ebook img

The Gaia-ESO Survey: radial metallicity gradients and age-metallicity relation of stars in the Milky Way disk PDF

1.4 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Gaia-ESO Survey: radial metallicity gradients and age-metallicity relation of stars in the Milky Way disk

Astronomy&Astrophysicsmanuscriptno.ms-rw-mb˙10 (cid:13)c ESO2014 April10,2014 The Gaia-ESO Survey: radial metallicity gradients and ⋆ age-metallicity relation of stars in the Milky Way disk M.Bergemann1,G.R.Ruchti2,A.Serenelli3,S.Feltzing2,A.Alves-Brito4,23,M.Asplund4,T.Bensby2,P. 5 5 1 5 1 4 1 5 2 Gruiters ,U.Heiter ,A.Hourihane ,A.Korn ,K.Lind ,A.Marino ,P.Jofre ,T.Nordlander ,N.Ryde ,C.C. 1 1 6 10 11 12 13 Worley ,G.Gilmore ,S.Randich ,A.M.N.Ferguson ,R.D.Jeffries ,G.Micela ,I.Negueruela ,T. Prusti14,H-W.Rix15,A.Vallenari16,E.J.Alfaro21,C.AllendePrieto7,A.Bragaglia16,S.E.Koposov1,8,A.C. Lanzafame24,E.Pancino17,9,A.Recio-Blanco18,R.Smiljanic19,20,N.Walton1,M.T.Costado21,E.Franciosini6, 4 18 17 18 6 6 1 6 6 V.Hill ,C.Lardo ,P.deLaverny ,L.Magrini ,E.Maiorca ,T.Masseron ,L.Morbidelli ,G.Sacco ,G. 1 1 22 0 Kordopatis ,andG.Tautvaisˇiene˙ 2 r 1 Institute of Astronomy, University of Cambridge, Madingley Road, CB3 0HA, Cambridge, UK e-mail: p [email protected] A 2 LundObservatory,DepartmentofAstronomyandTheoreticalPhysics,Box43,SE-22100Lund,Sweden 3 InstituteofSpaceSciences(IEEC-CSIC),CampusUAB,Fac.Cie`ncies,TorreC5parell2,08193,Bellaterra,Spain 9 4 Research School of Astronomy & Astrophysics, Mount Stromlo Observatory, The Australian National University, ACT 2611, Australia ] A 5 DepartmentofPhysicsandAstronomy,DivisionofAstronomyandSpacePhysics,Ångstro¨mlaboratory,UppsalaUniversity,Box 516,75120Uppsala,Sweden G 6 INAF-OsservatorioAstrofisicodiArcetri,LargoE.Fermi5,50125,Florence,Italy . 7 InstitutodeAstrof´ısicadeCanarias,E-38205LaLaguna,Tenerife,Spain h 8 MoscowMVLomonosovStateUniversity,SternbergAstronomicalInstitute,Moscow119992,Russia p 9 ASIScienceDataCenter,ViadelPolitecnicoSNC,00133Roma,Italy - o 10 InstituteofAstronomy,UniversityofEdinburgh,BlackfordHill,EdinburghEH93HJ,UnitedKingdom r 11 AstrophysicsGroup,ResearchInstitutefortheEnvironment,PhysicalSciencesandAppliedMathematics,KeeleUniversity,Keele, st StaffordshireST55BG,UnitedKingdom a 12 INAF-OsservatorioAstronomicodiPalermo,PiazzadelParlamento1,90134,Palermo,Italy [ 13 DepartamentodeF´ısica,Ingenier´ıadeSistemasyTeor´ıadelaSen˜al,UniversidaddeAlicante,Apdo.99,03080,Alicante,Spain 14 ESA,ESTEC,Keplerlaan1,PoBox2992200AGNoordwijk,TheNetherlands 3 15 Max-PlanckInstitutfu¨rAstronomie,Ko¨nigstuhl17,69117Heidelberg,Germany v 16 INAF-PadovaObservatory,Vicolodell’Osservatorio5,35122Padova,Italy 7 17 INAF-OsservatorioAstronomicodiBologna,viaRanzani1,40127,Bologna,Italy 3 18 Laboratoire Lagrange (UMR7293), Universite´ de Nice Sophia Antipolis, CNRS,Observatoire de la Coˆte d’Azur, CS 34229,F- 4 06304Nicecedex4,France 4 19 DepartmentforAstrophysics,NicolausCopernicusAstronomicalCenter,ul.Rabian´ska8,87-100Torun´,Poland 1. 20 EuropeanSouthernObservatory,Karl-Schwarzschild-Str.2,85748GarchingbeiMu¨nchen,Germany 0 21 InstitutodeAstrof´ısicadeAndaluc´ıa-CSIC,Apdo.3004,18080Granada,Spain 4 22 InstituteofTheoreticalPhysicsandAstronomy,VilniusUniversity,Gosˇtauto12,LT-01108Vilnius,Lithuania 1 23 InstitutodeFisica,UniversidadeFederaldoRioGrandedoSul,Av.BentoGoncalves9500,PortoAlegre,RS,Brazil : 24 DipartimentodiFisicaeAstronomia,SezioneAstrofisica,Universita´diCatania,viaS.Sofia78,95123,Catania,Italy v i Receiveddate/Accepteddate X r ABSTRACT a Westudytherelationshipbetweenage,metallicity,andα-enhancementofFGKstarsintheGalacticdisk.Theresultsarebasedupon the analysis of high-resolution UVES spectra from the Gaia-ESO large stellar survey. We explore the limitations of the observed dataset,i.e.theaccuracyofstellarparametersandtheselectioneffectsthatarecausedbythephotometrictargetpreselection.Wefind thatthecolourandmagnitudecutsinthesurveysuppressoldmetal-richstarsandyoungmetal-poorstars.Thissuppressionmaybe ashighas97%insomeregionsoftheage-metallicityrelationship.Thedatasetconsistsof144starswithawiderangeofagesfrom 0.5Gyrto13.5Gyr,Galactocentricdistances from6kpcto9.5kpc, andverticaldistances fromtheplane0 < |Z| < 1.5kpc. On thisbasis,wefindthati)theobservedage-metallicityrelationisnearlyflatintherangeofagesbetween0Gyrand8Gyr;ii)atages olderthan9Gyr,weseeadecreasein[Fe/H]andaclearabsenceofmetal-richstars;thiscannotbeexplainedbythesurveyselection functions;iii)thereisasignificantscatterof[Fe/H]atanyage;andiv)[Mg/Fe]increaseswithage,butthedispersionof[Mg/Fe] atages>9Gyrisnotassmallasadvocatedbysomeotherstudies.Inagreementwithearlierwork,wefindthatradialabundance gradientschangeasafunctionofverticaldistancefromtheplane.The[Mg/Fe]gradientsteepensandbecomesnegative.Inaddition, weshowthattheinnerdiskisnotonlymoreα-richcomparedtotheouterdisk,butalsoolder,astracedindependentlybytheages andMgabundancesofstars. Keywords.Stars:abundances-Stars:fundamentalparameters-Galaxy:solarneighbourhood-Galaxy:disk-Galaxy:formation- Surveys 1 1. Introduction spectra will be acquired in medium-resolution mode (R ∼ 16000), with stars probing distances up to 15 kpc. For the One of the main quests in modern astrophysics is to under- analysis of the spectra, several state-of-the-art spectrum anal- stand the formation history of the Milky Way. This requires ysis codes are used (Gilmoreetal. 