ebook img

The Galactic distribution of X-ray binaries and its implications for compact object formation and natal kicks PDF

3.5 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Galactic distribution of X-ray binaries and its implications for compact object formation and natal kicks

Mon.Not.R.Astron.Soc.000,1–??(0000) Printed6January2017 (MNLaTEXstylefilev2.2) The Galactic distribution of X-ray binaries and its implications for compact object formation and natal kicks Serena Repetto1,2(cid:63), Andrei P. Igoshev1, Gijs Nelemans1,3 7 1DepartmentofAstrophysics/IMAPP,RadboudUniversity,P.O.Box9010,6500GLNijmegen,TheNetherlands 1 2PhysicsDepartment,Technion-IsraelInstituteofTechnology,Haifa,Israel32000 0 3InstituteforAstronomy,KULeuven,Celestijnenlaan200D,3001Leuven,Belgium 2 n 6January2017 a J 5 ABSTRACT ] The aim of this work is to study the imprints that different models for black hole (BH) and E neutronstar(NS)formationhaveontheGalacticdistributionofX-raybinaries(XRBs)which H contain these objects. We find that the root mean square of the height above the Galactic plane of BH- and NS-XRBs is a powerful proxy to discriminate among different formation . h scenarios, and that binary evolution following the BH/NS formation does not significantly p affecttheGalacticdistributionsofthebinaries.Wefindthatapopulationmodelinwhichat - o least some BHs receive a (relatively) high natal kick fits the observed BH-XRBs best. For r the NS case, we find that a high NK distribution, consistent with the one derived from the t s measurement of pulsar proper motion, is the most preferable. We also analyse the simple a method we previously used to estimate the minimal peculiar velocity of an individual BH- [ XRB at birth. We find that this method may be less reliable in the bulge of the Galaxy for 1 certain models of the Galactic potential, but that our estimate is excellent for most of the v BH-XRBs. 7 Keywords: X-rays:binaries–supernovae:general–Galaxy:dynamics–binaries:general– 4 blackholephysics–stars:neutron 3 1 0 . 1 0 1 Introduction formedeitherinastandardcore-collapsesupernova(SN),orina 7 lessenergetic typeofSN expectedforstar withsmallcores. The Theformationmechanismofcompactobjects,neutronstars(NSs) 1 lattercantakeplaceeitherasanelectron-captureSNorasaniron andblackholes(BHs),isanunsolvedprobleminhigh-energyas- : core-collapseSNwithasmalliron-coremass(Podsiadlowskietal. v trophysics.Amodelfortheformationofsuchobjectsrequiresto i 2004; Takahashi et al. 2013; Tauris et al. 2015; Janka 2016). For X performphysically-motivatedsimulationsofthecore-collapsesu- thecaseofBHs,observationsareratherscarceandpatchy,thusit pernova, which is computationally challenging (see e.g. Fryer & r isnotyetpossibletodiscriminatebetweendifferentmodelsofBH a Warren 2002; Burrows et al. 2012; Janka 2012). Another possi- formation(Mirabel&Rodrigues2003;Jonker&Nelemans2004; ble way to investigate the formation of NSs and BHs is to study Willemsetal.2005;Dhawanetal.2007;Fragosetal.2009;Miller- thebirthandevolutionofX-raybinaries(XRBs)hostingaBHor Jonesetal.2009;Wongetal.2012;Wongetal.2014;Repetto& aNSaccretingfromastellarcompanion.Theorbitalparameters, Nelemans2015;Mandel2016).Inthispaper,oneofourgoalsis peculiarvelocitiesandGalacticpositionofthesebinariesdirectly toinvestigatewhethertheobservedGalacticdistributionofXRBs followfromtheirevolutionaryhistory,andareaffectedinparticular hostingaBH(BH-XRBs)canrevealsomethingabouthowBHsare bytheconditionsatthemomentofcompactobjectformation(see formed.ThemainunderlyingideaisthatanyoffsetofaBH-XRB e.g.Brandt&Podsiadlowski1995;Kalogeraetal.1998;Nelemans fromtheGalacticplane(assumedasbirthplace)isasignatureof etal.1999;Nelemans2007). some peculiar velocity of the system with respect to the circular Themeasurementofpulsarpropermotions(seee.g.Lyne& Galacticmotion.Themagnitudeofsuchvelocitygivescluesonthe Lorimer 1994; Hansen & Phinney 1997; Hartman 1997; Hobbs SNmechanism,inparticularonthemagnitudeoftheNKatbirth etal.2005),combinedwiththestudyofNS-XRBs(e.g.Johnston (Jonker&Nelemans2004;Repettoetal.2012).Theideaofusing etal.1992;Kaspietal.1994;Fryer&Kalogera1997;Kolbetal. theGalacticpositionand/orlineofsightvelocitiesofapopulation 2000;Pfahletal.2002),hasexposedevidencethatsomeNSsre- ofXRBstoinvestigatetheformationofcompactobjectswasem- ceive a low velocity, whereas others a high velocity at formation ployedpreviouslyfortheNScase(seee.g.Brandt&Podsiadlowski (so called natal kicks, NKs). The prevailing idea is that NSs are 1995;Johnston1996). WecoveredthetopicofBHformationintwopreviousworks. In Repetto et al. (2012), we followed the Galactic trajectories of (cid:63) E-mail:[email protected] ©0000RAS 2 S.Repettoetal. a simulated population of BH-XRBs, and investigated which NK 250 distributiongivesrisetotheobservedz-distributionofBH-XRBs (wherez istheheightabovetheGalacticplane).Theaimwasto 200 discriminate between high and reduced NKs for BHs. High NKs arelargerthantheNKexpectedinastandardformationscenariofor s D m 150ê BHs,inwhichtheBHformsviafallbackofmaterialontotheproto- k @ NSandtheNKiscausedbyasymmetriesintheSNejecta.Inthe ot standard scenario, the NK would conserve the linear-momentum Vr 100 androughlyscaleastheNKreceivedbytheNSmultipliedbythe ratiobetweenthemassoftheBHandthemassoftheNS.Wecall 50 these kicks as reduced or momentum-conserving NKs. If the NS receivesaNKoftheorderof300km/s,a10M BHwouldgeta 0 (cid:12) NKof≈40km/s.WedefinehighNKsas(cid:38)100km/s.InRepetto 2 4 6 8 10 et al. (2012), we found that high NKs, comparable to NS NKs, R kpc were required. In Repetto & Nelemans (2015), we combined the Figure1.RotationcurvefortheGalacticpotentialsusedinthiswork:Bovy informationfromthekinematicsandbinaryevolutionofasubsetof (2015)(dashedline),Paczynski(1990)@(dotDtedline),Irrgangetal.