since sions are used to compute the uncertainties on galaxy counts. the DeepimagesaredeeperthantheAbell496images,we ap- Note that although the W1 pointings had comparable PSFs to plythesamecutofmeansurfacemagnitudewithinthehalf-light theAbell496PSFs,theintegrationtimesweresmaller,exceptin radiusofµ<26.25forall4wavebands. thei(cid:3) band(seeTable1).Hence,thephotometricerrorsderived We chose the DFs as reference fields (rather than the fromtheW1fieldareupperlimitsintheu∗,g(cid:3)andr(cid:3)bands. CFHTLS Wide fields) because their greater depth ensures WealsorecomputedtheareacoveragefortheDeepandWide smallerphotometricerrorsinourrangeofmagnitudesthanthose fieldsfromtheCFHTLSmaskfiles(seeTable1). of the Wide fields. Moreover,the DFs were selected to be free of rich nearby structures, which is not the case for the Wide CFHTLS fields, which are shallower (except in i(cid:3)) than the 3. Descriptionofthemethods Abell496field. 3.1.Luminosityfunctioncalculations We checked that the cluster and referencefields have com- patible photometric calibration. For this we made a colour- The basic method to evaluate the LF is to statistically esti- colourdiagram,showninFig.3,inwhichwecorrectedthemag- matethefore-andbackgroundcontributionstotheclusterlines nitudes for galactic extinction using the Schlegel et al. (1998) of sight using comparison fields free of rich nearby structures model, and shifted the D1 i(cid:3) magnitudes by +0.02 to force a (Oemler1974). match. We compute the LF in the standard fashion: we subtract The W1 region (19 MegaCam fields) of the CFHTLS was the reference field counts (the mean of the 4 DFs) from the considered to estimate the magnitude uncertainties as a func- cluster field counts. The uncertainty is estimated as follows. tion of magnitude in an external way. For this, we considered In a first step, we compute the uncertainties coming from er- the overlapping areas of the 19 W1 fields. In these areas, we rors on magnitude measurements: starting from a catalogue of compiledtheobjectsobservedtwice,andthisallowedustoes- magnitudes{mi},wecreatemockcatalogues{m(cid:3)i},wherem(cid:3)i are timate the magnitude difference as a function of magnitude in Gaussian distributed random variables of mean mi and stan- theu∗,g(cid:3),r(cid:3)andi(cid:3)bands.Weonlyselectedobjectslocatedmore darddeviationσ(mi)estimatedfromoverlappingareasinthe19 than 400 pixelsaway fromthe field edgesin orderto avoid ar- CFHTLS W1 fields (cf. Fig. 4). The uncertainty on the galaxy tificially increasing the magnitude uncertainties due to border countsarisingfromphotometricerrorsinthenσm = σ{N(m(cid:3))}. effects.TheseuncertaintiesareshowninFig.4. Inasecondstep,wecomputetheuncertaintiesduetothecosmic WeusedtheTERAPIXobjectcataloguesfortheW1fields, varianceusingthe59CFHTLSWidefields: forwhichdetectionsweredoneontheχ2images.Ineachwave- σ2 (m)=σ2{N (m)}−(cid:7)σ2(m)(cid:8) , (2) band,theW1fieldshavethesamemeasurementthresholdasthe CV Wide m Wide Abell496image.However,themeasurementisophoteisnoisier where(cid:7)(cid:8) meansthemedianoverthe59Widefields.Itshould Wide in the W1 fields(exceptin thei(cid:3) band).butwith the same area bestressedthatσ (m)definedinthiswayimplicitlytakesinto CV G.Bouéetal.:GalaxyluminosityfunctionofAbell496 339 M M r’ i’ -20 -18 -16 -14 -20 -18 -16 -14 net galaxy counts (Abell 496) 3 1000 Poisson uncertainties on gross counts ) Abell 496 2g cosmic variance (Abell 496) e 2.5 d magnitude error (Abell 496) ag/ cosmic variance (Deep fields) m magnitude error (Deep fields) 2 5 0. 100 star-galaxy separation s/ ount g’-i’ 1.5 c ( s e 1 nti 10 ai rt e 0.5 c n u 0 1 14 16 18 20 22 14 16 18 20 22 r’ i’ Fig.5.UncertaintiesontheglobalLFofAbell496inther(cid:3)bandforall Fig.6.i(cid:3)/g(cid:3)−i(cid:3)colour-magnitudediagramforAbell496.Theredcurve galaxies,i.e.withoutselectionfromthecolour-magnitudediagram.For showstheupperlimitofgalaxyselectiontocomputetheLFs. comparison,weshowthePoissonerrorcalculatedonthegrosscounts ofAbell496.Notethatwedefinedcosmicvariance(Eq.