2012, Randichetal. 2013, observational datasets that provide full phase-space informa- Smiljanic et al. in prep). In addition, sophisticated methods tion, ages, and element abundances for a large number of based on Bayesian inference are now available that combine starsthroughouttheGalaxy.Thedistributionfunctionsofthese in a systematic way observational information and stellar evo- quantities present major constraints on the models of the for- lutiontheory(Pont&Eyer2004;Jørgensen&Lindegren2005; mation and evolution of the Milky Way (e.g. Burkertetal. Schoenrich&Bergemann2013;Serenellietal.2013). 1992; Pagel&Tautvaisiene 1995; Velazquez&White 1999; Inthisstudy,weusethefirstresultsobtainedwiththeGaia- Houetal. 2000; Chiappinietal. 2001; Brooketal. 2004, ESOsurveytostudytherelationshipbetweenageandmetallic- 2005; Naab&Ostriker 2006; Scho¨nrich&Binney 2009b; ityintheGalacticdisk.Wenotethatthisisanexploratorystudy Kubryketal.2013;Minchevetal.2013;Rix&Bovy2013). andmoredefinitiveresultswillbeavailablefromthenextGaia- Inthiscontext,theprimeobservablesaretheradialmetallic- ESO data releases with larger samples. Furthermore, there are ity profilesand the age-metallicityrelation in the Galactic disk othersurveypapersinpreparationthatwillalsoexplorethedisk (seee.g.thereviewbyFeltzing&Chiba2013).Foralongtime, and other components in the Milky Way (Recio-Blanco et al., the mere existence of any age-metallicity relation has been a Mikolaitisetal.,Rojas-Arriagadaetal.,inprep.).Intheupcom- matterofgreatdebate.ThestudybyTwarog(1980),whichcon- ingpapers,wewillalsoaddressotheraspectsoftheGalacticdisk cludedthatagesandmetallicitiesofstarsinthediskareuniquely population, including the now-controversial dichotomy of the correlated, was the first important step in putting this discus- disk(Bovyetal.2012a),byderivingthekinematicsofstarsand sion ontoa modernfooting.Edvardssonetal. (1993),however, adding individual abundances of different chemical elements. was able to show that there is no strong correlation. In addi- We apply the Bayesian method developed by Serenellietal. tion, Feltzingetal. (2001), and later the Geneva-Copenhagen (2013) to derive stellar ages. We explore the limitations of the Survey (Nordstro¨metal. 2004; Holmbergetal. 2007, 2009; observeddatasetsandperformadetailedanalysisofthederived Casagrandeetal. 2011), found a large scatter in metallicity stellarproperties(mass,ages,metallicity).Finally,weusethese at all ages, and confirmed the tentative existence of an old datathatspanafullrangeofagesfrom1Gyrto14Gyr,tostudy metal-richpopulation.Themostrecentin-depthanalysisofthe therelationshipbetweenelementalabundancesandagesofstars, age-metallicity relation in the solar neighbourhood is that by anddiscusstheradialabundanceprofilesintheGalacticdisk.We Haywoodetal.(2013)whocometosimilarconclusions. alsodiscussthecorrelationbetweenMgabundanceandagesof Combined radial and vertical element abundance profiles stars. providethesecondmajorobservationalconstrainttotheGalaxy Thepaperisstructuredasfollows.InSection2observations formation models. Attempts have been made to quantify the anddata reductionare described.Section 3 presentsthe details metallicity distribution function and abundance gradients of of stellar evolutionanalysis and varioustests applied to the in- the disk using data from recent large-scale spectroscopic sur- put datasets. The sample selection bias is discussed in Section veys, such as SEGUE/SDSS (e.g. Leeetal. 2011; Bovyetal. 4. Finally, Section 5 describes the results in the context of the 2012b,c;Schlesingeretal.2012;Chengetal.2012),RAVE(e.g. Galacticevolution,withthefocusontheage-abundanceandspa- Boecheetal. 2013), and APOGEE (e.g. Andersetal. 2013; tialdistributionofstarsintheMilkyWaydisk,andtheconclu- Haydenetal. 2013), as well as smaller samples of stars with sionsaredrawninSection6 high-resolutionobservations(e.g.Bensbyetal.2003;Fuhrmann 2008;Ruchtietal.2011;Bensbyetal.2014).However,thebulk of the data has so far come from the traditional techniques, suchasOBstars,Cepheids,andHIIregions(Andrievskyetal. 2. Observationsandstellarparameters 2002b,a; Le´pineetal. 2011; Lemasleetal. 2013). These pop- Thisworkmakesuseofthehigh-resolutionUVESobservations1 ulations are young, < 1 Gyr, only providing a snapshot of taken within the first half year of observations with the Gaia- the present day abundance pattern. Open clusters and plane- ESOsurvey(Jan.2012-June2012),whichcomprises576stars. tary nebulae also provide information about older populations The details on the data reduction will be provided in Sacco et (Frieletal. 