(2013) BH-XRBstofindevidencebothforlowandhighNKs.InthisPa- (solidline). per,weaimatcomplementingandextendingthosepreviousstud- ies.FollowingupontheworkbyvanParadijs&White(1995)and White&vanParadijs(1996),Jonker&Nelemans(2004)foundthat impartsarecoilvelocitytothebinary;theNKaddsupvectorially theroot-mean-square(rms)valueoftheheightabovetheGalactic tothisvelocity,givingthetotalpeculiarvelocityofthebinary,V(cid:126)pec. planeofBH-XRBsissimilartothatofNS-XRBs,suggestingthat SuchasystemicvelocityaddsupvectoriallytothelocalGalactic BHs could also receive a high kick at formation, or even one as rotationandprobablyhasnopreferentialorientation.Thefull3D highasNSs.Inthiswork,wedevelopthisideafurther.Webuild velocityismeasuredonlyforahandfulofBH-XRBs(seeMiller- synthetic populations of BH- and NS-XRBs and we model their Jones 2014). For these, the integration of the orbit backwards in binaryevolutionandtheirkinematicsintheGalaxy,toinvestigate timecaninprincipleprovideanestimateforV(cid:126)pecatbirth.However, whetherdifferentassumptionsoncompactobjectformation(such uncertaintyinthedistanceanddifferencesintheGalacticpotential asadifferentdistributionfortheNKand/oradifferentamountof canpreventauniquedeterminationoftheinitialposition(seee.g. massejectedintheSN)haveanimprintontheobservedGalactic Fragosetal.2009;Miller-Jonesetal.2009).Whenthefull3Dpe- distributionofBH-andNS-XRBs,andwequantifytheseeffects. culiarvelocityisnotknown,onecanestimateV(cid:126)pec atbirthusing Furthermore, we will dedicate part of this work to discuss a simple model. For an object located at Galactic height z†, we a method we previously employed to calculate the minimum expectatrajectorypurelyperpendiculartotheplanetobetheone peculiar velocity at birth of individual BH-XRBs (Repetto et al. which minimises the initial V(cid:126)pec. In our previous works Repetto 2012;Repetto&Nelemans2015).ThedifferenceoftheGalactic et al. (2012) and Repetto & Nelemans (2015), we estimated the potential value between the observed position (R,z) and its minimum peculiar velocity at birth of a BH-XRB employing en- projectionontotheGalacticplanewasusedtoanalyticallyderive ergyconservationalongsuchtrajectory,andassumingthatthemax- a lower limit for the peculiar velocity at birth. This method has imumheightzfromtheplaneistheobservedone.Weget: been recently challenged by Mandel (2016). We investigate how (cid:112) V = 2[Φ(R ,z)−Φ(R ,0)], (1) robust our estimate is, i.e. how close this estimate is to the true pec,min 0 0 value of the minimal peculiar velocity at birth, how this estimate whereΦ(R,z)isamodelfortheGalacticpotential,R isthemea- 0 scaleswiththedistancefromtheGalacticcentre,andhowitvaries sureddistanceofthebinaryfromtheGalacticcentreprojectedon fordifferentchoicesoftheGalacticpotential. totheGalacticplane,andzisthecurrentheightabovetheplane. RecentlyMandel(2016)arguedthatthedifferenceinthegrav- Thepaperisstructuredasfollows.InSection2westudyour itationalpotentialbetweentheobservedlocationanditsprojection estimateforthepeculiarvelocityatbirthofindividualBH-XRBs. ontotheGalacticplaneisnotanaccurateestimateoftherequired InSection3webuildsyntheticpopulationsofBH-andNS-XRBs minimumpeculiarvelocityatbirth.Hesuggeststhatthereareal- fordifferentassumptionsonthecompactobjectformation.InSec- wayspossibletrajectoriesdifferentfromapurelyperpendicularone tion 4 we look at the Galactic distributions of these synthetic bi- whichrequirealowerV atbirththantheoneestimatedthrough pec narieswhileinvestigatinghowtheydiffer,andinferringwhichNK equation1toreachthesameoffsetfromtheGalacticplane. distributionfitsbesttheobservedGalacticpositionofNS-andBH- Wecheckthevalidityofourestimateforthepeculiarveloc- XRBs. In Section 5 we discuss our findings and in Section 6 we ityatbirth,V ,forhigh-zsources,performingaMonteCarlo pec,min drawourconclusions. simulationusingthePythonpackageforgalacticdynamicsgalpy‡ (Bovy2015).Wesimulate1.1×107 points,whoseinitialcondi- tionsaresetasfollows:1)theinitialpositionisat(R,z)=(R ,0), i where R is uniformly distributed between 0 and 18 kpc; 2) the i 2 Intermezzo initialpeculiarvelocityVpec isuniformbetween0and500km/s; 3) the orientation of this velocity is uniformly distributed over a 2.1 Ontheestimateofthepeculiarvelocityatbirth XRBsarethoughttooriginatefrombinaryprogenitorsborninthe † Throughoutthiswork,weuseareferenceframecenteredattheGalactic Galactic plane, the birth-place of most massive stars (Brandt & centreandcylindricalcoordinateswithR:thedistancefromtheGalactic Podsiadlowski1995).Whenthecompactobjectforms,thebinary centre,andz:theheightabovetheGalacticplane. typicallyacquiresapeculiarvelocity.ThemassejectionintheSN ‡ Availableathttps://github.com/jobovy/galpy ©0000RAS,MNRAS000,1–?? TheGalacticdistributionofX-raybinaries 3 Figure2.DensityplotsshowingthefractionofsystemsineverybinofinitialpeculiarvelocityVpecanddistancefromtheGalacticcentreR(projectedonto theGalacticplane)ofpointswhichreachaheightabovetheGalacticplanegreaterthan1kpc.TheredlineshowsouranalyticalestimateVpec,min.Weuse threedifferentpotentials;fromlefttoright:Paczynski(1990),Irrgangetal.(2013),Bovy(2015). sphere.Wenotethatsinceweareonlyinterestedintheminimum tentials.V isanexcellentestimatorforR >1kpc,sinceat pec,min valueofV ,theshapeoftheassumedvelocitydistributionisnot theseradiiγisequalorgreaterthan1.Itislessrobustintheinner pec important. We add the circular motion in the Galactic disc to the partofthebulgeforthePaczynski(1990)andIrrgangetal.