Mon.Not.R.Astron.Soc.000,1–??(0000) Printed6January2017 (MNLaTEXstylefilev2.2) The Galactic distribution of X-ray binaries and its implications for compact object formation and natal kicks Serena Repetto1,2(cid:63), Andrei P. Igoshev1, Gijs Nelemans1,3 7 1DepartmentofAstrophysics/IMAPP,RadboudUniversity,P.O.Box9010,6500GLNijmegen,TheNetherlands 1 2PhysicsDepartment,Technion-IsraelInstituteofTechnology,Haifa,Israel32000 0 3InstituteforAstronomy,KULeuven,Celestijnenlaan200D,3001Leuven,Belgium 2 n 6January2017 a J 5 ABSTRACT ] The aim of this work is to study the imprints that different models for black hole (BH) and E neutronstar(NS)formationhaveontheGalacticdistributionofX-raybinaries(XRBs)which H contain these objects. We find that the root mean square of the height above the Galactic plane of BH- and NS-XRBs is a powerful proxy to discriminate among different formation . h scenarios, and that binary evolution following the BH/NS formation does not significantly p affecttheGalacticdistributionsofthebinaries.Wefindthatapopulationmodelinwhichat - o least some BHs receive a (relatively) high natal kick fits the observed BH-XRBs best. For r the NS case, we find that a high NK distribution, consistent with the one derived from the t s measurement of pulsar proper motion, is the most preferable. We also analyse the simple a method we previously used to estimate the minimal peculiar velocity of an individual BH- [ XRB at birth. We find that this method may be less reliable in the bulge of the Galaxy for 1 certain models of the Galactic potential, but that our estimate is excellent for most of the v BH-XRBs. 7 Keywords: X-rays:binaries–supernovae:general–Galaxy:dynamics–binaries:general– 4 blackholephysics–stars:neutron 3 1 0 . 1 0 1 Introduction formedeitherinastandardcore-collapsesupernova(SN),orina 7 lessenergetic typeofSN expectedforstar withsmallcores. The Theformationmechanismofcompactobjects,neutronstars(NSs) 1 lattercantakeplaceeitherasanelectron-captureSNorasaniron andblackholes(BHs),isanunsolvedprobleminhigh-energyas- : core-collapseSNwithasmalliron-coremass(Podsiadlowskietal. v trophysics.Amodelfortheformationofsuchobjectsrequiresto i 2004; Takahashi et al. 2013; Tauris et al. 2015; Janka 2016). For X performphysically-motivatedsimulationsofthecore-collapsesu- thecaseofBHs,observationsareratherscarceandpatchy,thusit pernova, which is computationally challenging (see e.g. Fryer & r isnotyetpossibletodiscriminatebetweendifferentmodelsofBH a Warren 2002; Burrows et al. 2012; Janka 2012). Another possi- formation(Mirabel&Rodrigues2003;Jonker&Nelemans2004; ble way to investigate the formation of NSs and BHs is to study Willemsetal.2005;Dhawanetal.2007;Fragosetal.2009;Miller- thebirthandevolutionofX-raybinaries(XRBs)hostingaBHor Jonesetal.2009;Wongetal.2012;Wongetal.2014;Repetto& aNSaccretingfromastellarcompanion.Theorbitalparameters, Nelemans2015;Mandel2016).Inthispaper,oneofourgoalsis peculiarvelocitiesandGalacticpositionofthesebinariesdirectly toinvestigatewhethertheobservedGalacticdistributionofXRBs followfromtheirevolutionaryhistory,andareaffectedinparticular hostingaBH(BH-XRBs)canrevealsomethingabouthowBHsare bytheconditionsatthemomentofcompactobjectformation(see formed.ThemainunderlyingideaisthatanyoffsetofaBH-XRB e.g.Brandt&Podsiadlowski1995;Kalogeraetal.1998;Nelemans fromtheGalacticplane(assumedasbirthplace)isasignatureof etal.1999;Nelemans2007). some peculiar velocity of the system with respect to the circular Themeasurementofpulsarpropermotions(seee.g.Lyne& Galacticmotion.Themagnitudeofsuchvelocitygivescluesonthe Lorimer 1994; Hansen & Phinney 1997; Hartman 1997; Hobbs SNmechanism,inparticularonthemagnitudeoftheNKatbirth etal.2005),combinedwiththestudyofNS-XRBs(e.g.Johnston (Jonker&Nelemans2004;Repettoetal.2012).Theideaofusing etal.1992;Kaspietal.1994;Fryer&Kalogera1997;Kolbetal. theGalacticpositionand/orlineofsightvelocitiesofapopulation 2000;Pfahletal.2002),hasexposedevidencethatsomeNSsre- ofXRBstoinvestigatetheformationofcompactobjectswasem- ceive a low velocity, whereas others a high velocity at formation ployedpreviouslyfortheNScase(seee.g.Brandt&Podsiadlowski (so called natal kicks, NKs). The prevailing idea is that NSs are 1995;Johnston1996). WecoveredthetopicofBHformationintwopreviousworks. In Repetto et al. (2012), we followed the Galactic trajectories of (cid:63) E-mail:[email protected] ©0000RAS 2 S.Repettoetal. a simulated population of BH-XRBs, and investigated which NK 250 distributiongivesrisetotheobservedz-distributionofBH-XRBs (wherez istheheightabovetheGalacticplane).Theaimwasto 200 discriminate between high and reduced NKs for BHs. High NKs arelargerthantheNKexpectedinastandardformationscenariofor s D m 150ê BHs,inwhichtheBHformsviafallbackofmaterialontotheproto- k @ NSandtheNKiscausedbyasymmetriesintheSNejecta.Inthe ot standard scenario, the NK would conserve the linear-momentum Vr 100 androughlyscaleastheNKreceivedbytheNSmultipliedbythe ratiobetweenthemassoftheBHandthemassoftheNS.Wecall 50 these kicks as reduced or momentum-conserving NKs. If the NS receivesaNKoftheorderof300km/s,a10M BHwouldgeta 0 (cid:12) NKof≈40km/s.WedefinehighNKsas(cid:38)100km/s.InRepetto 2 4 6 8 10 et al. (2012), we found that high NKs, comparable to NS NKs, R kpc were required. In Repetto & Nelemans (2015), we combined the Figure1.RotationcurvefortheGalacticpotentialsusedinthiswork:Bovy informationfromthekinematicsandbinaryevolutionofasubsetof (2015)(dashedline),Paczynski(1990)@(dotDtedline),Irrgangetal.