(2))withthe Poissoncontribution. consistentwithwhathasbeenknownsinceBoweretal.(1992). WeassumethatthisRedSequenceisrealandcorrespondstothe accountthestatisticaluncertaintiesonthestar-galaxyseparation reddestgalaxiesofthecluster.Wethereforeselectonlygalaxies (cf.Fig.2).Finally,weaddquadraticallyalluncertainties: slightly(0.15mag)aboveourRedSequence.Becauseourpho- tometricerrorsincreasewithmagnitude,thestrictapplicationof σ2{NCl(m)} = σ2{NCl(m)}+σ2 (m) m los CV thiscolourcutwouldleadtoanincompletenessatthefaintend. (cid:3) (cid:4) +1 σ2{NDF(m)}+σ2 (m) , (3) Thereforeweusethecut 4 m CV (cid:5) (cid:6) where NCl, NCl and NDF are the counts from the cluster, the g(cid:3)−i(cid:3) ≤ (g(cid:3)−i(cid:3))RS+Max 0.15,1.5σg(cid:3)−i(cid:3) clusterfieldanlodsthemeanofthe4DFs,respectively.Thefactor = 1.75−(cid:7)0.05i(cid:3) (cid:8) (cid:9) of4correspondstothe4DFs.Alltheseuncertaintiesareplotted inFig.5forAbell496inther(cid:3)band. +Max 0.15,1.5 σ2g(0.95i+1.75)+σ2i(i) , (5) TheuncertaintyinthegalaxycountsgiveninEq.(3)aswell asthecontributionofstar/galaxyseparationtotheuncertaintyin where we wrote σ2g(cid:3)−i(cid:3) = σ2g(cid:3) + σ2i(cid:3), used the Red Sequence thecountsshowninFig.5arepurelystatistical.Oneshouldalso (Eq. (4)) to translate g(cid:3) to i(cid:3), and took σ (g(cid:3)) and σ(i(cid:3)) from g i consider systematic contributions to this uncertainty, in partic- Eq.(1).Thefactor1.5inthefirstequalityofEq.(5)ensuresthat ularthosefromstar/galaxyseparation.Indeed,thedifferencein we are 93% complete (assuming a Gaussian probability distri- galaxycountsafter subtractionof the stars either fromour star butionfunction,hereafterpdf). countsorfromtheBesançonmodelisalmostaslargeasthecos- ThecolourcutofEq.(5)isrepresentedinFig.6bythered micvarianceofthegalaxycountsoftheAbell496clusterfield. curve.Whileourcolourcutmayleadtoalossofatypicallyred However,ouranalysisofSect.2.1suggeststhatthissystematic cluster galaxies(e.g.dusty objects),we are confidentthat such uncertaintyissmallerthanthedifferencebetweenourestimated a population,if it exists, is small, and will onlymarginallyde- starcountsandthoseobtainedwiththeBesançonmodel. creaseourcompleteness.Ontheotherhand,thecolourcutwill drastically improve our reliability in the net cluster counts (in- deed,ourtestshaveshownthatwithoutthecolourcuts, theLF 3.2.Improvementusingcolourmagnituderelations is much noisier). Hereafter,all LFs as well as the cosmic vari- LFs computed directly from the method described above show ancearecomputedusingthisselection. verybigerrorbarsmainlyduetothecosmicvariance(cf.Fig.5). This problem has already been highlighted (e.g. Oemler 1974; Durretetal.2002).Weimproveouranalysisbyremovingthose 4. Results objectswhosecolourimplythattheyarebackgroundobjects.We consideredg(cid:3) −i(cid:3) because it correspondsto the highestquality We computed LFs both for the whole field of view and for 16 subfields. The subfields define a regular square grid of magnitudewavebands. 15 × 15 arcmin2 each and allow a good compromise between Figure6showsthecolour-magnituderelationsofAbell496, spatialresolutionanduncertaintiesinindividualmagnitudebins. wherenobackgroundsubtractionhasbeenmade.Weseeawell definedRedSequencethatdecreaseslinearlywithi(cid:3),downtoat We used 1 mag bins to limit the uncertainties. Several subre- gions are then defined including a certain number of subfields leastM =−14.5,as i with common properties; they were chosen without assuming (g(cid:3)−i(cid:3)) (cid:6)1.75−0.05i(cid:3), (4) circularsymmetryforthecluster. RS 340 G.Bouéetal.:GalaxyluminosityfunctionofAbell496 Table2.faintendslopesofAbell496. Region 20≤u∗≤23 18≤g(cid:3)≤22 17≤r(cid:3)≤22 17≤i(cid:3)≤22 −15.73≤ Mu∗ ≤−12.73 −17.73≤Mg(cid:3) ≤−13.73 −18.73≤Mr(cid:3) ≤−13.73 −18.73≤Mi(cid:3) ≤−13.73 All −1.68±0.35 −1.53±0.08 −1.62±0.05 −1.52±0.05 All(nocolourcuts) −1.78±0.51 −1.61±0.17 −1.73±0.18 −1.58±0.24 Centre −1.60±0.27 −1.43±0.07 −1.39±0.08 −1.41±0.05 South −1.87±0.34 −1.89±0.14 −1.79±0.11 −1.80±0.10 east-north-west −1.88±0.69 −1.48±0.22 −1.40±0.25 −1.58±0.12 Note:themagnitudeintervalscorrespondtothecentresof0.5magbins(All)and1.0magbins(Centre,South,east-north-west). M M u* g’ -22 -20 -18 -16 -14 -22 -20 -18 -16 -14 1000 1000 Abell 496 2 Abell 496 2 100 = - = - α α 10 2 g e d 100 g/ a m 1000 5 unts/0. 