(2013) 3D peculiar velocity V(cid:126)pec. We integrate the orbits in the Galaxy potentials,butnotintheMWPotential2014potential,thatisfitto for5Gyr,usinga4th-orderRunge-Kuttaintegrator,andwecheck themostrecentdynamicalconstraintsontheMilkyWayandhas forconservationofenergyoverthetrajectorymakingsurethatthe amorerealisticbulgemodel(JoBovy,privatecommunication).In relativeerrorontheenergyislessthan10−5 atthefinalstep.We thebulgeregion,ourestimateissteeperthantherealminimalpe- recordthepositions(R,z)500timesovertheorbitsamplingfrom culiarvelocityforthefirsttwopotentials,i.e.,itvariesstronglyfor constant time steps, along with the initial peculiar velocity V . smallvariationinR.ThiscanbeseeninFigure6,whereforevery pec From the simulated points, we select only those ones located at position(R,z)weshowasadensitymaptherealminimalpecu- z2 > 1atthesampledtimes,torepresenthigh-zsources.Weper- liarvelocityatbirthnecessarytoreachthatposition.Weintegrated formthesimulationforthreedifferentchoicesoftheGalacticpo- 104orbitsfor5GyrandusingaspotentialtheoneinIrrgangetal. tential:model2ofIrrgangetal.(2013)§,Paczynski(1990),and (2013). The contour lines show our analytical estimate V ; pec,min theMWPotential2014potentialfromBovy(2015),whichareall thediscrepancybetweenthetwovelocitiesisevidentintheinner multi-componentpotentialsconsistingofdisc,bulge,andhalo.The regionoftheGalaxy. Paczynski(1990)potentialismadeupoftwoMiyamoto-Nagaipo- Figures3,4,5alsoshowanincreaseoftheaveragevalueofγ tentialsfordiscandbulge,andonepseudo-isothermalpotentialfor withlargerdistancesR.Thisisanartefactcausedbyourchoiceof thehalo.TheBovy(2015)potentialismadeupofapower-lawden- theV initialdistribution(uniformbetween0−500km/s),asthe pec sityprofilewithanexponentialcut-offforthebulge,aMiyamoto- numeratorintheratioγcantakeallthevaluesbetween≈V pec,min NagaiPotentialforthedisc,andaNavarro-Frenk-Whiteprofilefor and500km/s. the halo. The Irrgang et al. (2013) potential is composed of two Fromourextensiveanalysis,wefindthattheestimateV pec,min Miyamoto-Nagai potentials and a Wilkinson-Evans potential for accuratelyrepresentstherealminimalvalueforthepeculiarveloc- thehalo.Weshowtherotationcurveofeachofthethreepotentials ityatdistancesfromtheGalacticcentre(cid:38)1kpc,andcanbesafely inFigure1.Irrgangetal.(2013)isthepotentialusedbyMandel appliedtoestimatethepeculiarvelocityatbirthofXRBsbornin (2016); Paczynski (1990) is the one we adopted in Repetto et al. theGalacticplane. (2012);theMWPotential2014isarealisticmodelfortheMilky WaypotentialfavouredbyBovy(2015).Wepresenttheresultsof thissimulationinFigure2.Theredlineisourestimateforthepe- 2.2 EffectofadifferentchoiceoftheGalacticpotentialwith culiarvelocitytakingz = 1kpcinequation1anditfollowsthe anapplicationtotheobservedBH-XRBs loweredgeofthesimulatedpoints. Figure2showsthatouranalyticalestimate(eq.1)successfully TheestimateVpec,minisafunctionofthepotentialused,inparticu- describesthevalueandtrendoftheminimalpeculiarvelocityasa larinthebulge,ascanbeseeninFigure7,whereweshowVpec,min functionoftheGalactocentricdistance. forthePaczynski(1990),Irrgangetal.(2013)andBovy(2015)po- In order to better quantify the goodness of our estimator tentials,andassumingz = 1kpcineq.1.Additionally,fromFig- V , we compute the ratio γ = V /V using 1 kpc- ures3,4,5,wenotethatthefractionofsystemswithγ <1inthe pec,min pec pec,min wide bins in R, for those points which reach a height above the regionR = [0,1]kpcalsostronglydependsonthepotential.The Galacticplanealongtheirorbitintherange|z|=(1,1.1)kpc.The minimum values γmin are: 1.01, 0.72, 0.61 for Bovy (2015), Ir- velocityV istheactualinitialpeculiarvelocitywhichweshowed rgangetal.(2013),Paczynski(1990)potentialrespectively,where pec inFigure2.WeplotγinFigures3,4,5,forthethreedifferentpo- these lower limits are defined such that 95% of the points in the samebinhaveavaluelargerthanthelowerlimit. Figure 2 also shows that the Galactic bulge (R (cid:46) 1 kpc) is § WhenreferringtotheIrrgangetal.(2013)Galacticpotential,wewill muchlesspopulated(anorderofmagnitudefewersystemsthanin hereafterrefertotheirmodel2. regionsatlargerdistancefromtheGalacticcenter).Therearetwo ©0000RAS,MNRAS000,1–?? 4 S.Repettoetal. Figure3.RatioVpec/Vpec,minforpointssuchthattheobservedpositionisat1<z<1.1kpc.EachpanelshowsadifferentR-bin.TheGalacticpotential isfromBovy(2015). Figure4.RatioVpec/Vpec,minforpointssuchthattheobservedpositionisat1<z<1.1kpc.EachpanelshowsadifferentR-bin.TheGalacticpotential isfromIrrgangetal.(2013). Figure5.RatioVpec/Vpec,minforpointssuchthattheobservedpositionisat1<z<1.1kpc.EachpanelshowsadifferentR-bin.TheGalacticpotential isfromPaczynski(1990). reasonsforthis:i)thebulgevolumeissmall;ii)itisunlikelyfor Table1. Minimumpeculiarvelocity atbirthforshort-period BH-XRBs. abinarybornintheGalacticdisctoovercomethestrongpotential ThevelocitiesareestimatedusingthreedifferentGalacticpotentialsand well in its motion towards the Galactic bulge. The inaccuracy of aregiveninkm/s.ThenumbersinparenthesisforH1705-250correspond ouranalyticalestimateinthebulgeregionaffectsonlythesource tocorrectingtheestimatesfortheinaccuracyofouranalyticalestimatein H1705-250,whichistheonlyBH-XRBlocatedcloseenoughtothe thebulgeoftheGalaxy(seeText). Galacticcentre(seeTable2),at(R,z)≈(0.5,1.3)kpc(Remillard etal.1996).Withoutameasurementofits3Dpeculiarvelocity,it Vpec,min[km/s] isimpossibletodiscriminatebetweenabirthinthediscorabirth Source Bovy Pac. Irrgang