(2013) BH-XRBstofindevidencebothforlowandhighNKs.InthisPa- (solidline). per,weaimatcomplementingandextendingthosepreviousstud- ies.FollowingupontheworkbyvanParadijs&White(1995)and White&vanParadijs(1996),Jonker&Nelemans(2004)foundthat impartsarecoilvelocitytothebinary;theNKaddsupvectorially theroot-mean-square(rms)valueoftheheightabovetheGalactic tothisvelocity,givingthetotalpeculiarvelocityofthebinary,V(cid:126)pec. planeofBH-XRBsissimilartothatofNS-XRBs,suggestingthat SuchasystemicvelocityaddsupvectoriallytothelocalGalactic BHs could also receive a high kick at formation, or even one as rotationandprobablyhasnopreferentialorientation.Thefull3D highasNSs.Inthiswork,wedevelopthisideafurther.Webuild velocityismeasuredonlyforahandfulofBH-XRBs(seeMiller- synthetic populations of BH- and NS-XRBs and we model their Jones 2014). For these, the integration of the orbit backwards in binaryevolutionandtheirkinematicsintheGalaxy,toinvestigate timecaninprincipleprovideanestimateforV(cid:126)pecatbirth.However, whetherdifferentassumptionsoncompactobjectformation(such uncertaintyinthedistanceanddifferencesintheGalacticpotential asadifferentdistributionfortheNKand/oradifferentamountof canpreventauniquedeterminationoftheinitialposition(seee.g. massejectedintheSN)haveanimprintontheobservedGalactic Fragosetal.2009;Miller-Jonesetal.2009).Whenthefull3Dpe- distributionofBH-andNS-XRBs,andwequantifytheseeffects. culiarvelocityisnotknown,onecanestimateV(cid:126)pec atbirthusing Furthermore, we will dedicate part of this work to discuss a simple model. For an object located at Galactic height z†, we a method we previously employed to calculate the minimum expectatrajectorypurelyperpendiculartotheplanetobetheone peculiar velocity at birth of individual BH-XRBs (Repetto et al. which minimises the initial V(cid:126)pec. In our previous works Repetto 2012;Repetto&Nelemans2015).ThedifferenceoftheGalactic et al. (2012) and Repetto & Nelemans (2015), we estimated the potential value between the observed position (R,z) and its minimum peculiar velocity at birth of a BH-XRB employing en- projectionontotheGalacticplanewasusedtoanalyticallyderive ergyconservationalongsuchtrajectory,andassumingthatthemax- a lower limit for the peculiar velocity at birth. This method has imumheightzfromtheplaneistheobservedone.Weget: been recently challenged by Mandel (2016). We investigate how (cid:112) V = 2[Φ(R ,z)−Φ(R ,0)], (1) robust our estimate is, i.e. how close this estimate is to the true pec,min 0 0 value of the minimal peculiar velocity at birth, how this estimate whereΦ(R,z)isamodelfortheGalacticpotential,R isthemea- 0 scaleswiththedistancefromtheGalacticcentre,andhowitvaries sureddistanceofthebinaryfromtheGalacticcentreprojectedon fordifferentchoicesoftheGalacticpotential. totheGalacticplane,andzisthecurrentheightabovetheplane. RecentlyMandel(2016)arguedthatthedifferenceinthegrav- Thepaperisstructuredasfollows.InSection2westudyour itationalpotentialbetweentheobservedlocationanditsprojection estimateforthepeculiarvelocityatbirthofindividualBH-XRBs. ontotheGalacticplaneisnotanaccurateestimateoftherequired InSection3webuildsyntheticpopulationsofBH-andNS-XRBs minimumpeculiarvelocityatbirth.Hesuggeststhatthereareal- fordifferentassumptionsonthecompactobjectformation.InSec- wayspossibletrajectoriesdifferentfromapurelyperpendicularone tion 4 we look at the Galactic distributions of these synthetic bi- whichrequirealowerV atbirththantheoneestimatedthrough pec narieswhileinvestigatinghowtheydiffer,andinferringwhichNK equation1toreachthesameoffsetfromtheGalacticplane. distributionfitsbesttheobservedGalacticpositionofNS-andBH- Wecheckthevalidityofourestimateforthepeculiarveloc- XRBs. In Section 5 we discuss our findings and in Section 6 we ityatbirth,V ,forhigh-zsources,performingaMonteCarlo pec,min drawourconclusions. simulationusingthePythonpackageforgalacticdynamicsgalpy‡ (Bovy2015).Wesimulate1.1×107 points,whoseinitialcondi- tionsaresetasfollows:1)theinitialpositionisat(R,z)=(R ,0), i where R is uniformly distributed between 0 and 18 kpc; 2) the i 2 Intermezzo initialpeculiarvelocityVpec isuniformbetween0and500km/s; 3) the orientation of this velocity is uniformly distributed over a 2.1 Ontheestimateofthepeculiarvelocityatbirth XRBsarethoughttooriginatefrombinaryprogenitorsborninthe † Throughoutthiswork,weuseareferenceframecenteredattheGalactic Galactic plane, the birth-place of most massive stars (Brandt & centreandcylindricalcoordinateswithR:thedistancefromtheGalactic Podsiadlowski1995).Whenthecompactobjectforms,thebinary centre,andz:theheightabovetheGalacticplane. typicallyacquiresapeculiarvelocity.ThemassejectionintheSN ‡ Availableathttps://github.com/jobovy/galpy ©0000RAS,MNRAS000,1–?? TheGalacticdistributionofX-raybinaries 3 Figure2.DensityplotsshowingthefractionofsystemsineverybinofinitialpeculiarvelocityVpecanddistancefromtheGalacticcentreR(projectedonto theGalacticplane)ofpointswhichreachaheightabovetheGalacticplanegreaterthan1kpc.TheredlineshowsouranalyticalestimateVpec,min.Weuse threedifferentpotentials;fromlefttoright:Paczynski(1990),Irrgangetal.(2013),Bovy(2015). sphere.Wenotethatsinceweareonlyinterestedintheminimum tentials.V isanexcellentestimatorforR >1kpc,sinceat pec,min valueofV ,theshapeoftheassumedvelocitydistributionisnot theseradiiγisequalorgreaterthan1.Itislessrobustintheinner pec important. We add the circular motion in the Galactic disc to the partofthebulgeforthePaczynski(1990)andIrrgangetal.