10 2eg 11000 o d c g/ a m 1 nts/ 1000 u 14 16 18 20 22 14 16 18 20 22 o c 100 u* g’ 10 M M r’ i’ -22 -20 -18 -16 -14 -22 -20 -18 -16 -14 1000 1000 Abell 496 2 Abell 496 2 α = - α = - 100 2 g e 10 d 100 g/ a m 18 20 22 18 20 22 18 20 22 18 20 22 5 ounts/0. 10 Fig.8. Local luminosity functions for Ar’bell 496 in the r(cid:3) band. Each c subfieldis15×15arcmin2.X-rayintensitycontourswithlogarithmic stepsfromROSAT/PSPCdataaresuperimposed.Threemainareasare 1 14 16 18 20 22 14 16 18 20 22 defined in blue, red and green, which correspond respectively to the r’ i’ centre, thewell populated Southern rectangle and thesparse northern ring. Fig.7.GloballuminosityfunctionsforAbell496inthefourbandswith thebestfits(inred). Had we adopted instead the star countsfrom the Besançon model (see Fig. 2), the slope of the LF in the i(cid:3) band for the TheLFsofAbell496inthefourbandsaredisplayedinFig.7 globalfieldwouldhavebeen−1.27±0.04. (thecorrespondingdataaregiveninTableA.2oftheappendix), WealsocomputedtheLFsforgalaxiesintheRedSequence showingthattheshapesoftheglobalLFsoftheAbell496field (where the redder limit is taken from Eq. (5), while the bluer aresimilarinthefourbands,withthefaintendsincreasinglin- limitisthesymmetricalcut,withrespectivetotheaverageRed early.AstheseLFsdonotlooklikeSchechterfunctions,wede- Sequence given in Eq. (4)). The slopes for the Red Sequence cidedtofitonlythefaintendsbyapower-law.Theexpressionin galaxiesmatchedthoseoftheglobalLFsinallbands.TheLFs termsofmagnitudeisgivenby: for galaxies bluer than the Red Sequence are not significantly differentbutwithlargererrorbars(α≈−1.65±0.15). Φ(M)=10−0.4(α+1)(M−M0). The local r(cid:3) LFs in the 16 subfields of Abell 496 are dis- playedin Fig. 8.Thisfigureshowsthatthe LFsare notsimilar ThebestfitslopesαoftheoverallLFsaregiveninTable2.We overthewholeclusterfield:subfieldsinthenorth,eastandwest used the Levenberg-Marquardtmethod (e.g. Press et al. 1992) extremities of the cluster are sometimes poorly populated and tofitthedata.Errorbarswerecomputedfrom1000parametric exhibit large error bars, while subfields in the Southern region bootstraps,wherethepdfofthenetcountsisassumedGaussian showrisingLFs.Wecanthusdividetheclusterintothreemain withawidthobtainedfromthepdfofthegrossgalaxycountsof regions: a central region 30 × 30 arcmin2 (1.15× 1.15 Mpc2, the59Widefields.Thefaintendslopesvaryfrombandtoband, in blue inFig. 8),an east-north-westregionaroundthiscentral butaretypicallyα=−1.55±0.05. zone(ingreeninFig.8)andaSouthernregion(inredinFig.8). WerecomputedtheLFinther(cid:3)bandusingamuchmorecon- Thecentralregionextendstoroughlyonehalfofthevirialradius servativecutinsurfacebrightness:µ <24.25(insteadof26.25). andcorrespondstothedensestregionofthecluster. r The faint end slope becomes α = −1.60 ± 0.05 (instead of Figure9showstheLFscomputedinthesethreesubregions, −1.62±0.05).Hence,thefaintendslopesappearrobusttodif- inthefourphotometricbands(thecorrespondingdataaregiven ferentcutsinsurfacebrightness. in Table A.2 of the appendix). The LFs have faint end slopes G.Bouéetal.:GalaxyluminosityfunctionofAbell496 341 M M u* g’ -19 -18 -17 -16 -15 -14 -13 -19 -18 -17 -16 -15 -14 -13 10000 Abell 496 Abell 496 2 g de 1000 g/ a m 1 unts/ 100 o c 10 17 18 19 20 21 22 23 17 18 19 20 21 22 23 u* g’ M M r’ i’ -19 -18 -17 -16 -15 -14 -13 -19 -18 -17 -16 -15 -14 -13 10000 Abell 496 Abell 496 2 g de 1000 g/ a m 1 unts/ 100 o c Fig.10.LargescalestructuresurroundingAbell496,inaregionof17× 10 17 18 19 20 21 22 23 17 18 19 20 21 22 23 17 deg2 (41×41 Mpc2), in a redshift slice within ±0.005 of that of r’ i’ thecluster.Thegalaxiesaretaken