Repettoetal. inthebulge(henceclosetoitsobservedposition).Moreingeneral, 2015 bulgesourcesarenotsuitableforestimatingthepeculiarvelocities XTEJ1118+480 62 70 68 72 atbirth,sincethecurrentviewonbulgeformationisthatitwasnot GROJ0422+32 20 25 22 25 formedinsitu.Thebulgepopulationisthoughttocomefromthe GRS1009-45 34 40 37 41 discthroughdynamicalinstabilities(Gerhard2015),withmostof 1A0620-00 8 10 8 10 itsmasscomingfrommajorandminormergereventswithsatellite GS2000+251 12 15 12 15 galaxies(DeLuciaetal.2011). NovaMus91 44 51 46 52 We compute the minimum peculiar velocity at birth for the H1705-250 259(262) 363(158) 350(186) 402 XTEJ1650-500 17 21 16 - seven short-period BH-XRBs studied by Repetto & Nelemans XTEJ1859+226 61 68 68 - (2015), using the three Galactic potentials (see Table 1). We add tothissampletwoothershort-periodBH-XRBswhichwedidnot considerinRepetto&Nelemans(2015)(XTEJ1650-500andXTE (Casares&Jonker2014).ForH1705-250,weputinparenthesis J1859+226),duetothelackofastrongconstraintontheBHmass thevelocityV multipliedbythefactorγfoundabove. pec,min ©0000RAS,MNRAS000,1–?? TheGalacticdistributionofX-raybinaries 5 Figure7.AnalyticalestimateVpec,minforthepeculiarvelocityatbirthas afunctionofthedistancefromtheGalacticcentreR(projectedontothe Galacticplane)forthethreedifferentGalacticpotentialsusedinthiswork: Bovy(2015)(dashedline),Paczynski(1990)(dottedline),Irrgangetal. Figure6.Densitymapshowingwithcolorcodingtheminimalvaluefor (2013)(solidline).Weassumedz=1kpc. thepeculiarvelocityatbirthVpecofsimulatedpointswhichreachthatpo- sition(R,z).ThecontourlinesshowouranalyticalestimateVpec,min at thatposition.Theestimatediffersstronglyfromtherealvalueinthebulge ontheGalacticdistributionofXRBscontainingaNSoraBH.We region(eachsolidlinediffersby±30km/sfromtheclosest-neighbouring assumethatthebinariesareformedintheGalacticthindisc,where one).ThepotentialusedisfromIrrgangetal.(2013). mostofthemassivestarsreside(Urquhartetal.2014).Inthisstudy, wedonotaccountforthepossibilitythatafewsystemscouldhave been formed in the halo (i.e. in star clusters that have now been WehavefoundanerrorinthehalocomponentofthePaczyn- dissolved),andneitherofthepossibilitythatafewsystemscould ski(1990)potentialthatweusedforthecomputationofV pec,min havebeenejectedfromglobularclusters(GCs)viaN-bodyinter- inRepetto&Nelemans(2015).Thismostlyaffectsthebulgesource actions.GCsseemtobeveryefficientinproducingNSlow-mass H1705-250,whereastheothersixsourcesarenotgreatlyaffected X-raybinaries(NS-LMXBs),as10%ofallNS-LMXBsarefound (comparethirdandlastcolumninTable1). inglobularclusters,whichcontainonly∼ 0.1%ofallthestarsin Accounting for the thickness of the Galactic disc instead of theGalaxy(Irwin2005).Suchaninvestigationis,however,outside assuming a birth place at z = 0 does not significantly affect the thescopeofthispaper. minimalpeculiarvelocity(seeBelczynskietal.2016). Wetakedifferentmodelsfortheformationofthecompactob- Mandel(2016)usedthesourceH1705-250toconcludethat ject.TheNKisdrawneitherfromaMaxwelliandistributionpeaked thedifferenceintheGalacticpotentialbetweentheobservedposi- at40km/s(withσ ≈ 28km/s)representingalow-NK,orfroma tionandtheprojectionofthispositionontotheGalacticplaneis Maxwelliandistributionpeakedat100km/s(withσ ≈ 71km/s) notaconservativeestimateoftheminimalinitialvelocityofthebi- representingahigh-NK.Weassumeacertainamountofmassejec- nary.TheyshowanexampleofatrajectoryforH1705-250which tion in the SN, M . BHs are thought to form either via prompt startsfromtheGalacticplaneandendsattheobservedpositionfor ej collapse of the progenitor star or via partial fallback of the SN aninitialvelocityof≈230km/s,lowerthanthevalueprovidedby ejectaontotheproto-NS(seeFryer&Kalogera2001).Inourmod- eq.1(seeTable1).Weagreewithhisconclusion,butonlyasfar els, the progenitors of BHs either do not eject any mass at col- assourcesclose(orin)thebulgeareconcerned.Onthecontrary, forsourceslocatedatR(cid:38)1kpc,ouranalyticalestimateperfectly lapse, or they eject 4 M(cid:12). Stars with a ZAMS-mass larger than ≈ 25M are thought to leave a BH behind (see e.g. Fryer & matchestherealminimalvelocity.InRepetto&Nelemans(2015) (cid:12) Kalogera2001;Tauris&vandenHeuvel2006).Foraprogenitor weusedthehighminimalvelocityatbirthforXTEJ1118+480and ofmass25−60M ,theheliumcoremass(whichcollapsesinto H1705-250toclaimthatatleasttwooutofthesevenBH-XRBs (cid:12) aBH)isbetween≈ 8−11M (Belczynskietal.2008),which weconsideredwereconsistentwithahigh(orrelativelyhigh)NK. (cid:12) motivatesour(conservative)choiceforM .Forthepreviousmod- Thisholdstruewithourcurrentrevisionoftheminimalvelocities ej els,weassumeaBHmassof8M (whichisthetypicalmassfor atbirth,andwefindanotherBH-XRBthatispotentiallyconsistent (cid:12) BHs in our Galaxy; Özel et al. 2010). We also picture a higher- witharelativelyhighNK:XTEJ1859+226. massheliumstar(M = 15M )whichdirectlycollapsesinto Thevelocitieswehavebeendealingsofarwithareminimal He (cid:12) a BH with no mass ejection. For NSs, the ejected mass is calcu- velocities,anddonotnecessarilycorrespondtoexpected(realistic) latedas:M =M −M ,whereM istheheliumcoremass velocities.Inwhatfollows,westudythelatter. ej He NS He (M = [2.8−8]M ,seeTauris&vandenHeuvel2006),and He (cid:12) M =1.4M .FortheBHcasethemodelsare: NS (cid:12) • Model1:highNK,M =8M ,M =0; 3 ABinaryPopulationSynthesisofBH-andNS-XRBs He (cid:12) ej • Model2:lowNK,M =8M ,M =0; He (cid:12) ej In this part of the work, instead of dealing with the minimal pe- • Model3:highNK,MHe =8M(cid:12),Mej =4; culiarvelocities,wedealwiththeexpectedpeculiarvelocities.We • Model4:lowNK,MHe =15M(cid:12),Mej =0. performabinarypopulationsynthesisstudyofBH-andNS-XRBs, FortheNScasethemodelsare: starting just before the BH/NS formation, varying the conditions attheformationofthecompactobject.Thegoalistoinvestigate • Model5:highNK,M uniformbetween[1.4,6.6]M ; ej (cid:12) theimpactthatdifferentBHandNSformationassumptionshave • Model6:lowNK,M uniformbetween[1.4,6.6]M . ej (cid:12) ©0000RAS,MNRAS000,1–?? 