2002; Stanghellini&Haywood 2010; Yongetal. al. (in prep). Of those, 348 are field stars while the others are 2012;Heiteretal.2014):openclustersupto8−9Gyrandplane- members of open or globular clusters. The distribution of the tarynebulaeupto6Gyr(Macieletal.2010).However,inorder observedfieldsampleintheNIRcolour-magnitudediagramand to fully study the evolution and build-up of radial and vertical the selection box is shown in Fig. 1. The UVES solar neigh- abundancedistributionsintheGalacticdisk,weneedtracersof bourhoodtargetswerechosenaccordingtotheircolourstomax- stellarpopulationsofallages,fromtheearliestepochofGalaxy imise the fraction of un-evolved FG stars within 2 kpc in the formationtothepresentday. solarneighbourhood.Thesurveyselectionboxwasdefinedus- With the data taken with the Gaia-ESO Survey, which ingthe2MASSphotometry:12 < J < 14and0.23 < J −K < form the basis of our work, we are in a good position to ad- 0.45+0.5E(B−V);iftherewerenotenoughtargets,therededge dress these two fundamental problems and set the stage for wasextended2.Withthesecriteria,wearepredominantlyselect- the larger datasets coming in the future releases from the sur- ingFGstarswithmagnitudesdowntoV = 16.5(Gilmoreetal. vey. The Gaia-ESO Survey was awarded 300 nights on the inprep.). Very Large Telescope in Chile. In the high-resolution (R = λ/∆λ ∼ 47000) mode it will acquire spectra for about 5000 fieldstars,probingdistancesupto2kpcfromtheSun;100000 1 ResolutionR∼47000 2 ThetargetsselectedbeforeApril(2012)hadthebrightestcutonJof ⋆ Based on observations made with the ESO/VLT, at Paranal 11insteadof12.Ifthenumberofobjectsinthefieldwithintheboxwas Observatory, under program 188.B-3002 (The Gaia-ESO Public lessthanthenumberofUVESfibers,thenthered-edgeofthecolour- SpectroscopicSurvey). boxwasshiftedtohaveenoughtargetstofillthefibers.Inaddition,very M.Bergemannetal.:Agesandabundancesofstarsinthedisk Finally, we applied the correction for the dust layer, such that 9 thereddeningtoastaratdistanceDandGalacticlongitudebis 10 reduced by a factor 1−exp(−| Dsinb |/h) where h = 125 pc. J2MASS1121 TclhoisserteodtuhcetiGonalaaffcteicctspltahnees.tarsthatarerelativelynearbyandlie 13 Wecomparetheresultsonlyforasubsampleofthestarswith 14 E(B−V)<0.05.Fig.2showsthedifferencesbetweenthespec- 0.2 0.4 0.6 0.8 1.0 1.2 1.4 J2MASS − K2MASS troscopicandphotometrictemperaturesforthecalibrationfrom Gonza´lezHerna´ndez&Bonifacio (2009) (top panel) and for 9 10 thecalibrationbyCasagrandeetal. (2010) (bottompanel).The 11 calibrations provide very similar results; the Casagrandeetal. J2MASS1132 a(2p0p1e0a)rctoalbiberaintioangriesem50enKtownaramveerr.agTeh,ebbuottthhetermeipsearastuyrsetesmcaalteics 14 driftathigherTeff. The originof thisdriftis notclear:it could 15 be caused by reddening, uncertainties in theoretical photomet- 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 VAPASS ricmagnitudes,orbyspectroscopicuncertainties.Forthisstudy, we have decided to keep all stars. The difference between our Fig.1. The distribution of the observed UVES data sample in scale andthatgivenbyIRphotometryis∆T = −20±170K the 2MASS (top) colour-magnitudeplane and as a function of eff (calibrationbyGonza´lezHerna´ndez&Bonifacio2009).Thein- V magnitudes from APASS (bottom). The photometric box is trinsicuncertaintyoftheJ−KIRFMcalibrationis150K,which shown(seetext). maycontributetothewideapparentspread. The stellar parameters, T , logg, [Fe/H], and abundances eff Gonzalez−Hernandez & Bonifacio (2009) for the UVES spectra are determinedas follows. The observed 500 spectra were processedby 13 research groupswithin the Gaia- Teff ESOsurveycollaborationwiththesamemodelatmospheresand -Ks 0 linelists, butdifferentanalysismethods,e.g.fullspectrumchi- T-J −500 square minimisation, using pre-computedgrids of modelspec- tra or calculating synthetic spectra on the fly, or an analysis 5000 5500 6000 6500 7000 basedonequivalentwidths.Themodelatmospheresare1DLTE Teff spherically-symmetric(logg < 3.5)andplane-parallel(logg ≥ 3.5) MARCS models (Gustafssonetal. 2008). The determina- Casagrande et al. (2010) tionofthefinalsetofstellarparametersbasedonallthoseanaly- 500 sesisdescribedinSmiljanicetal.(inprep).Inshort,thefinalpa- Teff rameterhomogenisationinvolvesamulti-stageprocess,inwhich -Ks 0 both internal and systematic uncertainties of different datasets T-J −500 arecarefullyevaluated.Variousconsistencytests,includingthe analysisofstellarclusters,benchmarkstarswithinterferometric 5000 5500 6000 6500 7000 Teff andastroseismicdata(Jofreetal.2013,Blanco-Cuaresmaetal. Fig.2.Comparisonofspectroscopictemperaturesandphotomet- 2014, Heiter et al. in prep.), have been used to assess each ricT temperaturesforasubsampleofstars(SeeSection2.1). group’s performance. The final parameters are taken to be the J−K medianofthe multipledeterminations,andthe uncertaintiesof stellarparametersaremedianabsolutedeviations,whichreflect the method-to-method dispersion (see Section 5 for more de- tails). This dataset is available internally to the Gaia-ESO col- 2.2.NLTEeffects laboration,andwillbereferredtoasiDR1. One important problem that needs to be addressed is the influence of the LTE