from6dFGS-DR3(points),limited to the completeness limit of K < 12.65, which corresponds to L∗/4 Fig.9.LuminosityfunctionsforAbell496inthefourbandsandinthe s (usingtheK fieldLFofJonesetal.2006).Wealsoshowgroups(blue threemainareasdefinedFig.8.Thebluecolourcorrespondstothecen- s triangles) and clusters(large blue circles) found inNED in thesame tralregion,redisfortheSouthandgreenfortheuppereast-north-west redshiftinterval(withtheirredshiftshighlighted).Thesurroundedred zone. circleshowsthepositionoftheclustercentre. (see Table 2) that are significantly shallower in the centre than in the Southernperipheryin all bandsexceptu∗. The Southern massivecluster(1000kms−1),orexpressedintermsofphysical region has a surface density of faintgalaxies (Mr(cid:3) > −14) that distancetoasliceof45MpcattheredshiftofAbell496.Onthe ishigherthanorcomparabletothatofthecentralregion.Ifthis planeofthesky,welimitedoursearchtoaboxof17×17deg2 is not caused by field contamination (see Sect. 6.3), then one (40Mpcattheclusterredshift).Thissizeistypicalofthelargest wouldconcludethatthefaint(Mr(cid:3) > −14)galaxiesdonottrace cosmicbubbles(Hoyle&Vogeley2004). thecluster,whichpresentsnosurfacedensityenhancement. Figure 10shows thatthe 6dFGSgalaxiesin the neighbour- Although they are both contained within the virial radius hood of Abell 496 are more concentrated along a strip in the of the cluster, the two external regions present LFs differing southeast/northwestdirection.Thisisconfirmedbythedistribu- from one another. The Southern region (red) is still quite pop- tionofgroupsandclustersthatwefoundinNED(whichismuch ulated comparedto the greenregion,which is sometimesquite lesshomogeneous)usingthesamesearchcriteria.Notethatthe poor with LFs often not significantly positive. Since there are 6dFGS-DR3iscompletetoK ≤12.65(Jonesetal.2008)down noclustersorgroupsknownnearby(assearchedwithNED,see togalacticlatitude|b|>10◦,asndinourzone,wehaveb<−24◦. Fig.10),thissuggeststheremaybematterintheSouthernregion ThegalaxiesdisplayedinFig.10areclearlydistributedalonga infalling from the surroundingcosmologicalweb, as discussed large-scalefilament,whichappearstobeatleast30Mpclong. inthenextsection. We tested the prominence of this filament in the following manner.Wesearchedfortherectangleoflength15◦ (36Mpcat 5. LargescalefilamentintheAbell496 thedistanceofAbell496)andwidth2◦encompassingthelargest amountofgalaxies,imposingthatAbell496liesalongthelong neighbourhood axisoftherectangle,within4◦ fromtheclosestedgealongthat Abell496has beenshownto be a noticeablyquiescentand re- axis.Wefoundthatthefurthestedgealongthelongaxisisatpo- laxed cluster (e.g. Durret et al. 2000). The only sign of sub- sitionangle(PA)137◦ anti-clockwisefromnorth.Wethenbuilt structurefoundwasanenhancedconcentrationofemissionline 1000randomsamplesofasmany(487)galaxiesintheframeof galaxiesinthenorthwest.FromFig.8,wealsoseethatthesouth- Fig. 10 as observed, and checked for the most populated rect- ernpartofthesurroundingareaaroundtheclustershowsasig- angle,definedasabove,covering360PAsinstepsof1◦.While nificantgalaxypopulation,withanLFthatresemblesthatofthe thefilamentintheobserveddatasethas221galaxieswithinthe centralcluster. rectangle,noneofthe1000randomdatasetseverreachedmore We searched the Six degree Field Galaxy Survey than81galaxies.Therefore,thefilamentatpositionangle137◦ (6dFGS-DR3) database (Jones et al. 2004, 2005, 2008) for ishighlysignificant.Thisfilamentshouldconstituteapreferen- nearbygalaxiesin thelarge-scaleneighbourhoodofAbell496, tialavenueforinfallingmaterialintoAbell496,aswellasback- ina±0.005redshiftslicearoundthemeanvalueof0.033.This splashingmaterialfromthecluster.However,thisfilamentdoes slice corresponds to ±1.5 times the velocity dispersion of a notfullyexplaintheexcessofgalaxiesinthesouthernregionof 342 G.Bouéetal.:GalaxyluminosityfunctionofAbell496 Abell496sinceitisinclinedrelativelytothenorth-southdirec- (e.g.,Pracyetal.2005).Finally,tidaleffectsfromtheclusterpo- tion. tential