6 S.Repettoetal. For all the models, we simulate 3×107 binaries composed Table2.GalacticpositionofthethreeclassesofBH-XRBs;Risthedis- oftheheliumstar(whichcore-collapses)andacompanionstarof tancefromtheGalacticcentre,|z|istheabsolutevalueoftheheightabove 1 M(cid:12). The pre-SN orbital separation is uniformly drawn in the theplane.Inparenthesisweputtheuncertaintyonthemeasurements.See rangeamin −50R(cid:12) withzeroinitialeccentricity,whereamin is Corral-Santanaetal.(2016)forthereferencesforthedistancemeasure- theminimalorbitalseparationsuchthateitheroneofthetwocom- ments. ponentsfillsitsRochelobe.Wecalculatetheeffectofthecompact objectformationontheorbitalpropertiesandonthekinematicsof Name R |z| (kpc) (kpc) the binary (for more details on the method, see Repetto & Nele- mans2015).Inparticular,theeffectofthemassejectiontogether short-periodconfirmed withtheNKimpartapeculiarvelocitytothebinary: XTEJ1118+480 8.74(0.1) 1.52(0.2) (cid:115) GROJ0422+32 10.38(0.65) 0.51(1.15) (cid:18)M (cid:19)2 M GRS1009-45 8.49(0.25) 0.62(0.1) V = BH V2 +V2 −2 BHV V , (2) pec M(cid:48) NK MLK M(cid:48) NK,x MLK 1A0620-00 8.93(0.08) 0.12(0.01) GS2000+251 7.21(0.3) 0.14(0.08) whereM(cid:48) isthetotalmassofthebinaryaftertheSN,V isthe NovaMus91 7.63(0.2) 0.72(0.1) NK magnitudeoftheNK,V itscomponentalongtheorbitalspeed H1705-250 0.53(2.9) 1.35(0.85) NK,x oftheBHprogenitor,andV isthemass-losskick: XTEJ1650-500 5.71(1.35) 0.15(0.075) MLK XTEJ1859+226 10.03(3.05) 1.87(0.65) (cid:114) M M GM VMLK = Me(cid:48)j M(cid:63) a , (3) long-periodconfirmed XTEJ1550-564 4.96(0.15) 0.14(0.05) therecoilthebinarygetsbecauseoftheinstantaneousmassejec- GRS1915+105 6.62(0.99) 0.03(0.008) tionM (M istheinitialmassofthebinary;M isthemassofthe GS2023+338(V404Cyg) 7.65(0.001) 0.09(0.005) ej (cid:63) companion;aistheinitialorbitalseparation).Wefollowtheevo- short-periodcandidates lution of the binaries under the coupling between tides and mag- MAXIJ1836-194 2.08(1.15) 0.65(0.25) neticbrakingusingthemethoddevelopedinRepetto&Nelemans MAXIJ1659-152 0.82(1.55) 2.45(1.05) (2014),andselectthosesystemsthatstartmasstransfer(MT),i.e. XTEJ1752-223 2.15(1.55) 0.22(0.1) becomeX-raysources,whilethedonorisonthemainsequence. SWIFTJ1753.5-0127 3.64(0.65) 1.27(0.45) Wechoosetheradialdistributionofthebinariestofollowthe 4U1755-338 1.56(1.8) 0.55(0.25) surfacedensityofstarsinthethindisc:Σ(R)∼Σ exp(−R/R ), GRS1716-249 5.62(0.4) 0.29(0.05) 0 d withR ∼ 2.6kpc(McMillan2011;Bovyetal.2012),andwith d amaximumdistancefromtheGalacticCentreofR =10kpc. max Concerningtheheightabovetheplane,wemodelitasanexponen- (iii) short- and long-period, dynamically confirmed BH-XRBs tial with scale height h equal to the scale height of the thin disc (12systems), (h=0.167kpc;Binney&Tremaine2008).Thisisaconservative which we list in Table 2, along with their Galactic position choiceforthescaleheight,beingthescaleheightofmassivestarsin (R,z)derivedfromtheirsky-positionanddistance.Dynamically- thedisctypicallysmaller(h∼30pc;seeTable4inUrquhartetal. confirmed BHs are those for which a dynamical measurement of 2014).WeassumethatthestarsfollowtheGalacticrotation,with theBHmassisavailable(seee.g.Casares&Jonker2014). noadditionalcomponent.Variousmechanismscanheatupthestars The observed BH-XRBs are both long (P > 1 day) and in the disc, increasing their dispersion velocity, such as encoun- shortorbitalperiod(P (cid:46) 1day),therebyoriogribnatingfromdif- terswithspiraldensitywaves,giantmolecularclouds,andvarious orb ferentevolutionarypaths.Hence,inordertocomparetheobserved other forms of stochastic heating (Mihalas & Binney 1981; Sell- systemswiththesimulatedbinaries,weneedtoproducetwosep- wood&Preto2002;Rocha-Pintoetal.2004;Aumeretal.2016). arate synthetic population of binaries, one population with short- Rocha-Pintoetal.2004,usingalargesampleoflate-typedwarfs periodandonepopulationwithlong-period,towhichwecompare intheMilkyWaydisc,measuredadispersioninthethreevelocity- theobservedbinariesaccordingtotheirtype.Fortheshort-period componentsofσ ≈ 50km/s,σ ≈ 30km/s,σ ≈ 20km/sat u v w binaries,wefollowthebinaryevolutionofsimulatedbinariesus- t ≈ 5×109 Gyr(seealsoHolmbergetal.2009).Weneglectthis ingthemethodweexplainedinSection3.Forthelongperiodones, influence,asweexpectthatforlow-massstarshostedin(massive) whicharedrivenbythenuclearevolutionofthedonor,wemodel binariesthesevelocitywouldbesignificantlylower. themassumingthepostsupernovaorbitalseparationtobesuchthat We integrate the orbit of the binaries for 5 Gyr using the a =a (1−e2)(cid:54)20R ,wherea isthecircularised MWPotential2014 potential from Bovy (2015), which is a real- circ postSN (cid:12) circ orbitalseparationandeistheeccentricityinthepost-SNconfigura- istic model for the Milky Way potential. We record the position tion.Thisassumptionisbasedonthefactthatlong-periodbinaries alongtheorbitevery5Myrafter1Gyr. evolve to longer and longer period during the MT phase, hence: a ≈ a < a ,wherea istheorbitalseparation circ MT,0 MT,obs MT,0 attheonsetofMT,anda istheobservedorbitalseparation. 3.1 Observationalsamples MT,obs Theassumptionsonthecompactobjectformationarethesameas 3.1.1 BlackHoleX-rayBinaries for the short-period binaries, as well as the masses of the binary components.Sinceoursimulatedbinarieshaveacompanionmass UsingthecatalogueofCorral-Santanaetal.