approximation on the determination 2.1.Comparisonwithphotometry of stellar parameters. As shown by Bergemannetal. (2012) and Lindetal. (2012), non-local thermodynamic equilibrium The spectroscopic T scale can be tested using the Infra-Red eff (NLTE) effects change surface gravities and metallicities of FluxMethod(IRFM; Blackwelletal.1980).Wecomputedthe stars,inawaysuchthatloggand[Fe/H]obtainedfromFelines effective temperatureT using the colour - temperaturecal- J−Ks are systematically higher. However, these studies also showed ibrations from Gonza´lezHerna´ndez&Bonifacio (2009) as de- that the differences are typically small at metallicity [Fe/H] > scribed in Ruchti et al. (2011). The J, H, and K magnitudes S −1. weretakenfrom2MASSandreddeningwasestimatedinaiter- WehaveutilisedtheSpectroscopyMadeEasy(SME)spec- ativeprocedurestartingfromthatfoundwiththeSchlegeletal. (1998) dust maps. Those stars with E(B−V) > 0.1 were then tral synthesis code (Valenti&Piskunov 1996) to study the dif- ferencebetweenstellar parametersderivedinLTEversusthose correctedaccordingtotheprescriptiondescribedinBonifacioet derivedinNLTE.SMEhasbeenrecentlyupgradedbythemod- al.(2000): uletosolveforNLTElineformationusingtheFegridsdescribed E(B−V) =0.035+0.65∗E(B−V) . in Lind et al. (2012).A complete description of the new mod- corrected Schlegel ulewillbepresentedelsewhere.ApplicationoftheNLTESME redobjectswereselectedwithacolour-dependentJcuttopreventlow module to the complete iDR1 UVES dataset analysed in this S/Nintheoptical. work revealed that the NLTE effects are minor. For complete- 3 M.Bergemannetal.:Agesandabundancesofstarsinthedisk Rel. star number density Completeness [%] 0.0 0.2 0.4 0.6 0.8 1.0 100 80 60 40 20 0 (a) (a) with J−K and logg cuts 0.4 0.4 0.4 1 0.2 0.2 0.2 % 1 0 0.0 0.0 0.0 % H] −0.2 H] −0.2 H] −0.2 20% e/ e/ e/ F F F [ −0.4 [ −0.4 [ −0.4 −0.6 −0.6 −0.6 −0.8 −0.8 −0.8 40% −1.0 −1.0 −1.0 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 age (Gyr) age (Gyr) age (Gyr) Rel. star number density Completeness [%] 0.0 0.2 0.4 0.6 0.8 1.0 100 80 60 40 20 0 (b) (b) with J−K and logg cuts 0.4 0.4 0.4 1 0.2 0.2 0.2 % 1 0 0.0 0.0 0.0 % H] −0.2 H] −0.2 H] −0.2 20% e/ e/ e/ F F F [ −0.4 [ −0.4 [ −0.4 −0.6 −0.6 −0.6 −0.8 −0.8 −0.8 40% −1.0 −1.0 −1.0 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 age (Gyr) age (Gyr) age (Gyr) Fig.3.StellarnumberdensitycomputedfromtheevolutiontracksassumingonlyIMF(a,top)andIMF+SFR(b,bottom)without colourcuts.Middlepanels:withthecolourcut(0.23< J −K <0.45)andstellarparameterlimits(3.5 ≤ logg ≤ 4.5)tosimulate theselectioneffectofthesurveyandourstellar sample.Right:the suppressionfactor,definedastheratioof starswithcutto the numberofstarswithoutcut,i.e.thelargerthenumberthemorestarsaresuppressed(seetext). ness,wesummarisehereourresultsfordwarfsandgiants,even The differences between our LTE and NLTE results are though the latter are not used in the final analysis of the age- wellwithintheuncertaintiesofthestellarparametersandabun- metallicityrelationandabundancedistributions. dances.WethusconcludethattheeffectofNLTEinthestudied rangeofstellarparameterswillnotsignificantlybiastheresult- The NLTE excitation equilibrium of FeI lines results in ingageandabundancedistributions. somewhatlowereffectivetemperaturesforgiants,withstronger effects toward higher effective temperatures.The effect on sur- face gravity is more complex. The direct effect of higher FeI 3. Determinationofagesanddistances abundancesresultsin higherlogg.Atthe same time,thelower Teff counteractthedirecteffectonFeIabundances,andsologg Theagesandabsolutemagnitudesofstarsweredeterminedus- comes out with slightly lower values. The net result is that ingtheBayesianpipelineBeSPP3 developedbySerenellietal. [Fe/H] stays essentially constant. For stars with logg < 3.5, (2013). The grid of stellar evolutionary tracks has been com- themeandifferencebetweentheNLTEandLTEparametersis: puted with the GARSTEC code (Weiss&Schlattl 2008). In −0.25±17K(Teff),−0.05±0.06dex(logg),−0.01±0.02dex GARSTEC, nuclear reaction rates are those recommended by ([Fe/H]). Adelbergeretal. (2011), OPAL opacities by Iglesias&Rogers For dwarfs, the effect is reversed. Surface gravities and (1996), complemented at low temperatures by those from Ferguson et al. (2005), the FreeEOS equation of state from metallicitiesincrease,althoughthedifferencewithrespecttoan Cassisietal. (2003). Convection is treated with the standard LTEanalysisisverysmall.Forstarswith3.5< logg< 4.5,the meanbiasinloggand[Fe/H]is0.03±0.04dexand0.01±0.01 mixinglength theory(αMLT = 1.811,froma solar calibration), and overshootinghas been included as a diffusive mixing pro- dex,respectively.ThereisnoeffectonT . eff cess(Freytagetal.1996).MoredetailscanbefoundinWeiss& SME is notyetable to computeNLTE abundancesforMg, Schlattl(2008)andSerenellietal.