(2013) 3D peculiar velocity V(cid:126)pec. We integrate the orbits in the Galaxy potentials,butnotintheMWPotential2014potential,thatisfitto for5Gyr,usinga4th-orderRunge-Kuttaintegrator,andwecheck themostrecentdynamicalconstraintsontheMilkyWayandhas forconservationofenergyoverthetrajectorymakingsurethatthe amorerealisticbulgemodel(JoBovy,privatecommunication).In relativeerrorontheenergyislessthan10−5 atthefinalstep.We thebulgeregion,ourestimateissteeperthantherealminimalpe- recordthepositions(R,z)500timesovertheorbitsamplingfrom culiarvelocityforthefirsttwopotentials,i.e.,itvariesstronglyfor constant time steps, along with the initial peculiar velocity V . smallvariationinR.ThiscanbeseeninFigure6,whereforevery pec From the simulated points, we select only those ones located at position(R,z)weshowasadensitymaptherealminimalpecu- z2 > 1atthesampledtimes,torepresenthigh-zsources.Weper- liarvelocityatbirthnecessarytoreachthatposition.Weintegrated formthesimulationforthreedifferentchoicesoftheGalacticpo- 104orbitsfor5GyrandusingaspotentialtheoneinIrrgangetal. tential:model2ofIrrgangetal.(2013)§,Paczynski(1990),and (2013). The contour lines show our analytical estimate V ; pec,min theMWPotential2014potentialfromBovy(2015),whichareall thediscrepancybetweenthetwovelocitiesisevidentintheinner multi-componentpotentialsconsistingofdisc,bulge,andhalo.The regionoftheGalaxy. Paczynski(1990)potentialismadeupoftwoMiyamoto-Nagaipo- Figures3,4,5alsoshowanincreaseoftheaveragevalueofγ tentialsfordiscandbulge,andonepseudo-isothermalpotentialfor withlargerdistancesR.Thisisanartefactcausedbyourchoiceof thehalo.TheBovy(2015)potentialismadeupofapower-lawden- theV initialdistribution(uniformbetween0−500km/s),asthe pec sityprofilewithanexponentialcut-offforthebulge,aMiyamoto- numeratorintheratioγcantakeallthevaluesbetween≈V pec,min NagaiPotentialforthedisc,andaNavarro-Frenk-Whiteprofilefor and500km/s. the halo. The Irrgang et al. (2013) potential is composed of two Fromourextensiveanalysis,wefindthattheestimateV pec,min Miyamoto-Nagai potentials and a Wilkinson-Evans potential for accuratelyrepresentstherealminimalvalueforthepeculiarveloc- thehalo.Weshowtherotationcurveofeachofthethreepotentials ityatdistancesfromtheGalacticcentre(cid:38)1kpc,andcanbesafely inFigure1.Irrgangetal.(2013)isthepotentialusedbyMandel appliedtoestimatethepeculiarvelocityatbirthofXRBsbornin (2016); Paczynski (1990) is the one we adopted in Repetto et al. theGalacticplane. (2012);theMWPotential2014isarealisticmodelfortheMilky WaypotentialfavouredbyBovy(2015).Wepresenttheresultsof thissimulationinFigure2.Theredlineisourestimateforthepe- 2.2 EffectofadifferentchoiceoftheGalacticpotentialwith culiarvelocitytakingz = 1kpcinequation1anditfollowsthe anapplicationtotheobservedBH-XRBs loweredgeofthesimulatedpoints. Figure2showsthatouranalyticalestimate(eq.1)successfully TheestimateVpec,minisafunctionofthepotentialused,inparticu- describesthevalueandtrendoftheminimalpeculiarvelocityasa larinthebulge,ascanbeseeninFigure7,whereweshowVpec,min functionoftheGalactocentricdistance. forthePaczynski(1990),Irrgangetal.(2013)andBovy(2015)po- In order to better quantify the goodness of our estimator tentials,andassumingz = 1kpcineq.1.Additionally,fromFig- V , we compute the ratio γ = V /V using 1 kpc- ures3,4,5,wenotethatthefractionofsystemswithγ <1inthe pec,min pec pec,min wide bins in R, for those points which reach a height above the regionR = [0,1]kpcalsostronglydependsonthepotential.The Galacticplanealongtheirorbitintherange|z|=(1,1.1)kpc.The minimum values γmin are: 1.01, 0.72, 0.61 for Bovy (2015), Ir- velocityV istheactualinitialpeculiarvelocitywhichweshowed rgangetal.(2013),Paczynski(1990)potentialrespectively,where pec inFigure2.WeplotγinFigures3,4,5,forthethreedifferentpo- these lower limits are defined such that 95% of the points in the samebinhaveavaluelargerthanthelowerlimit. Figure 2 also shows that the Galactic bulge (R (cid:46) 1 kpc) is § WhenreferringtotheIrrgangetal.(2013)Galacticpotential,wewill muchlesspopulated(anorderofmagnitudefewersystemsthanin hereafterrefertotheirmodel2. regionsatlargerdistancefromtheGalacticcenter).Therearetwo ©0000RAS,MNRAS000,1–?? 4 S.Repettoetal. Figure3.RatioVpec/Vpec,minforpointssuchthattheobservedpositionisat1<z<1.1kpc.EachpanelshowsadifferentR-bin.TheGalacticpotential isfromBovy(2015). Figure4.RatioVpec/Vpec,minforpointssuchthattheobservedpositionisat1<z<1.1kpc.EachpanelshowsadifferentR-bin.TheGalacticpotential isfromIrrgangetal.(2013). Figure5.RatioVpec/Vpec,minforpointssuchthattheobservedpositionisat1<z<1.1kpc.EachpanelshowsadifferentR-bin.TheGalacticpotential isfromPaczynski(1990). reasonsforthis:i)thebulgevolumeissmall;ii)itisunlikelyfor Table1. Minimumpeculiarvelocity atbirthforshort-period BH-XRBs. abinarybornintheGalacticdisctoovercomethestrongpotential ThevelocitiesareestimatedusingthreedifferentGalacticpotentialsand well in its motion towards the Galactic bulge. The inaccuracy of aregiveninkm/s.ThenumbersinparenthesisforH1705-250correspond ouranalyticalestimateinthebulgeregionaffectsonlythesource tocorrectingtheestimatesfortheinaccuracyofouranalyticalestimatein H1705-250,whichistheonlyBH-XRBlocatedcloseenoughtothe thebulgeoftheGalaxy(seeText). Galacticcentre(seeTable2),at(R,z)≈(0.5,1.3)kpc(Remillard etal.1996).Withoutameasurementofits3Dpeculiarvelocity,it Vpec,min[km/s] isimpossibletodiscriminatebetweenabirthinthediscorabirth Source Bovy Pac. Irrgang Repettoetal. inthebulge(henceclosetoitsobservedposition).Moreingeneral, 2015 bulgesourcesarenotsuitableforestimatingthepeculiarvelocities XTEJ1118+480 62 70 68 72 