(2016),weclassifythe of1M ,weexcludefromtheobservedsamplethosebinarieswith systemsintothreemaingroups: (cid:12) acompanionmass:(cid:29) 1M (GROJ1655-40,4U1543-475,and (cid:12) (i) short-period,dynamicallyconfirmedBH-XRBs(9systems); SAXJ1819.3-2525). (ii) short-period, dynamically confirmed BH-XRBs + short- We account for a possible observational bias on the periodBHcandidates(15systems); dynamically-confirmed BH-XRBs. In order to get a dynamical ©0000RAS,MNRAS000,1–?? TheGalacticdistributionofX-raybinaries 7 4 ResultsoftheBinaryPopulationSynthesis 4.1 TheexpectedverticaldistributionofBH-andNS-XRBs 1.5 ThescaleheightofBH-andNS-XRBsisaproxyoftheeffectof pc 1.0 D differentcompactobjectformationmechanismsontotheGalactic k distributionofthebinaries.Wequantitythescaleheightofthebi- @ z »» nariesasthermsoftheirheightzasafunctionofRforallpoints. 0.5 Toplottheresults,webinthesystemsinto1kpc-widebinsinthe R-direction. We show the results in Figure 9 for the six models. Themonotonicriseofz isexpected,sincetheGalacticpoten- rms 0.0 tialbecomesweakerfurtherawayfromtheGalacticcentre,andthe B9II IK1IIIK2IIKI3IIIK4IIIK5IIIF6IVK2IVK3IVK4IVA2VK2VK3VK4VK5VK6VK7VM0VM1VM4VM5V binarymovesfurtherupforthesameinitialvelocity.Itisinteresting tonotethatifBHsandNSsreceivethesameNK,theywouldstill spectraltype&luminosityclass show a different scale height, with NSs reaching larger distances Figure 8. The height above the Galactic plane |z| and the spectral type fromtheGalacticplane(compareblacksolidlinewithgreysolid and luminosity class of the 15 dynamically-confirmed BH-XRBs. When line,andblackdashedlinewithgreydashedline).Thisisduetothe thespectraltypeofthedonorstarinthesystemisnotunivocallyidentified, factthatforthesamelinearmomentum,abinarywithalargermass weindicatetherangeofpossibletypes. receivesalowerV (asisshowninFigure10).Iftheprogenitor pec of the BH ejects mass at core-collapse as in Model 3 (see black dashed-dottedlineinFigure9),itwillmovefurtheroutfromthe planethanwhennomassisejected,sincethemassejectionadds anextracontributiontoV .Furthermore,V doesnotdepend measurement of the BH mass, hence fully confirming the nature pec pec onthemassoftheBHwhennomassisejectedatBHformation ofthesource,highsignal-to-noiseopticalspectraarerequired;this (blackdashedandblackdottedlinesinFigure9),sinceitscalesas mightbepreventedinregionsofhighextinctions,i.e.inandclose (cid:114) to the Galactic plane. We then remove from our simulated popu- V = (cid:16) MBH (cid:17)2V2 ∼ V , for low-mass companion lationsthosebinarieswhicharelocatedatz (cid:54) 0.1kpc.Wenote pec MBH+M2 NK NK stars(seeequation2). that the lowest z in the sample of short-period dynamically con- InFigure10wealsoshowasarrowsthelowerlimitsonthepe- firmed BH binaries is for 1A 0620-00 (z ≈ −0.12 kpc; see Ta- culiarvelocityatbirthofthe9BH-XRBswestudiedinSection2.2. ble2).Forthelong-periodbinaries,weexcludefromthestudythe Itisclearthatahigh-NKdistribution(darker-greysolidline)more sourcesGRS1915+105(donorspectraltype:K1/5III)andV404 easilyaccountsforthehigher-velocitysystems,as4systemsliein Cyg(donorspectraltype:K0IV),whicharelocatedatz ≈−0.03 orbeyondthehigh-velocitytailofthedistributioncorrespondingto kpc and z ≈ −0.09 kpc respectively (see Table 2). These two thelow-NKmodel. systems do have a dynamical measurement of the BH mass (see Jonker&Nelemans(2004)foundasimilarz betweenNS- Casares&Jonker2014).InFigure8weplottheabsolutevalueof rms andBH-XRBsanddeducedthatBHsshouldreceiveNKstoo,un- the height z versus the spectral type and luminosity class of the less differences in the binary evolution and observational biases 15¶dynamically-confirmedBH-XRBs(thespectraltypesarefrom werestrong.Weconfirmthataccountingforbinaryevolutiondoes Corral-Santanaetal.2016).Atsmallz,starshaveanearlierspec- not strongly change the Galactic distributions of BH- and NS- traltypeand/oraregiantsorsub-giants.WhereasMS/dwarfstars XRBs.However,thescaleheightdoesstronglydependonthepo- tendtobeseenatlargerdistancesabovetheplane. sitioninthedisc. The only long-period binary in our sample, after removing Wecomputethez oftheobservedBH-XRBs,bothofthe thosesourcesclosetotheGalacticplane,isXTEJ1550-564,which rms wholesampleandofthedynamically-confirmedsystemsonly.We hasacurrentorbitalseparationof12R ,consistentwithouras- (cid:12) findarmsof≈0.98±0.10kpcand≈0.86±0.10kpcrespectively. sumptionona . circ Fortheshort-periodNSsystems,wecalculateaz of1.24±0.06 rms kpc,whenexcludingthesourceXTEJ2123-058sinceitsvelocityis consistentwithbeingahalosource,asJonker&Nelemans(2004) noted.Theerroronthesez -valuesaccountsfortheuncertainty rms 3.1.2 NeutronStarX-rayBinaries onthedistancetothesources.InFigure11weshowtheGalactic distribution of NS and BH systems (the lines account for the un- TheGalacticpopulationofNS-XRBsconsistsofmorethan30ob- certaintyinthedistancetothesource).TheresultthatNSsystems jects(seeJonker&Nelemans2004andreferencestherein).Forour shouldhavealargerscaleheightthanBHsystemsisconsistentwith study,weselectthe10oneswithashort-orbitalperiod(Porb < 1 whattheobservedpopulationsshow. day;seeTable2inJonker&Nelemans2004).Theidentificationof aNS-XRBtypicallyoccursviathedetectionofX-rayburstswhich igniteonthesurfaceoftheNS.Therefore,unlikeforBHs,thereare 4.2 Theinfluenceoftheorbitalseparationdistributionofthe potentiallynobiasesagainsttheidentificationofsuchsystems. binaryprogenitors InthemodelsweusedinSection3,theorbitofthebinaryprogen- itorsofBH-andNS-XRBswaschosentobeuniformlydistributed intherange[a ,50]R .Itcouldbethatthischoicebiasesourre- min (cid:12) sultstowardscertainvaluesforV .Totestthis,wecheckhowthe pec ¶ 12systemsfromTable2towhichweaddthethreeBH-XRBswithan distributionoftheinitialorbitalseparationofthebinaries(i.e.prior intermediate-masscompanion. totheformationofthecompactobject)varieswiththemagnitude ©0000RAS,MNRAS000,1–?? 