(2013). thusarealisticassessmentoftheNLTEeffectcannotbedoneyet. Our grid of stellar evolution models spans the mass range We have checked other theoretical studies in the literature and 0.6 ≤ M/M ≤ 3.5withstepsof∆M = 0.01M andthemetal- ⊙ ⊙ foundthatthebiasis alsoverysmall.Forexample,forthe two licity range−5.0 ≤ [Fe/H] ≤ 0.5with stepsof ∆[Fe/H] = 0.1 most important lines of MgI, 5711 and 5183 Å, the difference for [Fe/H] ≤ 0 and ∆[Fe/H] = 0.05 for [Fe/H] > 0. Models betweentheNLTEandLTEabundanceisnotlargerthan±0.05 dexforstarswithlogg>3.5(e.g.Shimanskayaetal.2000). 3 BellaterraStellarParameterPipeline 4 M.Bergemannetal.:Agesandabundancesofstarsinthedisk with [Fe/H] ≤ −0.6 include 0.4 dex α-enhancement. A com- 4. Samplecompleteness pletedescriptionof thepipelinecanbe foundin Serenellietal. One of the mostdifficultbutfundamentaltasks is to assess the (2013). In that paper, we showed that below logg ∼ 3.5, stel- completeness of the observed dataset. Various selection func- larmassandagecannotbedeterminedbecauseofthedegener- tions (e.g. in colours, magnitudes, or even T and logg) will acy of stellar evolutionary tracks in the T −logg plane (see eff eff reduce the relative number of stars with certain properties. In also AllendePrieto&Lambert 1999). Therefore, in this work principle,accountingforthesampleselectionismathematically weconsideronlystarswith3.5 < logg < 4.5.Duetothelogg straightforward(e.g.Rix&Bovy2013);howeverthishasrarely cut,54evolvedstarsareremovedfromoursample. beenappliedrigorously. Age was determined by fitting a normal distribution of Toassesstheinfluenceofsurveyselectioncuts,wedesigned the probability distribution function (PDF) in the HR-diagram asimpletest.First,wecreateastellarpopulationwithaSalpeter where the probability density is higher than 20% of the max- initial mass function (IMF), a constant SFR, and a uniform imum. The best-estimate age is taken to be the centre of the metallicitydistribution.Theresultingdensityofsamplestarsis Gaussian fit and the uncertainties are determined from the full shown on the upper-left panel of Figure 3. The upper-central PDF as 1 − σ confidence level. We also tested other statistics panelofFigure3showsthedistributionretainedafterthecolour usingasampleofsyntheticstarsgeneratedfromthetracks(see cutusedfortheUVESsampleisapplied,0.23 < J−K < 0.45, AppendixA),butfoundthatneithertheweightedmeannorthe and with the cuts on surface gravity, 3.5 < logg < 4.5 (see medianofthe underlyingage PDFisa satisfactoryapproxima- Section2.1).Thedensityofstarsinthesampleishighestwhere tion ofthe age when the PDFis broadandasymmetric.Means J−K = 0.23,thatapproximatelycorrespondsto∼ 6500K,i.e. or mediansin truncatedPDFs onthe youngside (or onthe old thebluecutoftheUVESsample.Asthefigureshows,thecuts side)alsoleadtoanoverestimation(underestimation)ofthetrue reducetheoverallnumberofstars,withastrongereffectonthe ageofthestar. oldestmetal-richstars.Bytakingtheratioofthestellarnumber The BeSPP pipeline has been tested in a variety of ways densities computed with (N ) and without (N ) the colour cut nocut in Serenelli et al. (2013). However, in this work we are inter- and gravity cuts, we can estimate what fraction of stars is re- ested in how uncertainties on stellar parameters influence the tained in the sample. The sample completeness is thus defined determination of ages. This test was not done in our previous as: work, which focused on the relative changes of stellar ages f = N /N cut nocut causedstellarparametersderivedunderLTEorNLTE.Toassess systematic biases, which could be introduced by the Bayesian anditisshownintheupper-rightpanelofFig.3,alongwiththe method, we performed test simulations with mock samples of contoursofequalprobability.Theoldmetal-richstars,[Fe/H]> stars drawn randomly from the evolutionary tracks. We have 0.2canbesuppressedalmostcompletely,butalsothefractionof also checked for the possibility of a systematic mismatch be- oldstarswithsolarmetallicityquicklydeclines. tween T and logg scales from stellar evolution models and Wehavealsoconsideredamoresophisticatedmodel,assum- eff fromspectroscopy.Fromthesetests(seeAppendixA),wefound ing an SFR varying with time and with [Fe/H] (see Appendix thattheageestimateisrobustandun-biasedwhenitsuncertainty B). The results of this simulation are shown in the lower three is either smaller than ∼ 30% or smaller than 2 Gyr. The latter panelsofFig.3.TheIMF+SFRdistributionofthestellarden- conditionisrelevantforyoungerstarsthatnaturallytendtohave sity (the lower-left panel) is markedly different from the case largerfractionalerrors. of a constant SFR. Because the SFR decreases with time, the stellar number density always peaks at old ages. In particular, the short e-folding time at the lowest [Fe/H] is evident by the Completeness [%] almost complete absence of young (< 5 Gyr) metal-poor stars ([Fe/H] < −0.7). After applying the colour and gravity cuts 100 80 60 40 20 0 (low-middle panel), the notable difference with respect to the 0.4 D=0.6 kpc 1 0.4 D=1.0 kpc 1 constantSFRcase(topmiddlepanel),inadditiontotheabsence 0.2 % 0.2 % ofyoungmetal-poorstars,istheoveralllowerdensityatyounger [Fe/H] −−000...042 20%10% [Fe/H] −−000...420 20% 20%10% laogweserf-orirgahntypa[Fneel/Ha]n.dTihteissaidmepnlteicaclomtoptlheetecnaesseswisisthhoawflnatinStFhRe (upper-rightpanel).Thisresultcanbeunderstoodeasily.Stellar −0.6 −0.6 number density is constructed by integrating for each age and −0.8 −0.8 −1.0 40% −1.0 [Fe/H],overtheIMFandtheSFR.However,thecontributionof 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 the SFR to the stellar numberdensity is only a functionof age age (Gyr) age (Gyr) and[Fe/H]andthereforecancelsoutwhencomputingthesam- Fig.4. Same as Fig. 3 but also including the magnitude cut of ple completenessas a functionof these two quantities.Adding thesurvey:12< J <14 a spatial distribution to the discussion also does not affect this conclusion,as long as it does not include a dependenceon the stellarmass. Distances were determined following Ruchtietal. (2011), Inthenextstep,wehaveimposedthemagnitudecutaccord- using the absolute magnitudes as described above and the K ing to the surveyselection. Thiswas achievedby transforming S magnitudes from 2MASS. Reddening is described in Section theabsolutemagnitudesofsyntheticstarstotheapparentmag- 2.1.TheGalactocentricradialRdistanceandverticalZdistance nitudes for a range of distances, from 100 pc to 2 kpc (typ- fromtheplanewerederivedusingthecombinationofeachstar’s ical of the observed sample). The distributions were then re- distance from the Sun and Galactic (ℓ,b) coordinates.We note stricted to J magnitudes in the range from 12 to 14 mag. Fig that we have assumed that the Sun lies at R = 8.3 kpc in the 4showstworepresentativecases,wherethedistanceis0.6and plane.Uncertaintiesin bothR and Z were propagatedfromthe 1kpc(leftandrightpanel),alsoincludingthecolourandgravity uncertaintyinthedistance. cuts as described above.Beyond 0.9 kpc, the density of young 5 M.Bergemannetal.:Agesandabundancesofstarsinthedisk starswithsuper-andsubsolarmetallicitydrops,alsoatdistances 11..00 0.50 smaller than 0.6 kpc metal-rich stars are suppressed. In either case,themostvulnerableregionistheupperrightcornerofthe 00..55 3% 30% 0.35 age-metallicityplot,thatcorrespondstooldmetal-richstars. 50% 00..00 Tosummarise,thecombinedeffectofthecolourandmagni- H] tudelimitsintheGaia-ESOsurveycatalogueistounder-sample [Fe/ −−00..55 0.20 starsthatareeitheryoungandmetal-poor,oroldandmetal-rich. 50% However,theextenttowhichthesestarsareunder-sampled,de- −−11..00 0.05 pends quantitatively on their distance and actual age distribu- tion,whichisnotknownapriori.Furthermore,wehavenotac- −−11..55 −0.10 00 22 44 66 88 1100 1122 1144 countedfor the anisotropyof the inter-stellar reddening,which age (Gyr) [Mg/Fe] could have a differential effect on the typical characteristics of stars observedwithin a givenphotometricbox as a functionof 0.6 0.30 spatialdirection.Therefore,weseethesetestsonlyasanumer- ical illustration to help us understand the picture qualitatively, 0.4 0.00 andtheresultscannotbeusedtocorrecttheobservedsample. Fe] 0.2 g/ −0.30 M 5. Results [ 0.0 −0.60 5.1.Age-[α/Fe]andage-[Fe/H]relations −0.2 −0.90 Themaingoalofthisworkistostudytherelationbetweenages 0 2 4 6 8 10 12 14 and abundances of stars in the Milky Way disk. As discussed age (Gyr) [Fe/H] inSection3,weapplycutsonloggandonageerrors.We also remove stars with uncertainties in Mg abundances larger than Fig.6. Top: Age-metallicity plot for the Milky Way disk. The 0.15dex,whichleavesuswith144starsinthefinalsample(Fig. contoursindicatetherelativesamplecompleteness,i.e.theper- 5). The mean uncertainties are 80 K in Teff, 0.15 dex in logg, centageofstarsthatwouldremaininthesampleduetotheGaia- 0.06in[Fe/H],and0.06in[Mg/Fe].Theresultsforallselected ESO survey selection functions, i.e. IR magnitude and colour stars in the age-metallicity and age-[Mg/Fe] planes are shown cuts, and restrictions imposed on stellar parameters. Here the in Fig. 6. The contours in the top panel of Fig. 6 indicate the magnitude cuts refer to the distance of 1 kpc. For clarity, this relativesamplecompleteness;the percentageswerenormalised fractionwasnormalisedtoitspeakvalue.Bottom:thedistribu- toitspeakvalue,whichis∼35%(Fig.3). tionofstarsinthe[Mg/Fe]-ageplane. thattheolderstarsareprogressivelymoremetal-poor.Ourresult 1 doesnotsupporttheanalysisbyCasagrandeetal.(2011),which −1.0 −0.00.5 isbasedonthephotometricmetallicitiesandagesofstarsinthe 0.3 Geneva-CopenhagenSurvey.Theauthorsfindnoage-metallicity 2 relation; the stars are homogeneouslydistributed in metallicity in any age bin up to 12 Gyr (Casagrandeetal. 2011, their Fig. 16).While qualitatively,themeanmetallicityofthe samplefor g og 3 oldagescouldbeaffectedbyoursamplingbiasagainstoldand l metal-richstars,Fig.6showsthatthesuppressionrelativetothe mostpopulatedpartoftheplotisnotlargerthan50−70%.The 4 factthatnometal-richstar isobservedwith age> 10Gyrmay indicate that such stars are rare, if they exist at all in the solar neighbourhood. 5 Figure6(bottompanel)shows[Mg/Fe]ratiosasafunction 7000 6000 5000 4000 of age, colour-coded with [Fe/H]. The oldest stars with ages T (K) eff > 12Gyr show[Mg/Fe],from0to 0.4dex,anda broadrange of metallicity, from solar to [Fe/H] ∼ −1. There is little evi- Fig.5. The selected UVES sample: (black open circles) - all dencethattherelationtightensatagesgreaterthan9Gyrinour iDR1 stars; (filled green circles) - stars that satisfy our selec- tion criteria. 