atbirth,sincethecurrentviewonbulgeformationisthatitwasnot GROJ0422+32 20 25 22 25 formedinsitu.Thebulgepopulationisthoughttocomefromthe GRS1009-45 34 40 37 41 discthroughdynamicalinstabilities(Gerhard2015),withmostof 1A0620-00 8 10 8 10 itsmasscomingfrommajorandminormergereventswithsatellite GS2000+251 12 15 12 15 galaxies(DeLuciaetal.2011). NovaMus91 44 51 46 52 We compute the minimum peculiar velocity at birth for the H1705-250 259(262) 363(158) 350(186) 402 XTEJ1650-500 17 21 16 - seven short-period BH-XRBs studied by Repetto & Nelemans XTEJ1859+226 61 68 68 - (2015), using the three Galactic potentials (see Table 1). We add tothissampletwoothershort-periodBH-XRBswhichwedidnot considerinRepetto&Nelemans(2015)(XTEJ1650-500andXTE (Casares&Jonker2014).ForH1705-250,weputinparenthesis J1859+226),duetothelackofastrongconstraintontheBHmass thevelocityV multipliedbythefactorγfoundabove. pec,min ©0000RAS,MNRAS000,1–?? TheGalacticdistributionofX-raybinaries 5 Figure7.AnalyticalestimateVpec,minforthepeculiarvelocityatbirthas afunctionofthedistancefromtheGalacticcentreR(projectedontothe Galacticplane)forthethreedifferentGalacticpotentialsusedinthiswork: Bovy(2015)(dashedline),Paczynski(1990)(dottedline),Irrgangetal. Figure6.Densitymapshowingwithcolorcodingtheminimalvaluefor (2013)(solidline).Weassumedz=1kpc. thepeculiarvelocityatbirthVpecofsimulatedpointswhichreachthatpo- sition(R,z).ThecontourlinesshowouranalyticalestimateVpec,min at thatposition.Theestimatediffersstronglyfromtherealvalueinthebulge ontheGalacticdistributionofXRBscontainingaNSoraBH.We region(eachsolidlinediffersby±30km/sfromtheclosest-neighbouring assumethatthebinariesareformedintheGalacticthindisc,where one).ThepotentialusedisfromIrrgangetal.(2013). mostofthemassivestarsreside(Urquhartetal.2014).Inthisstudy, wedonotaccountforthepossibilitythatafewsystemscouldhave been formed in the halo (i.e. in star clusters that have now been WehavefoundanerrorinthehalocomponentofthePaczyn- dissolved),andneitherofthepossibilitythatafewsystemscould ski(1990)potentialthatweusedforthecomputationofV pec,min havebeenejectedfromglobularclusters(GCs)viaN-bodyinter- inRepetto&Nelemans(2015).Thismostlyaffectsthebulgesource actions.GCsseemtobeveryefficientinproducingNSlow-mass H1705-250,whereastheothersixsourcesarenotgreatlyaffected X-raybinaries(NS-LMXBs),as10%ofallNS-LMXBsarefound (comparethirdandlastcolumninTable1). inglobularclusters,whichcontainonly∼ 0.1%ofallthestarsin Accounting for the thickness of the Galactic disc instead of theGalaxy(Irwin2005).Suchaninvestigationis,however,outside assuming a birth place at z = 0 does not significantly affect the thescopeofthispaper. minimalpeculiarvelocity(seeBelczynskietal.2016). Wetakedifferentmodelsfortheformationofthecompactob- Mandel(2016)usedthesourceH1705-250toconcludethat ject.TheNKisdrawneitherfromaMaxwelliandistributionpeaked thedifferenceintheGalacticpotentialbetweentheobservedposi- at40km/s(withσ ≈ 28km/s)representingalow-NK,orfroma tionandtheprojectionofthispositionontotheGalacticplaneis Maxwelliandistributionpeakedat100km/s(withσ ≈ 71km/s) notaconservativeestimateoftheminimalinitialvelocityofthebi- representingahigh-NK.Weassumeacertainamountofmassejec- nary.TheyshowanexampleofatrajectoryforH1705-250which tion in the SN, M . BHs are thought to form either via prompt startsfromtheGalacticplaneandendsattheobservedpositionfor ej collapse of the progenitor star or via partial fallback of the SN aninitialvelocityof≈230km/s,lowerthanthevalueprovidedby ejectaontotheproto-NS(seeFryer&Kalogera2001).Inourmod- eq.1(seeTable1).Weagreewithhisconclusion,butonlyasfar els, the progenitors of BHs either do not eject any mass at col- assourcesclose(orin)thebulgeareconcerned.Onthecontrary, forsourceslocatedatR(cid:38)1kpc,ouranalyticalestimateperfectly lapse, or they eject 4 M(cid:12). Stars with a ZAMS-mass larger than ≈ 25M are thought to leave a BH behind (see e.g. Fryer & matchestherealminimalvelocity.InRepetto&Nelemans(2015) (cid:12) Kalogera2001;Tauris&vandenHeuvel2006).Foraprogenitor weusedthehighminimalvelocityatbirthforXTEJ1118+480and ofmass25−60M ,theheliumcoremass(whichcollapsesinto H1705-250toclaimthatatleasttwooutofthesevenBH-XRBs (cid:12) aBH)isbetween≈ 8−11M (Belczynskietal.2008),which weconsideredwereconsistentwithahigh(orrelativelyhigh)NK. (cid:12) motivatesour(conservative)choiceforM .Forthepreviousmod- Thisholdstruewithourcurrentrevisionoftheminimalvelocities ej els,weassumeaBHmassof8M (whichisthetypicalmassfor atbirth,andwefindanotherBH-XRBthatispotentiallyconsistent (cid:12) BHs in our Galaxy; Özel et al. 2010). We also picture a higher- witharelativelyhighNK:XTEJ1859+226. massheliumstar(M = 15M )whichdirectlycollapsesinto Thevelocitieswehavebeendealingsofarwithareminimal He (cid:12) a BH with no mass ejection. For NSs, the ejected mass is calcu- velocities,anddonotnecessarilycorrespondtoexpected(realistic) latedas:M =M −M ,whereM istheheliumcoremass velocities.Inwhatfollows,westudythelatter. ej He NS He (M = [2.8−8]M ,seeTauris&vandenHeuvel2006),and He (cid:12) M =1.4M .FortheBHcasethemodelsare: NS (cid:12) • Model1:highNK,M =8M ,M =0; 3 ABinaryPopulationSynthesisofBH-andNS-XRBs He (cid:12) ej • Model2:lowNK,M =8M ,M =0; He (cid:12) ej In this part of the work, instead of dealing with the minimal pe- • Model3:highNK,MHe =8M(cid:12),Mej =4; culiarvelocities,wedealwiththeexpectedpeculiarvelocities.We • Model4:lowNK,MHe =15M(cid:12),Mej =0. performabinarypopulationsynthesisstudyofBH-andNS-XRBs, FortheNScasethemodelsare: starting just before the BH/NS formation, varying the conditions attheformationofthecompactobject.Thegoalistoinvestigate • Model5:highNK,M uniformbetween[1.4,6.6]M ; ej (cid:12) theimpactthatdifferentBHandNSformationassumptionshave • Model6:lowNK,M uniformbetween[1.4,6.6]M . ej (cid:12) ©0000RAS,MNRAS000,1–?? 