8 S.Repettoetal. 3 2 1 c D kp 0 @ z -1 -2 -3 0 2 4 6 8 10 12 R kpc Figure 11. Galactic distribution of BH-XRBs (red lines) and NS-XRBs Figure9.Root-mean-squareoftheheightz abovetheGalacticplaneof (blacklines).Risthedistancefromthe@GaDlacticcenterprojectedontothe simulatedBH-andNS-XRBsforthedifferentmodelsused. plane,andzistheheightabovetheplane.OneNS-XRBfallsoffthefigure: XTEJ2123-058.Foreachsource,thelineaccountsfortheuncertaintyon thedistance.Wealsoshowtheresultsfromthepopulationstudyintermsof zrmsasafunctionofR:Model1(greylines),Model2(grey-dashedlines), 0.020 Model3(grey-dottedlines). 0.015 F D P 0.010 0.005 0.000 0 50 100 150 200 250 300 Vpec kms Figure10.DistributionofthepeculiarvelocityVpec(aftertheformationof @ êD thecompactobject)ofBH-XRBsinModel1(blacksolidline)andModel 2(blackdashedline),andofNS-XRBsinModel5(greysolidline)and Model6(greydashedline).Thedottedanddotted-dasheddark-greylines arevariationsofModel1(seeSection5fordetails).Thearrowsrepresent thelowerlimitsonthepeculiarvelocityatbirthforthe9short-periodBH- XRBsusingthepotentialfromBovy(2015). oftheNKandofV .FromFigure12,itisclearthatthemajority pec oftheinitialorbitalseparationsareconstrainedtoliewithinasmall range(a (cid:46) 10R )bothforNSandBHsystems,andboth 0 0.2 0.4 0.6 0.8 1.0 preSN (cid:12) forhighandlowNKs.Furthermore,thereisnocleartrendofVpec Figure12.Densityplotswhichresultfromourpopulationsynthesismod- withrespecttoa .Wehenceconcludethatitisunlikelythat elsshowingtheallowedparameterspaceforthepeculiarvelocityatbirth preSN thepeculiarvelocitiesVpec wouldbeverymuchinfluencedifthe VpecandtheorbitalseparationapreSNofBH-andNS-XRBspriortothe pre-SNorbitshadadistributiondifferentfromtheuniformonewe formationofthecompactobject.Eachpanelcorrespondstodifferentas- sumptionsontheNK.Thefractionofsystemsineach2-dimensionalbinis useinourstudy,oriftheyweredrawnfromasmallerrange. shown;darkercolourscorrespondtoalargerfractionofsystems. 4.3 Comparisonwithobservations:BH-XRBs showedinSection2.2.ForeveryR-bin,wecomputethecumula- We now turn to the comparison of the different models with the tivedistributionfunction(CDF)oftheheightzabovetheGalactic observedBH-XRBs.Inordertocomparethesimulationswiththe planebasedonthepopulationsynthesisresultswithinModel1and observedsystems,wenotethateverysubgroupofBHbinariesof Model2(seeasanexampleblackandgreylinesinFigure13,for Table2givesrisetoacertain2DdistributioninRandz.Oneway the bin: R = [8,9] kpc). Then we calculate where in the cumu- ofproceedingwouldbetocomparethe2Dsimulateddistribution lativedistributiontheobservedsystemslie(seeasanexamplethe with the 2D observed one. We compare the data with the simu- intersectionbetweentheblueverticallinesandtheCDFsinFigure latedpopulationsdividingtheGalaxyinto1kpc-widebinsalong 13).Insuchaway,weobtainalistofpercentiles.Ifthemodelis theR-direction.ThisallowstoaccountforthefactthattheGalac- correct,weexpectthesepercentilestobedrawnfromtheuniform ticpotentialisastrongfunctionofthepositioninthedisk,aswe distribution.Wenotethatwehaveremovedfromourcomparison ©0000RAS,MNRAS000,1–?? TheGalacticdistributionofX-raybinaries 9 thosesourceslocatedinthebulgeoftheGalaxy(i.e.H1705-250 and MAXI J1659-152), which could have had a different origin ratherthanhavingformedintheplane(seeSection2.2).Weplot thecumulativedistributionofthesepercentilesinFigures14(short- periodconfirmedBH-XRBs),15(short-periodconfirmed+candi- dates),and16(wholesample).Inthefigures,thesolidlinescorre- spondtoModel1andthedashedlinescorrespondtoModel2.We alsoconsideramodelwhichconsistsofasuperpositionofModel1 andModel2inequalparts(seethinsolidinFigure14,inthecaseof theshort-periodconfirmedBH-XRBs).Themodelwhichfitsbest istheonewhichcomesclosertothediagonalline(thatrepresents thecumulativeofauniformdistribution).Inallthreecases,ahigh NKdistributionisthemostpreferableone. WeperformaKolmogorov-Smirnov(KS)testtomeasurehow closeisthedistributionofpercentilestothediagonallineofFigures 14, 15, 16. We summarise the D-values and their corresponding probabilitiesinTable3foreverysubgroupsofBH-XRBs.Foreach Figure13.Thecumulativedistributionfor|z|forModel1(blacklines) ofthesub-groupsthehigh-NKmodelfitsthedatabest,althoughin andModel2(greylines),inthebinR=[8,9]kpc.Solidlinescorrespond tothewholesampleofsimulatedbinaries;dashedlinescorrespondtothe thegroupwithconfirmedBHsonly,thelow-NKisalsoconsistent remaining part of the sample after the exclusion of systems close to the withthedata.Fortheconfirmed+candidateshort-periodsystemsas Galacticplane,i.e.z (cid:54) 0.1kpc.Theblueverticallinesrepresenttheob- well as for the whole sample, the low-NK model is inconsistent. served|z|of3BH-XRBs(fromlefttoright:1A0620-00;GRS1009-45; Interestingly, the model in which the BHs receive both low and XTEJ1118+480). highNKs,fitsthedatabestfortheconfirmedsystems. Intheseresults,wehaveexcludedallthesystemsintheplane (both observed and simulated). An accurate modelling of the ob- scuredsystemswouldrequireamodelfortheGalacticextinction inandoutoftheplanecombinedwithamodelfortheoptical/NIR magnitudes of BH-XRBs in their quiescent state. As a first step, wesimplisticallymodeltheobservationaleffectsneartheGalactic planeincludingacertainfractionofthosesimulatedpointswhich endupintheGalacticdisc(atz (cid:54) 1kpc):eitherf = 0.1,or disc 0.5, or 0.9. We compare the Galactic distribution of these simu- latedbinarieswiththedistributionofthewholesampleofbinaries, includingthistimetheobscuredsourcesGRS1915+105andV404 Cyg as well. The results are presented in Figure 17 and Table 3. Alsowhenincludingtheobscuredsystems,thehigh-kickmodelis themostsuccessfulinreproducingtheobservedbinaries. Figure14.Cumulativedistributionofthepercentilesassociatedwithshort- perioddynamically-confirmedBH-XRBsinModel1(solidline)andModel 2(dashedline).ThethinsolidlineisablendofModel1and2(50−50%). 