are the same,to firstorder,ongiantanddwarfgalaxies. Given the trend that low luminosity ellipticals are less concen- tratedthanmoreluminousones(Grahametal.2001),thelatter 6. Discussionandconclusions willsurvivebetterthestrongtidesneartheclustercentre,which shouldmaketheLFshallower,notsteeper.Theonlypossibleex- 6.1.ComparisonwithpreviousanalysesofAbell496 planationforasteeperfaint-endslopeinclusterswouldbethat TheLFofAbell496waspreviouslymeasuredbyMolinarietal. galaxiesofmoderatelylowluminosityaretidallyfragmentedby (1998), who analysed the cluster in 4 small fields, one includ- theclusterpotentialorbycloseencounters. ingtheclustercentre,andbyDurretetal.(2002),whomeasured Now,ifthefieldcountsintheclusterfieldareunderestimated thLFina42(cid:3)×28(cid:3) fieldinthe I band.Thefaint-endslopesof (because the reference fields are slightly underdense), the re- −1.69±0.04inrand−1.49±0.04inifoundbyMolinarietal. sultant net cluster counts will be highly contaminated by field areconsistentwithourslopesof−1.62±0.05and−1.52±0.05 counts. Writing the field counts as dN/dm = dex[β(m− m )] 0 in thesebands.Moreover,theirfaint-endslopeof−1.34±0.04 andtheclusterfaint-endluminosityfunctionasΦ(L) ∝ Lα,itis ingisprobablyconsistentwithourslope(−1.53±0.08),given easy to show that if the field dominates the net cluster counts, thattheirestimatederrorneglectscosmicvariance,which,aswe one will end up measuring α = (−β/0.4)−1. For example, if showinFig.5,ismanytimesgreaterthanthePoissonvariance. β = 3/5 (Euclidean counts), one would measure α = −5/2, Durret et al. (2002)find a slope of −1.79±0.01 in I, whereas while if β (cid:6) 0.36(asin the DFsin the magnituderangewhere wefindhereaslopeof−1.52±0.05.Givenouranalysisofcos- wearemeasuringthefaint-endslopeoftheLF),oneshouldfind micvariance,weestimatetheerrorfromcosmicvarianceonthe α=−1.9. slopeofDurretetal.(2002)toberoughly0.08.Ifthiserrores- Weareconfidentthatwesufferlittlefromabackgroundcon- timate is correct, then the difference in faint-end slopes would taminationofourLFs.Indeed,thefaint-endslopesthatwehave bestatisticallysignificant.Thisdifferencemaybecausedbythe computedfortheglobalLF(Table2)andforthecentralregion differentregionsprobedinthetwostudiesandthedifferentref- ofAbell496(Table2)areallconsiderablyandsignificantlyshal- erencefieldsused. lower than α = −1.9(exceptin the less sensitive u∗ band).We alsotookgreatcarenottounderestimatethecountsinourfield count process by the use of very homogeneousfield data cov- 6.2.Comparisonofradialtrendswithotherclusters eringalargeenoughfieldofviewinordertotreatproperlythe Our g(cid:3), r(cid:3) and i(cid:3) LFs exhibit slopes that increase significantly cosmic variance (as described above). Finally the selection in from the centre outwards (Table 2). This agrees with the trend colourthatwehaveappliedeliminates(bothintheclusterfields for flatter LFs aroundcluster cDs foundby Lobo et al. (1997), andinthefieldsusedforstatisticalsubtraction)veryredobjects with the steeper slope in the outer envelope of Coma found that are veryunlikely to belong to the cluster, so the field sub- by Beijersbergen et al. (2002), and with the greater dwarf-to- tractionisquiteconservativeandthereforesecure. giant ratio found by Driver et al. (1998a). Note, however, that The MegaCam colour redshift diagrams derived by Ilbert all three trends are either qualitative or of marginal statistical et al. (2006)from the VIMOS VLT Deep Survey (VVDS) fol- significance.Althoughourradialtrendisoppositetothatfound lowupoftheCFHTLSDFshowthatgalaxyspectraareshiftedto by DeProprisetal.