6 S.Repettoetal. For all the models, we simulate 3×107 binaries composed Table2.GalacticpositionofthethreeclassesofBH-XRBs;Risthedis- oftheheliumstar(whichcore-collapses)andacompanionstarof tancefromtheGalacticcentre,|z|istheabsolutevalueoftheheightabove 1 M(cid:12). The pre-SN orbital separation is uniformly drawn in the theplane.Inparenthesisweputtheuncertaintyonthemeasurements.See rangeamin −50R(cid:12) withzeroinitialeccentricity,whereamin is Corral-Santanaetal.(2016)forthereferencesforthedistancemeasure- theminimalorbitalseparationsuchthateitheroneofthetwocom- ments. ponentsfillsitsRochelobe.Wecalculatetheeffectofthecompact objectformationontheorbitalpropertiesandonthekinematicsof Name R |z| (kpc) (kpc) the binary (for more details on the method, see Repetto & Nele- mans2015).Inparticular,theeffectofthemassejectiontogether short-periodconfirmed withtheNKimpartapeculiarvelocitytothebinary: XTEJ1118+480 8.74(0.1) 1.52(0.2) (cid:115) GROJ0422+32 10.38(0.65) 0.51(1.15) (cid:18)M (cid:19)2 M GRS1009-45 8.49(0.25) 0.62(0.1) V = BH V2 +V2 −2 BHV V , (2) pec M(cid:48) NK MLK M(cid:48) NK,x MLK 1A0620-00 8.93(0.08) 0.12(0.01) GS2000+251 7.21(0.3) 0.14(0.08) whereM(cid:48) isthetotalmassofthebinaryaftertheSN,V isthe NovaMus91 7.63(0.2) 0.72(0.1) NK magnitudeoftheNK,V itscomponentalongtheorbitalspeed H1705-250 0.53(2.9) 1.35(0.85) NK,x oftheBHprogenitor,andV isthemass-losskick: XTEJ1650-500 5.71(1.35) 0.15(0.075) MLK XTEJ1859+226 10.03(3.05) 1.87(0.65) (cid:114) M M GM VMLK = Me(cid:48)j M(cid:63) a , (3) long-periodconfirmed XTEJ1550-564 4.96(0.15) 0.14(0.05) therecoilthebinarygetsbecauseoftheinstantaneousmassejec- GRS1915+105 6.62(0.99) 0.03(0.008) tionM (M istheinitialmassofthebinary;M isthemassofthe GS2023+338(V404Cyg) 7.65(0.001) 0.09(0.005) ej (cid:63) companion;aistheinitialorbitalseparation).Wefollowtheevo- short-periodcandidates lution of the binaries under the coupling between tides and mag- MAXIJ1836-194 2.08(1.15) 0.65(0.25) neticbrakingusingthemethoddevelopedinRepetto&Nelemans MAXIJ1659-152 0.82(1.55) 2.45(1.05) (2014),andselectthosesystemsthatstartmasstransfer(MT),i.e. XTEJ1752-223 2.15(1.55) 0.22(0.1) becomeX-raysources,whilethedonorisonthemainsequence. SWIFTJ1753.5-0127 3.64(0.65) 1.27(0.45) Wechoosetheradialdistributionofthebinariestofollowthe 4U1755-338 1.56(1.8) 0.55(0.25) surfacedensityofstarsinthethindisc:Σ(R)∼Σ exp(−R/R ), GRS1716-249 5.62(0.4) 0.29(0.05) 0 d withR ∼ 2.6kpc(McMillan2011;Bovyetal.2012),andwith d amaximumdistancefromtheGalacticCentreofR =10kpc. max Concerningtheheightabovetheplane,wemodelitasanexponen- (iii) short- and long-period, dynamically confirmed BH-XRBs tial with scale height h equal to the scale height of the thin disc (12systems), (h=0.167kpc;Binney&Tremaine2008).Thisisaconservative which we list in Table 2, along with their Galactic position choiceforthescaleheight,beingthescaleheightofmassivestarsin (R,z)derivedfromtheirsky-positionanddistance.Dynamically- thedisctypicallysmaller(h∼30pc;seeTable4inUrquhartetal. confirmed BHs are those for which a dynamical measurement of 2014).WeassumethatthestarsfollowtheGalacticrotation,with theBHmassisavailable(seee.g.Casares&Jonker2014). noadditionalcomponent.Variousmechanismscanheatupthestars The observed BH-XRBs are both long (P > 1 day) and in the disc, increasing their dispersion velocity, such as encoun- shortorbitalperiod(P (cid:46) 1day),therebyoriogribnatingfromdif- terswithspiraldensitywaves,giantmolecularclouds,andvarious orb ferentevolutionarypaths.Hence,inordertocomparetheobserved other forms of stochastic heating (Mihalas & Binney 1981; Sell- systemswiththesimulatedbinaries,weneedtoproducetwosep- wood&Preto2002;Rocha-Pintoetal.2004;Aumeretal.2016). arate synthetic population of binaries, one population with short- Rocha-Pintoetal.2004,usingalargesampleoflate-typedwarfs periodandonepopulationwithlong-period,towhichwecompare intheMilkyWaydisc,measuredadispersioninthethreevelocity- theobservedbinariesaccordingtotheirtype.Fortheshort-period componentsofσ ≈ 50km/s,σ ≈ 30km/s,σ ≈ 20km/sat u v w binaries,wefollowthebinaryevolutionofsimulatedbinariesus- t ≈ 5×109 Gyr(seealsoHolmbergetal.2009).Weneglectthis ingthemethodweexplainedinSection3.Forthelongperiodones, influence,asweexpectthatforlow-massstarshostedin(massive) whicharedrivenbythenuclearevolutionofthedonor,wemodel binariesthesevelocitywouldbesignificantlylower. themassumingthepostsupernovaorbitalseparationtobesuchthat We integrate the orbit of the binaries for 5 Gyr using the a =a (1−e2)(cid:54)20R ,wherea isthecircularised MWPotential2014 potential from Bovy (2015), which is a real- circ postSN (cid:12) circ orbitalseparationandeistheeccentricityinthepost-SNconfigura- istic model for the Milky Way potential. We record the position tion.Thisassumptionisbasedonthefactthatlong-periodbinaries alongtheorbitevery5Myrafter1Gyr. evolve to longer and longer period during the MT phase, hence: a ≈ a < a ,wherea istheorbitalseparation circ MT,0 MT,obs MT,0 attheonsetofMT,anda istheobservedorbitalseparation. 3.1 Observationalsamples MT,obs Theassumptionsonthecompactobjectformationarethesameas 3.1.1 BlackHoleX-rayBinaries for the short-period binaries, as well as the masses of the binary components.Sinceoursimulatedbinarieshaveacompanionmass UsingthecatalogueofCorral-Santanaetal.