4.3.1 Effectofthedistanceuncertainty Themodelwhichfitsbesttheobserveddataistheoneclosertothediagonal ThedistancedtoaBH-XRBistypicallyestimatedbymeasuring line. theapparentmagnitudeofthecompanionstarinacertaincolour band,andcomputingitsabsolutemagnitude.Onceanestimateof thereddeningtowardsthesourceisknownandthespectraltypeof thedonorstarisclearlyidentified,thedistancecanbecalculated.In thebestcasescenario,onewouldhavetheapparentmagnitudeof thesourceindifferentbands,andthenwouldcomputethescatter between the derived distances as estimate of the distance uncer- tainty.WeexpectsuchuncertaintiestofollowaGaussiandistribu- tion. However, in case a range of spectral types is equally prob- able, we expect the errors on the distance to be distributed more uniformly.Toinvestigatetheinfluenceoftheuncertaintyinthedis- tance,andsinceformostoftheliteraturethereisnoeasywayof determining the type of error distribution, we randomly generate 100valuesforthedistancetoeachBH-XRB,eitherdistributedas aGaussian(withσequaltothedistanceuncertaintyδ)orasauni- formdistributionintherange(d−δ,d+δ).Sucherrorscancause Figure15.Cumulativedistributionofthepercentilesassociatedwithshort- abinarytomovefromoneR-bintotheadjacentone,affectingthe perioddynamically-confirmedandcandidateBH-XRBsinModel1(solid percentilevalues.However,wefindthatthereisnosystematicshift line)andModel2(dashedline).Themodelwhichfitsbesttheobserved dataistheoneclosertothediagonalline. thatwouldmakelowNKsfitbesttheobserveddata,δbeingsmaller thanthediscrepancybetweenthetwodistributions. ©0000RAS,MNRAS000,1–?? 10 S.Repettoetal. Table3.D-valuesoftheKS-testfordifferentsystemsandinthedifferentmodels:Model1(i.e.highNK),Model2(i.e.lowNK),andamodelmadeofa superpositionofthehigh-andlow-NKinequalparts. Subgroup HighNK LowNK 50-50 N Fig. D(P) D(P) D(P) BH-XRBs,shortP.,confirmed 0.26(0.57) 0.34(0.24) 0.19(0.92) 8 14 BH-XRBs,shortP.,confirmed+candidates 0.20(0.61) 0.39(0.03) 0.28(0.22) 13 15 BH-XRBs,wholesample 0.17(0.77) 0.36(0.04) 0.26(0.24) 14 16 BH-XRBs,wholesample,fdisc=0.1 0.20(0.46) 0.29(0.12) 0.19(0.54) 16 17 BH-XRBs,wholesample,fdisc=0.5 0.13(0.96) 0.33(0.04) 0.20(0.47) 16 17 BH-XRBs,wholesample,fdisc=0.9 0.14(0.91) 0.37(0.01) 0.22(0.37) 16 17 NS-XRBs 0.39(0.06) 0.63(0.00) - 10 18 Figure16.Cumulativedistributionofthepercentilesassociatedwiththe Figure18.Cumulativedistributionofthepercentilesassociatedwithshort- wholesampleofBH-XRBsinModel1(solidline)andModel2(dashed periodNS-XRBsinModel5(solidline)andModel6(dashedline).Dotted line).Themodelwhichfitsbesttheobserveddataistheoneclosertothe lineiswhentheNKisdrawnfromtheHobbsdistribution.Themodelwhich diagonalline. fitsbesttheobserveddataistheoneclosertothediagonalline. theNS-XRBpopulation,norfromapopulationmodelofradiopul- sars(cf.Hartmanetal.1997).Nevertheless,wecannotethatthe observedpopulationofNS-XRBsseemstobeconsistentwithNKs largerthan≈100km/s.Thisisinlinewiththecatalogueofpulsar propermotionsbyHobbsetal.2005,whoinferredameanpulsar birth velocity of ≈ 400 km/s. However, the derivation of pulsar velocitiesfromthemeasuredpropermotionshastobetakenwith caution,becauseofthepossibleuncertaintiesinthepropermotion measurements as well as in the distance measurements. More in general, underestimating proper motion measurement errors can leadtoanoverestimateofpulsarvelocities,asnotedbyHartman (1997).Thedistancetoapulsaristypicallyestimatedthroughpar- allax. Igoshev et al. (2016) showed that a more proper Bayesian Figure17.Cumulativedistributionofthepercentilesassociatedwiththe wholesampleofBH-XRBsinModel1(solidlines)andModel2(dashed approachtocalculatethedistanceprobabilityfunctionfromasin- lines)whenassumingadifferentfractionofsystemsintheGalacticplane: gleparallaxmeasurementhastobeused.Suchmethodhasnotbeen fdisc=0.1(blacklines),0.5(darkergreylines),or0.9(lightergreylines). appliedyettothewholepopulationofpulsars. Themodelwhichfitsbesttheobserveddataistheoneclosertothediagonal WeshowtheresultsoftheKS-testforNSsystemsinTable3: line. bothmodelshavelargeD-values. For an illustrative purpose, we also compare the observed population of NS-XRBs to a simulated one in which the NK is 4.4 Comparisonwithobservations:NS-XRBs drawnfromaMaxwelliandistributionwithσ =265km/s(Hobbs We compare the observed z distribution of NS systems with the et al. 2005). The results of the KS test favours this distribution: distribution of the two simulated population of NS-XRBs in the (D,p) =(0.21,0.72);seedottedlineinFigure18. Hobbs context of Model 5 and Model 6. We perform the comparison in Wenotethatwedidnotincludethelong-periodNS-XRBsto thesamewaywedidforBH-systemsinSection4.3.FromFigure ourstudyasinthesampleofNS-XRBsfromJonker&Nelemans 18weseethatnoneofthedistributions(solidanddashedlines)fits 2004thatweareusing,thereisonlyonelong-periodsystemwitha thedata.OurgoalisnottocalibratetheNSNKdistributionfrom low-masscompanion,CygnusX-2. ©0000RAS,MNRAS000,1–??

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.