(2003)in 2dFGRS clusters, their shallower theredtosuchanextentthat,intheredshiftrange0.4<z<0.6, slopeintheclusterenvelopesisnotstatisticallysignificant. thebulkoffield(intrinsicallybluespiral)galaxiesbecomered- dering(cid:3)−r(cid:3)thannearbyellipticals,andthesamehappensinthe range0.5<z<1.2forr(cid:3)−i(cid:3)colours.Wearethereforeprobably 6.3.Aubiquitousdwarfpopulation? contaminatedbyintrinsicallyblue(spiral)backgroundgalaxies Whereas our faint-end slope for the core of Abell 496 is fairly withcoloursalmostasredasourRedSequenceatz<0.4or0.5. shallow (α (cid:6) −1.4), it is still steeper than most estimates of Note that two of the studies concluding to steep faint-end the field LF: Blanton et al. (2003) find α = −1.05±0.01 for LFslopes(DeProprisetal.1995;Milneetal.2007)haveneg- r the SDSS galaxies, while Jones et al. (2006) find α between ativeLFsatsomemagnitudes,whichsuggestsinadequateback- −1.10 ± 0.04 (J-band) and −1.21 ± 0.04 (r-band) for 6dFGS ground subtraction (Fig. 8 shows that 4 of our 12 non-central galaxies. However, Blanton et al. (2005) estimate that a care- localLFsalsodisplaynegativeLFsatsomeintermediatemagni- ful inclusion of SDSS low surface brightness galaxies yields tudes,whichmakestheseparticularLFssuspicious).Moreover, α < −1.3 and perhaps as steep as −1.5. But several authors all steep faint-end slopes were found by authors who made no r found very steep slopes (α as steep as −2.2) for faint galaxy colour cuts, with the exceptionof Popesso et al. (2006).These populationsinclusters(seeTableA.1),suggestinganimportant authorsestimatedtheLFsofclustersintheSDSS,usingthesta- populationofdwarfgalaxiesinclusters,whichisnotseeninthe tistical subtraction method, and found α ≈ −2.2. The range of fieldLFs. absolutemagnitudeswherePopessoetal.seetheriseinthefaint- Itisdifficulttounderstandhowdwarfgalaxiescouldsurvive end LF, [−17.7,−13.7],correspondsto apparentmagnitudesin betterinthehostileclusterenvironmentthaninthefield.Direct therange18.03<m<22.03,whichmatchesouranalysedrange galaxymergersshouldhavelittleeffectondwarfs,whosecross- of apparent magnitudes. It is puzzling that we do not find in sectionsaresmall.Mergersofdwarfsafterorbitaldecaybydy- our deeperimagesthe low surface brightnessdwarf population namicalfrictionintothecentralcDcannotbeanexplanation:the foundbyPopessoetal.intheSDSSimages. decay timesare expectedto be proportionalto galaxymass, so Figure 11 displays the u∗ − r(cid:3) vs. i(cid:3) colour-magnitude dia- the giant galaxies can disappear into the central cD. However, gram of the Abell 496 field. The Red Sequence is clearly visi- theorbitaldecaytimesforthelowmassgalaxiesshouldbelong ble at bright magnitudesand its red edge is still sharp at mag- enoughthatthefaint-endmassfunctioninclusterswouldbethe nitudes18 < i(cid:3) < 22. The galaxiescalled red cluster members sameasthefield,notsteeper.Moreover,thereisnoobservational byPopessoetal.andfainterthan M(cid:3) = −19arealmostallfield i evidenceforluminositysegregationoffaintgalaxiesinclusters galaxiesaccordingtoourcolour-magnitudediagram.Similarly, G.Bouéetal.:GalaxyluminosityfunctionofAbell496 343 result is that X-ray selected clusters show shallower faint-end slopes than do non X-ray clusters (Valotto et al. 2004), which areexpectedtobemorepronetoprojectioneffects. Apossiblecauseforthediscrepancybetweendifferentanal- ysescouldbetheuncertaintiesfromstar/galaxyseparation.This isaseriousissueforouranalysis,becauseAbell496liesatlower absolutegalacticlatitude(b=−36◦)thanourreferenceDFfields (b=−58◦,42◦,60◦and−53◦),sothatAbell496ismorecontam- inatedbystars.Indeed,ouri(cid:3)-bandLFhasaconsiderablyshal- lower faint-end slope of −1.27±0.04 instead of −1.52±0.05 (Table2).Moreover,ingeneral,theerrorsonstar/galaxysepara- tioncouldgoeitherway,leadingtoeitheranunderestimationor overestimationofthefaint-endLFslope. Apossibleexplanationforthewiderangeoffaint-endslopes (see Table A.1) is cosmic variance: some clusters may exhibit steeperslopesthanothers.However,inspectingtheslopesfound intheliterature(TableA.1),onenoticesawiderangeofslopes for the same cluster analysed in similar wavebands,magnitude ranges and fields of view (contrast the slopes in similar re- gionsofComaof−1.7,−1.8ofLoboetal.1997;andTrentham 1998a; with the slopes shallower or equal to −1.4 of Andreon &Cuillandre2002).Moreover,thetwostudiesthathaveenough clustersto“beat”cosmicvariancehaveinconsistentslopes(−2.2 Popessoetal.2006and−1.4Trentham1998b)inthemagnitude Fig.11.Ouru∗−r(cid:3)vs.i(cid:3)colour-magnitudediagramforAbell496.The range−18to−14. dashed contours are for our selected cluster members using Eq. (5), while the solid (red) contours (same levels, spaced by factors of 1.6) arethegalaxiesidentifiedasfieldgalaxies,becausetheyareredderthan 6.4.Conclusions ourRedSequenceofEq.