(2016),weclassifythe of1M ,weexcludefromtheobservedsamplethosebinarieswith systemsintothreemaingroups: (cid:12) acompanionmass:(cid:29) 1M (GROJ1655-40,4U1543-475,and (cid:12) (i) short-period,dynamicallyconfirmedBH-XRBs(9systems); SAXJ1819.3-2525). (ii) short-period, dynamically confirmed BH-XRBs + short- We account for a possible observational bias on the periodBHcandidates(15systems); dynamically-confirmed BH-XRBs. In order to get a dynamical ©0000RAS,MNRAS000,1–?? TheGalacticdistributionofX-raybinaries 7 4 ResultsoftheBinaryPopulationSynthesis 4.1 TheexpectedverticaldistributionofBH-andNS-XRBs 1.5 ThescaleheightofBH-andNS-XRBsisaproxyoftheeffectof pc 1.0 D differentcompactobjectformationmechanismsontotheGalactic k distributionofthebinaries.Wequantitythescaleheightofthebi- @ z »» nariesasthermsoftheirheightzasafunctionofRforallpoints. 0.5 Toplottheresults,webinthesystemsinto1kpc-widebinsinthe R-direction. We show the results in Figure 9 for the six models. Themonotonicriseofz isexpected,sincetheGalacticpoten- rms 0.0 tialbecomesweakerfurtherawayfromtheGalacticcentre,andthe B9II IK1IIIK2IIKI3IIIK4IIIK5IIIF6IVK2IVK3IVK4IVA2VK2VK3VK4VK5VK6VK7VM0VM1VM4VM5V binarymovesfurtherupforthesameinitialvelocity.Itisinteresting tonotethatifBHsandNSsreceivethesameNK,theywouldstill spectraltype&luminosityclass show a different scale height, with NSs reaching larger distances Figure 8. The height above the Galactic plane |z| and the spectral type fromtheGalacticplane(compareblacksolidlinewithgreysolid and luminosity class of the 15 dynamically-confirmed BH-XRBs. When line,andblackdashedlinewithgreydashedline).Thisisduetothe thespectraltypeofthedonorstarinthesystemisnotunivocallyidentified, factthatforthesamelinearmomentum,abinarywithalargermass weindicatetherangeofpossibletypes. receivesalowerV (asisshowninFigure10).Iftheprogenitor pec of the BH ejects mass at core-collapse as in Model 3 (see black dashed-dottedlineinFigure9),itwillmovefurtheroutfromthe planethanwhennomassisejected,sincethemassejectionadds anextracontributiontoV .Furthermore,V doesnotdepend measurement of the BH mass, hence fully confirming the nature pec pec onthemassoftheBHwhennomassisejectedatBHformation ofthesource,highsignal-to-noiseopticalspectraarerequired;this (blackdashedandblackdottedlinesinFigure9),sinceitscalesas mightbepreventedinregionsofhighextinctions,i.e.inandclose (cid:114) to the Galactic plane. We then remove from our simulated popu- V = (cid:16) MBH (cid:17)2V2 ∼ V , for low-mass companion lationsthosebinarieswhicharelocatedatz (cid:54) 0.1kpc.Wenote pec MBH+M2 NK NK stars(seeequation2). that the lowest z in the sample of short-period dynamically con- InFigure10wealsoshowasarrowsthelowerlimitsonthepe- firmed BH binaries is for 1A 0620-00 (z ≈ −0.12 kpc; see Ta- culiarvelocityatbirthofthe9BH-XRBswestudiedinSection2.2. ble2).Forthelong-periodbinaries,weexcludefromthestudythe Itisclearthatahigh-NKdistribution(darker-greysolidline)more sourcesGRS1915+105(donorspectraltype:K1/5III)andV404 easilyaccountsforthehigher-velocitysystems,as4systemsliein Cyg(donorspectraltype:K0IV),whicharelocatedatz ≈−0.03 orbeyondthehigh-velocitytailofthedistributioncorrespondingto kpc and z ≈ −0.09 kpc respectively (see Table 2). These two thelow-NKmodel. systems do have a dynamical measurement of the BH mass (see Jonker&Nelemans(2004)foundasimilarz betweenNS- Casares&Jonker2014).InFigure8weplottheabsolutevalueof rms andBH-XRBsanddeducedthatBHsshouldreceiveNKstoo,un- the height z versus the spectral type and luminosity class of the less differences in the binary evolution and observational biases 15¶dynamically-confirmedBH-XRBs(thespectraltypesarefrom werestrong.Weconfirmthataccountingforbinaryevolutiondoes Corral-Santanaetal.2016).Atsmallz,starshaveanearlierspec- not strongly change the Galactic distributions of BH- and NS- traltypeand/oraregiantsorsub-giants.WhereasMS/dwarfstars XRBs.However,thescaleheightdoesstronglydependonthepo- tendtobeseenatlargerdistancesabovetheplane. sitioninthedisc. The only long-period binary in our sample, after removing Wecomputethez oftheobservedBH-XRBs,bothofthe thosesourcesclosetotheGalacticplane,isXTEJ1550-564,which rms wholesampleandofthedynamically-confirmedsystemsonly.We hasacurrentorbitalseparationof12R ,consistentwithouras- (cid:12) findarmsof≈0.98±0.10kpcand≈0.86±0.10kpcrespectively. sumptionona . circ Fortheshort-periodNSsystems,wecalculateaz of1.24±0.06 rms kpc,whenexcludingthesourceXTEJ2123-058sinceitsvelocityis consistentwithbeingahalosource,asJonker&Nelemans(2004) noted.Theerroronthesez -valuesaccountsfortheuncertainty rms 3.1.2 NeutronStarX-rayBinaries onthedistancetothesources.InFigure11weshowtheGalactic distribution of NS and BH systems (the lines account for the un- TheGalacticpopulationofNS-XRBsconsistsofmorethan30ob- certaintyinthedistancetothesource).TheresultthatNSsystems jects(seeJonker&Nelemans2004andreferencestherein).Forour shouldhavealargerscaleheightthanBHsystemsisconsistentwith study,weselectthe10oneswithashort-orbitalperiod(Porb < 1 whattheobservedpopulationsshow. day;seeTable2inJonker&Nelemans2004).Theidentificationof aNS-XRBtypicallyoccursviathedetectionofX-rayburstswhich igniteonthesurfaceoftheNS.Therefore,unlikeforBHs,thereare 4.2 Theinfluenceoftheorbitalseparationdistributionofthe potentiallynobiasesagainsttheidentificationofsuchsystems. binaryprogenitors InthemodelsweusedinSection3,theorbitofthebinaryprogen- itorsofBH-andNS-XRBswaschosentobeuniformlydistributed intherange[a ,50]R .Itcouldbethatthischoicebiasesourre- min (cid:12) sultstowardscertainvaluesforV .Totestthis,wecheckhowthe pec ¶ 12systemsfromTable2towhichweaddthethreeBH-XRBswithan distributionoftheinitialorbitalseparationofthebinaries(i.e.prior intermediate-masscompanion. totheformationofthecompactobject)varieswiththemagnitude ©0000RAS,MNRAS000,1–?? 