8 Gyr GARSTEC isochrones for different [Fe/H] sample,asadvocatede.g.byHaywoodetal.(2013)whouseda subsample of 363 stars from the Adibekyanetal. (2012) sam- arealsoshown(seeSection3). ple of 1111 FGK stars. Bensbyetal. (2014) also found a knee at 9 Gyr, with a clear increase in [Mg/Fe] with age (their Fig. First, we turn to the discussion of the age-metallicity rela- 21),albeitwithanotablylargerscatteratages> 11Gyrthanin tion(Fig.6,toppanel).Themainfeaturesdemonstratedinear- Haywoodetal.(2013).Itispossiblethatthelargerscatterinour lier observational studies of the disk by Feltzingetal. (2001); sample at old ages is due to the fact that we include stars with Haywoodetal. (2013);Bensbyetal. (2014) are clearlyvisible. relativelylargeageuncertainties.However,fromouranalysisof Between 0 Gyr and 8 Gyr the trend is predominantly flat, and theselectioneffects,itistobeexpectedthatsomefractionofα- thescatter in [Fe/H]is largeatanygivenage.Thisisthe most pooroldstarscouldbeartificiallysuppressedforthesamerea- populatedlocusonthediagram,whichisunbiasedaccordingto sonsasdiscussedabove,akinto the[Fe/H]suppressionshown our tests. After 8 Gyr, there is a clear decline in [Fe/H], such intheage-metallicityplot.Regardlessoftheseeffects,thetrends 6 M.Bergemannetal.:Agesandabundancesofstarsinthedisk at old age, as seen by Haywoodetal. (2013) and Bensbyetal. 11..00 8000.00 (2014)fitwithinour[Mg/Fe]-agerelation. Finally, one interesting feature of the age-metallicity rela- tiondeservesacomment.Fig.7(toppanel)showstheobserved 00..55 3% 7125.00 stars in the age-metallicity plane colour-coded with their T . 30% eff 50% The obvious correlation with effective temperature is striking 00..00 yet it can be easily explained based on the similar considera- H] tionsasinSection4. InthemiddleandbottompanelofFig.7, e/ 6250.00 F we also show the maximum Teff to be expected in the [Fe/H] [ −−00..55 -ageplanebasedonstellarevolutionmodels,without(middle) 50% and with (bottom) cuts on the photometry and stellar parame- 5375.00 ters. The colour and logg cuts affect the bottom left corner of −−11..00 theage-metallicityplot.Younghotstarsaresuppressedbecause ofthebluecolourcutintheGaia-ESOUVESsampleselection. −−11..55 4500.00 However,fromthecomparisonofthesetwoplotsweseethatthe 00 22 44 66 88 1100 1122 1144 trend for T ≤ 6500 K does not depend on selection effects. age (Gyr) Teff eff ThesegregationofthesampleaccordingtotheT isthussim- eff plytheconsequenceofstellarevolution:thehighest’observable’ Highest Teff > 8000.00 temperatureofstarsdecreaseswithageandmetallicity,andnat- 0.4 urallyleadstotheT distributionshowninFig.7.Suchatrend eff mustbepresentinanysurvey,aslongastheprobedTeff rangeis 0.2 5500 K nottoonarrow. 0.0 5750 K 5.2.Abundancegradientsasafunctionofradialandvertical H] −0.2 distance e/ F [ 7125.00 −0.4 Figure 8 shows how stars are distributed with the vertical dis- tance from the plane |Z| and Galactocentricdistance R, colour- −0.6 codedaccordingtotheirages.Themiddlepanelsshowthegradi- entsof[Fe/H]and[Mg/Fe]asafunctionofR;thebottompanel −0.8 6250 K 6000 K isthe[Mg/Fe]-[Fe/H]relation.Thethreeopenclustersthatare 6500 K availableintheUVESiDR1,NGC6705,Trumpler20,andNGC −1.0 4815(Magrinietal.2013)arealsoplotted. 0 2 4 6 8 10 12 14 age (Gyr) There are obvious differences in the age, metallicity, and 6250.00 Mg gradients with R. The younger stars with ages ≤ 7 Gyr Highest Teff w/cuts showanoutwarddecreaseinthemean[Fe/H],slightlystronger 5500 K comparedtothepreviousstudiesofyoungdiskpopulations,i.e 0.4 Cepheids,OBstars,andHIIregions(Andrievskyetal.2002a,b, Lemasleetal.2013).Usingonlystarsclosetotheplane,within 0.2 |Z| of 300 pc, we derive ∆[Fe/H]/∆R = −0.068 ± 0.014 dex/kpc or ∆[Fe/H]/∆R = −0.076 ± 0.010 dex/kpc (stars 0.0 with ages ≤ 7 Gyr). Analysing RAVE spectra of disk dwarfs, 5750 K 5375.00 Boecheetal.(2013)foundthat∆[Fe/H]/∆R=−0.065dex/kpc e/H] −0.2 F for Z < 400 pc. For 300 < Z < 800 pc, we obtain [ max max −0.4 ∆[Fe/H]/∆R = −0.114±0.009dex/kpc.Thesteepeningofthe gradientissurprisinggiventheotherstudiesfoundflatteroreven −0.6 positive radial metallicity gradients at larger vertical distances from the plane (AllendePrietoetal. 2006,Haydenetal. 2013; −0.8 6250 K 6000 K Andersetal. 2013, Katzetal. 