(5).AlsoshownarethelimitsusedbyPopesso etal.(2006)toseparatetheirredclustergalaxiesandfieldgalaxies(up- WehaveanalysedthegalaxyLFsintherelaxedclusterofgalax- perhorizontalline)andtheirblueandredclustergalaxies(lowerhori- ies Abell 496. We have shown that the LFs are not only well- zontalline),aftercorrectingbothfor(u∗−r(cid:3)) =(u−r) −0.35, definedinthecentralregion(withafaint-endslopeα = −1.4± MegaCam SDSS asfoundusingthematchesinafieldofAbell85forwhichwehadboth 0.1),butalsointhesouth.Aconcentrationofclustersisindeed SDSScataloguesandreducedMegaCamimages.Theverticallinesde- observed towards the southeast and along a filament extending limittheregionwherePopessoetal.clearlyfoundasteepfaint-endLF southeast to northwest (Fig. 10), suggesting the existence of a slope. cosmologicalfilamentlinkingAbell496withvariouspoorclus- tersandgroups.However,suchafilamentcannotbeverydense sincenoX-rayemissionisdetectedinthisdirection,contraryto atMi(cid:3) =−16.5,ourRedSequence(oritsextrapolation)becomes whatisobservedinAbell85(Durretetal.2003). bluerthantheblue-redgalaxycutofPopessoetal.Thissuggests We discussthedisagreementofourfairlyshallowfaint-end thatanincreasingfractionofbothPopessoetal.’sredandblue slopeforAbell496withthatfoundbyotherauthorsinthisand galaxiesareinfactfieldgalaxies. From inspection of the u∗ − g(cid:3) and g(cid:3) − r(cid:3) colour-redshift otherclusters.Althoughitisclearthatacarefulestimateofthe diagramsofIlbertetal.(2006),oneinfersthattheu∗−r(cid:3)colour referencefieldgalaxycountsandtheircosmicvariancearecru- cial,theremayalsobeacosmicvarianceinthefaint-endslopes cutusedbyPopessoetal. shouldvarynegligiblywithredshift. ofclusterLFs.Wefindthatuncertaintiesinthestar/galaxysep- Thisexplainswhythegalaxiesweassignto thefield(solidred arationcanberesponsibleforsome(butprobablynotall)ofthe contours in Fig. 11) – because they are redder than our sharp g(cid:3) − i(cid:3) vs. i(cid:3) Red Sequence – pollute the u∗ −r(cid:3) vs. i(cid:3) colour- scatterinthefaint-endLFslopesgivenintheliterature.Wehigh- magnitude diagram. Therefore, colour cuts based upon u∗ −r(cid:3) lighttheremovalofgalaxiesredderthantheRedSequenceasa meanstoreducethenoiseintheLFs,butitisnotclearifthelack arenotefficientinrejectingbackgroundgalaxies(withz<∼0.4). ofadequatecolourcutscausesabiastowardssteeperslopes.The Nevertheless, while LF analyses based upon the statistical adventofverydeepspectroscopyinclusterfieldsshouldrapidly subtraction method with inappropriate or non-existent colour settletheissueofthefaint-endslopeoftheclusterLF. cuts should lead to noisier LFs, it is notclear whythey should bebiasedtosteeperslopes,unlessthenoiseissuchthatthefaint endoftheLFfluctuatesfrompositivetonegative(whichisnot the case for the globalLF of Popesso etal.). Althoughsimula- Acknowledgements. Theauthorsthanktherefereeforhisdetailedandconstruc- tive comments. Theauthors would like tothank Elisabete DaCunha, Andrea tionsbyValottoetal.(2001)showedthatclustersselectedin2D Biviano,VincentLeBrunandDidierPelatforusefuldiscussions,PaolaPopesso will have faint-end slopes much steeper than what they put in forusefulcommentsandAndreaBivianoforacriticalreadingofthemanuscript. theirsimulations(−1.4insteadof−1inroughlythesameabso- TheauthorsarealsogratefultotheCFHTandTERAPIXteamsfortheirhelp, lute magnituderangeas where Popesso et al. foundtheir slope inparticulartoEmmanuelBertinandHenryMcCrackenfordiscussions,andto of −2.3), Valotto et al. have also shown that LFs measured in theFrenchPNG,CNRSforfinancialsupport.TheyalsothankMatthewColless forpermissiontouse6dFGS-DR3,inadvanceofpublication.Thisresearchhas clusters selected in 3D, such as all the clusters reportedin this madeuseoftheNASA/IPACExtragalacticDatabase(NED)whichisoperated paper(includingtheX-rayselectedclustersstudiedbyPopesso bytheJetPropulsionLaboratory,CaliforniaInstituteofTechnology,undercon- etal.),shownobiasinthefaint-endslope.Aconfirmationofthis tractwiththeNationalAeronauticsandSpaceAdministration. 