8 S.Repettoetal. 3 2 1 c D kp 0 @ z -1 -2 -3 0 2 4 6 8 10 12 R kpc Figure 11. Galactic distribution of BH-XRBs (red lines) and NS-XRBs Figure9.Root-mean-squareoftheheightz abovetheGalacticplaneof (blacklines).Risthedistancefromthe@GaDlacticcenterprojectedontothe simulatedBH-andNS-XRBsforthedifferentmodelsused. plane,andzistheheightabovetheplane.OneNS-XRBfallsoffthefigure: XTEJ2123-058.Foreachsource,thelineaccountsfortheuncertaintyon thedistance.Wealsoshowtheresultsfromthepopulationstudyintermsof zrmsasafunctionofR:Model1(greylines),Model2(grey-dashedlines), 0.020 Model3(grey-dottedlines). 0.015 F D P 0.010 0.005 0.000 0 50 100 150 200 250 300 Vpec kms Figure10.DistributionofthepeculiarvelocityVpec(aftertheformationof @ êD thecompactobject)ofBH-XRBsinModel1(blacksolidline)andModel 2(blackdashedline),andofNS-XRBsinModel5(greysolidline)and Model6(greydashedline).Thedottedanddotted-dasheddark-greylines arevariationsofModel1(seeSection5fordetails).Thearrowsrepresent thelowerlimitsonthepeculiarvelocityatbirthforthe9short-periodBH- XRBsusingthepotentialfromBovy(2015). oftheNKandofV .FromFigure12,itisclearthatthemajority pec oftheinitialorbitalseparationsareconstrainedtoliewithinasmall range(a (cid:46) 10R )bothforNSandBHsystems,andboth 0 0.2 0.4 0.6 0.8 1.0 preSN (cid:12) forhighandlowNKs.Furthermore,thereisnocleartrendofVpec Figure12.Densityplotswhichresultfromourpopulationsynthesismod- withrespecttoa .Wehenceconcludethatitisunlikelythat elsshowingtheallowedparameterspaceforthepeculiarvelocityatbirth preSN thepeculiarvelocitiesVpec wouldbeverymuchinfluencedifthe VpecandtheorbitalseparationapreSNofBH-andNS-XRBspriortothe pre-SNorbitshadadistributiondifferentfromtheuniformonewe formationofthecompactobject.Eachpanelcorrespondstodifferentas- sumptionsontheNK.Thefractionofsystemsineach2-dimensionalbinis useinourstudy,oriftheyweredrawnfromasmallerrange. shown;darkercolourscorrespondtoalargerfractionofsystems. 4.3 Comparisonwithobservations:BH-XRBs showedinSection2.2.ForeveryR-bin,wecomputethecumula- We now turn to the comparison of the different models with the tivedistributionfunction(CDF)oftheheightzabovetheGalactic observedBH-XRBs.Inordertocomparethesimulationswiththe planebasedonthepopulationsynthesisresultswithinModel1and observedsystems,wenotethateverysubgroupofBHbinariesof Model2(seeasanexampleblackandgreylinesinFigure13,for Table2givesrisetoacertain2DdistributioninRandz.Oneway the bin: R = [8,9] kpc). Then we calculate where in the cumu- ofproceedingwouldbetocomparethe2Dsimulateddistribution lativedistributiontheobservedsystemslie(seeasanexamplethe with the 2D observed one. We compare the data with the simu- intersectionbetweentheblueverticallinesandtheCDFsinFigure latedpopulationsdividingtheGalaxyinto1kpc-widebinsalong 13).Insuchaway,weobtainalistofpercentiles.Ifthemodelis theR-direction.ThisallowstoaccountforthefactthattheGalac- correct,weexpectthesepercentilestobedrawnfromtheuniform ticpotentialisastrongfunctionofthepositioninthedisk,aswe distribution.Wenotethatwehaveremovedfromourcomparison ©0000RAS,MNRAS000,1–?? TheGalacticdistributionofX-raybinaries 9 thosesourceslocatedinthebulgeoftheGalaxy(i.e.H1705-250 and MAXI J1659-152), which could have had a different origin ratherthanhavingformedintheplane(seeSection2.2).Weplot thecumulativedistributionofthesepercentilesinFigures14(short- periodconfirmedBH-XRBs),15(short-periodconfirmed+candi- dates),and16(wholesample).Inthefigures,thesolidlinescorre- spondtoModel1andthedashedlinescorrespondtoModel2.We alsoconsideramodelwhichconsistsofasuperpositionofModel1 andModel2inequalparts(seethinsolidinFigure14,inthecaseof theshort-periodconfirmedBH-XRBs).Themodelwhichfitsbest istheonewhichcomesclosertothediagonalline(thatrepresents thecumulativeofauniformdistribution).Inallthreecases,ahigh NKdistributionisthemostpreferableone. WeperformaKolmogorov-Smirnov(KS)testtomeasurehow closeisthedistributionofpercentilestothediagonallineofFigures 14, 15, 16. We summarise the D-values and their corresponding probabilitiesinTable3foreverysubgroupsofBH-XRBs.Foreach Figure13.Thecumulativedistributionfor|z|forModel1(blacklines) ofthesub-groupsthehigh-NKmodelfitsthedatabest,althoughin andModel2(greylines),inthebinR=[8,9]kpc.Solidlinescorrespond tothewholesampleofsimulatedbinaries;dashedlinescorrespondtothe thegroupwithconfirmedBHsonly,thelow-NKisalsoconsistent remaining part of the sample after the exclusion of systems close to the withthedata.Fortheconfirmed+candidateshort-periodsystemsas Galacticplane,i.e.z (cid:54) 0.1kpc.Theblueverticallinesrepresenttheob- well as for the whole sample, the low-NK model is inconsistent. served|z|of3BH-XRBs(fromlefttoright:1A0620-00;GRS1009-45; Interestingly, the model in which the BHs receive both low and XTEJ1118+480). highNKs,fitsthedatabestfortheconfirmedsystems. Intheseresults,wehaveexcludedallthesystemsintheplane (both observed and simulated). An accurate modelling of the ob- scuredsystemswouldrequireamodelfortheGalacticextinction inandoutoftheplanecombinedwithamodelfortheoptical/NIR magnitudes of BH-XRBs in their quiescent state. As a first step, wesimplisticallymodeltheobservationaleffectsneartheGalactic planeincludingacertainfractionofthosesimulatedpointswhich endupintheGalacticdisc(atz (cid:54) 1kpc):eitherf = 0.1,or disc 0.5, or 0.9. We compare the Galactic distribution of these simu- latedbinarieswiththedistributionofthewholesampleofbinaries, includingthistimetheobscuredsourcesGRS1915+105andV404 Cyg as well. The results are presented in Figure 17 and Table 3. Alsowhenincludingtheobscuredsystems,thehigh-kickmodelis themostsuccessfulinreproducingtheobservedbinaries. Figure14.Cumulativedistributionofthepercentilesassociatedwithshort- perioddynamically-confirmedBH-XRBsinModel1(solidline)andModel 2(dashedline).ThethinsolidlineisablendofModel1and2(50−50%). 