344 G.Bouéetal.:GalaxyluminosityfunctionofAbell496 Appendix TableA.1.Comparisonofdeepphotometrically-estimatedclustergalaxyluminosityfunctions. Cluster(s) r /r abs.magrange α Reference max 100 LocalGroup 3.6 M <−9 –1.1 Pritchet&vandenBergh(1999) V Virgo 1.1 M <−13.1 –1.25 Sandageetal.(1985) B Virgo 1.1 M <−11.1 –1.3 Sandageetal.(1985) B Virgo 0.24×0.24 −15.6<M <−11.1 –2.26 Phillippsetal.(1998) R Virgo 2×0.4×1.2 −18<M <−11 –1.35 Trentham&Hodgkin(2002) B Virgo 2×0.4×1.2 −17<M <−14 –1.7 Trentham&Hodgkin(2002) B Coma 0.08×0.08 M <−11.6 –1.42 Bernsteinetal.(1995) R Coma 0.08×0.08 −11.6<M <−9.4 –2.0 Bernsteinetal.(1995) R Coma 0.58×0.24 M <−15.5 –1.8 Loboetal.(1997) V Coma 0.3×0.3 −15.6<M <−10.6 –1.7 Trentham(1998a) B Coma 0.3×0.3 −17.6<M <−11.6 –1.7 Trentham(1998a) R Coma 0.8 M <−13.4 –1.32 Beijersbergenetal.(2002) U Coma 0.8 M <−13.4 –1.37 Beijersbergenetal.(2002) B Coma 0.8 M <−13.4 –1.16 Beijersbergenetal.(2002) r Coma 0.28×0.43 M <−12.8 –1.25 Andreon&Cuillandre(2002) B,V,R Coma 0.28×0.43 M <−11.3 –1.4 Andreon&Cuillandre(2002) V Coma 0.28×0.43 M <−11.8 –1.4 Andreon&Cuillandre(2002) R Coma 0.6×0.6 −19.1<M <−14.6 –1.55 Iglesias-Páramoetal.(2003) R Coma 0.01 M <−9.1 –2.29 Milneetal.(2007) R Coma 0.01 M <−11.3 –1.9 Adamietal.(2007) R Coma(north) 0.28×0.22 M <−10.5 –1.48 Adamietal.(2007) B Coma(north) 0.28×0.22 M <−11.3 –1.74 Adamietal.(2007) R Coma(south) 0.28×0.22 M <−10.5 –1.32 Adamietal.(2007) B Coma(south) 0.28×0.22 M <−11.3 –1.28 Adamietal.(2007) R Abell426 0.1×0.1 −19.4<M <−13.4 –1.56 DePropris&Pritchet(1998) I Abell496 4×0.19×0.19 M <−13.2 –1.34 Molinarietal.(1998) g Abell496 4×0.19×0.19 M <−13.2 –1.69 Molinarietal.(1998) r Abell496 4×0.19×0.19 M <−13.2 –1.49 Molinarietal.(1998) i Abell496 0.9×0.6 MAB<−13.7 –1.79 Durretetal.(2002) I Abell539 0.24×0.24 −18.5<M <−14.0 –1.42 DePropris&Pritchet(1998) I Abell1185 0.9 M <−12.4 –1.25 Andreonetal.(2006) B Abell1185 0.9 M <−13.2 –1.28 Andreonetal.(2006) V Abell1185 0.9 M <−13.7 –1.28 Andreonetal.(2006) R Abell1367 0.7×0.7 M <−14.3 –1.07 Iglesias-Páramoetal.(2003) R Abell2199 0.04×0.04 M <−10.5 –2.16 DeProprisetal.(1995) B 3clusters 0.05×0.05 M <−13.0 –2.28 DeProprisetal.(1995) I 9clusters 0.25×0.25 −19<M <−14 –1.4 Trentham(1998b) B 9clusters 0.25×0.25 −14<M <−11 –1.8 Trentham(1998b) B UrsaMajor 6.8 −17<M <−11 –1.1 Trenthametal.(2001) R 69RASS/SDSSclusters 0.7 M <−13.7 –1.98 Popessoetal.(2006) g 69RASS/SDSSclusters 0.7 M <−13.7 –2.19 Popessoetal.(2006) r 69RASS/SDSSclusters 0.7 M <−13.7 –2.26 Popessoetal.(2006) i 69RASS/SDSSclusters 0.7 M <−13.7 –2.25 Popessoetal.(2006) z Notes:Themethodusedisfieldsubtraction,exceptfortheLocalGroupstudyofPritchet&vandenBergh(1999)andthefirstlineoftheVirgo analysisbySandageetal.(1985),whicharebaseduponrawcounts,whilethesecondlineoftheVirgoanalysisofSandageetal.addsastatistical backgroundcorrection.ThevirialradiiarefromMamonetal.(2004)(Virgo),Łokas&Mamon(2003)(Coma),thispaper(Abell496),Markevitch etal.(1999)(Abell2199),andotherwiseadaptedfromthevelocitydispersionsmeasuredbyFaddaetal.(1996),whenavailable(onlyfor5outof the9clustersofTrentham1998b;and3of4forDeProprisetal.1995).MagnituderangesareconvertedtoH =72kms−1Mpc−1.Typicalerrors 0 onαareintherange0.1to0.2.

Description:
The faint end slopes of galaxy luminosity functions (LFs) in clusters of galaxies have should be influenced by the physical processes (mergers, tides) affecting cluster galaxies. wrongly classifying stars as galaxies at r > 21, and at r = 22 the Abell 496 field, objects were re-extracted from the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.