4.3.1 Effectofthedistanceuncertainty Themodelwhichfitsbesttheobserveddataistheoneclosertothediagonal ThedistancedtoaBH-XRBistypicallyestimatedbymeasuring line. theapparentmagnitudeofthecompanionstarinacertaincolour band,andcomputingitsabsolutemagnitude.Onceanestimateof thereddeningtowardsthesourceisknownandthespectraltypeof thedonorstarisclearlyidentified,thedistancecanbecalculated.In thebestcasescenario,onewouldhavetheapparentmagnitudeof thesourceindifferentbands,andthenwouldcomputethescatter between the derived distances as estimate of the distance uncer- tainty.WeexpectsuchuncertaintiestofollowaGaussiandistribu- tion. However, in case a range of spectral types is equally prob- able, we expect the errors on the distance to be distributed more uniformly.Toinvestigatetheinfluenceoftheuncertaintyinthedis- tance,andsinceformostoftheliteraturethereisnoeasywayof determining the type of error distribution, we randomly generate 100valuesforthedistancetoeachBH-XRB,eitherdistributedas aGaussian(withσequaltothedistanceuncertaintyδ)orasauni- formdistributionintherange(d−δ,d+δ).Sucherrorscancause Figure15.Cumulativedistributionofthepercentilesassociatedwithshort- abinarytomovefromoneR-bintotheadjacentone,affectingthe perioddynamically-confirmedandcandidateBH-XRBsinModel1(solid percentilevalues.However,wefindthatthereisnosystematicshift line)andModel2(dashedline).Themodelwhichfitsbesttheobserved dataistheoneclosertothediagonalline. thatwouldmakelowNKsfitbesttheobserveddata,δbeingsmaller thanthediscrepancybetweenthetwodistributions. ©0000RAS,MNRAS000,1–?? 10 S.Repettoetal. Table3.D-valuesoftheKS-testfordifferentsystemsandinthedifferentmodels:Model1(i.e.highNK),Model2(i.e.lowNK),andamodelmadeofa superpositionofthehigh-andlow-NKinequalparts. Subgroup HighNK LowNK 50-50 N Fig. D(P) D(P) D(P) BH-XRBs,shortP.,confirmed 0.26(0.57) 0.34(0.24) 0.19(0.92) 8 14 BH-XRBs,shortP.,confirmed+candidates 0.20(0.61) 0.39(0.03) 0.28(0.22) 13 15 BH-XRBs,wholesample 0.17(0.77) 0.36(0.04) 0.26(0.24) 14 16 BH-XRBs,wholesample,fdisc=0.1 0.20(0.46) 0.29(0.12) 0.19(0.54) 16 17 BH-XRBs,wholesample,fdisc=0.5 0.13(0.96) 0.33(0.04) 0.20(0.47) 16 17 BH-XRBs,wholesample,fdisc=0.9 0.14(0.91) 0.37(0.01) 0.22(0.37) 16 17 NS-XRBs 0.39(0.06) 0.63(0.00) - 10 18 Figure16.Cumulativedistributionofthepercentilesassociatedwiththe Figure18.Cumulativedistributionofthepercentilesassociatedwithshort- wholesampleofBH-XRBsinModel1(solidline)andModel2(dashed periodNS-XRBsinModel5(solidline)andModel6(dashedline).Dotted line).Themodelwhichfitsbesttheobserveddataistheoneclosertothe lineiswhentheNKisdrawnfromtheHobbsdistribution.Themodelwhich diagonalline. fitsbesttheobserveddataistheoneclosertothediagonalline. theNS-XRBpopulation,norfromapopulationmodelofradiopul- sars(cf.Hartmanetal.1997).Nevertheless,wecannotethatthe observedpopulationofNS-XRBsseemstobeconsistentwithNKs largerthan≈100km/s.Thisisinlinewiththecatalogueofpulsar propermotionsbyHobbsetal.2005,whoinferredameanpulsar birth velocity of ≈ 400 km/s. However, the derivation of pulsar velocitiesfromthemeasuredpropermotionshastobetakenwith caution,becauseofthepossibleuncertaintiesinthepropermotion measurements as well as in the distance measurements. More in general, underestimating proper motion measurement errors can leadtoanoverestimateofpulsarvelocities,asnotedbyHartman (1997).Thedistancetoapulsaristypicallyestimatedthroughpar- allax. Igoshev et al. (2016) showed that a more proper Bayesian Figure17.Cumulativedistributionofthepercentilesassociatedwiththe wholesampleofBH-XRBsinModel1(solidlines)andModel2(dashed approachtocalculatethedistanceprobabilityfunctionfromasin- lines)whenassumingadifferentfractionofsystemsintheGalacticplane: gleparallaxmeasurementhastobeused.Suchmethodhasnotbeen fdisc=0.1(blacklines),0.5(darkergreylines),or0.9(lightergreylines). appliedyettothewholepopulationofpulsars. Themodelwhichfitsbesttheobserveddataistheoneclosertothediagonal WeshowtheresultsoftheKS-testforNSsystemsinTable3: line. bothmodelshavelargeD-values. For an illustrative purpose, we also compare the observed population of NS-XRBs to a simulated one in which the NK is 4.4 Comparisonwithobservations:NS-XRBs drawnfromaMaxwelliandistributionwithσ =265km/s(Hobbs We compare the observed z distribution of NS systems with the et al. 2005). The results of the KS test favours this distribution: distribution of the two simulated population of NS-XRBs in the (D,p) =(0.21,0.72);seedottedlineinFigure18. Hobbs context of Model 5 and Model 6. We perform the comparison in Wenotethatwedidnotincludethelong-periodNS-XRBsto thesamewaywedidforBH-systemsinSection4.3.FromFigure ourstudyasinthesampleofNS-XRBsfromJonker&Nelemans 18weseethatnoneofthedistributions(solidanddashedlines)fits 2004thatweareusing,thereisonlyonelong-periodsystemwitha thedata.OurgoalisnottocalibratetheNSNKdistributionfrom low-masscompanion,CygnusX-2. ©0000RAS,MNRAS000,1–??