2011), but this could reflect our 6500 K smalldatasetorthefactthatthestudiesprobemuchlarger|Z|. −1.0 4500.00 0 2 4 6 8 10 12 14 Theoldstarsinoursampletendtohavelower[Fe/H]even age (Gyr) Teff in the inner disk (Fig. 8, (b)), and our [Fe/H] gradient for old starswith agesabove12Gyris∆[Fe/H]/∆R = 0.069±0.044, Fig.7. Top panel: the observed stars in the age-[Fe/H] plane, positivebutwitha largeruncertaintyandpotentiallyconsistent colour-coded with their T . Bottom two panels: The highest eff with being flat. However, we also note that this apparent age possibleT foragivenageand[Fe/H]obtainedfromthestellar eff dependence of the radial metallicity gradient is also related to evolutiontrackswithout(middle)andwith(bottom)photometry the factthatwe observeolderstarsatlargerdistancesfromthe andloggcuts.SelectedcurvesofconstantT aregivenforref- eff plane. As seen in the top (a) panel of Fig. 8, the majority of erence.ForT ≤6500K,thehighest’observable’valuesofT eff eff old stars are also located at |Z| > 800 pc and our sample does donotdependonthecutsimposedonthesampleandaresimply not have directional isotropy: we probe larger distances in the theresultofstellarevolutioneffects. innerdisk.Therefore,wecannotyetmakemoredefinitivestate- ments about the gradients for old stellar population,or at high |Z|.Nordstro¨metal.(2004)notedachangeofslopeoftheradial [Fe/H]gradientinthedisk.Theyfindaprogressivelyflattening δ[Fe/H]/δR withincreasingage,whichevenbecomesposi- mean 7 M.Bergemannetal.:Agesandabundancesofstarsinthedisk 11..55 14.00 (a) 11..00 11.20 00..55 Trumpler20 c) NGC6705 8.40 kp 00..00 Z ( −−00..55 NGC4815 5.60 −−11..00 2.80 −−11..55 0.00 66 77 88 99 1100 R (kpc) 14.00 0.5 (b) 11.20 0.0 H] 8.40 e/ −0.5 F 5.60 [ −1.0 2.80 −1.5 0.00 6 7 8 9 10 R (kpc) 14.00 0.4 (c) 11.20 0.2 e] 8.40 F g/ 0.0 M 5.60 [ −0.2 2.80 Open Clusters −0.4 0.00 6 7 8 9 10 R (kpc) 14.00 0.4 (d) 11.20 e] 0.2 8.40 F g/ M 0.0 5.60 [ 2.80 −0.2 0.00 −1.0 −0.5 0.0 0.5 age (Gyr) [Fe/H] Fig.8.Thefinalstellarsample.Toptobottom:a)thedistributionofstarsintheZ vsRplane;bandc)radialgradientsintheMW diskfor[Fe/H]and[Mg/Fe];d)the[Fe/H]−[Mg/Fe]relation.Colourrepresentsageofastar.Thethreeyoungopenclusters,which areavailableinUVESiDR1,areshownwithlargecrosses. tiveforages> 10Gyr4.Itislikelythattheirresultsalsoreflect in our sample, the most populated bin in our sample, we infer theeffectofobservingolderstarsatlarger|Z|fromtheplane. ∆[Mg/Fe]/∆R = −0.045± 0.011. It appears that the gradient The radial [Mg/Fe] gradient is shown in the panel (c) of steepens further at even larger vertical distance, |Z| > 0.8 kpc. Fig. 8 colour-coded with age. For the stars with |Z| ≤ 300 pc, Moreover,we findthatthegradientof[Mg/Fe]becomesnega- the radial gradient in the sample mean of the [Mg/Fe] abun- tiveandverysteepforolderstars,i.e.∆[Mg/Fe]/∆R= 0.015± danceisclosetozero,∆[Mg/Fe]/∆R=0.021±0.014.However, 0.014(ages≤7Gyr)and∆[Mg/Fe]/∆R=−0.071±0.029(ages thegradientbecomesnegativeandsteepenswithincreasingdis- ≥ 12 Gyr). In words, the outer disk has less high-Mg and old tance from the plane. For the stars with 0.3 < |Z| < 0.8 kpc starsthantheinnerdisk.Theseresultsareveryinteresting,and theysupportandextendtheresultsoftheearlierstudies,includ- ingBensbyetal.(2010,2011)andBovyetal.(2012c).Thefor- 4 Nordstrometal.(2004)studiedgradientsasafunctionofthemean merfocussedontheinner(4<R<7kpc)andouter(9<R<13 radiusR mean 8 M.Bergemannetal.:Agesandabundancesofstarsinthedisk kpc) disk giants. Their main conclusion is that while the in- prediction,moredataisneeded.Thereforeweleavethisanalysis ner disk giants chemically behave as the solar neighbourhood forthenextpaper,whichwillincludea muchlargernumberof stars in terms of the ”two” disk components (low [α/Fe] thin- starsfromtheGaia-ESODR2dataset. diskstarsvshigh[α/Fe]thick-diskstars),theouterdiskisonly formedof ”thin-disk”-likestars. Bovyetal. (2012c) foundthat 6. Summary theincidenceofα-enhancedstarsfallsoff stronglytowardsthe outerdiskusingG-dwarfsfromtheSEGUEsurvey.Inthiswork, The main goal of our work is to study the relationship be- wearealsoabletoadd,forthefirsttime,agestotheinner-outer tweenageandmetallicityandspatialdistributionofstarsinthe disk picture.The scatter of [Fe/H], [Mg/Fe], and ages of stars Galacticdiskfromobservationalperspective. towardstheinnerdiskislargerthanintheouterdisk.Thismeans The stellar sample includes several hundreds of stars ob- thatthe chemicalevolutionmodelsfor the Galactic disk which served at high-resolution (with the UVES instrument at VLT) predict smaller abundance scatter in the inner disk (Houetal. within the first six monthsof the Gaia-ESO survey. Stellar pa- 2000)aredisfavouredbyourresults. rameters and abundances were determined with 1D local ther- Thebottom(d)panelofFig.8showsthe[Mg/Fe]-[Fe/H]re- modynamicequilibrium(LTE)MARCSmodelatmospheres,by lation.Theresultsarenotun-expected:thesolar-metallicitystars combiningtheresultsobtainedbyseveraldifferentspectroscopic arepredominantlyyoung.Atlowermetallicity,weseeyounger techniques. We then derived the mass and age of each star, as stars with low Mg/Fe abundance ratios, but also very old Mg- well as its distance from the Sun, using the Bayesian method enhanced stars. Whether these are two different components, developedin Serenelliet al. (2013).The results were validated each with its own history, or a continuous distribution of stars againstastero-seismologyandtheIRFM method.We tookspe- cannotbefirmlyestablishedyet. cialcaretoquantifythesurveyselectioneffectsintheinterpreta- Ingeneral,ourresultsmayhaveseveralinterpretations(see tionofthefinalparameterdistributions.Forthis,weperformed Feltzing&Chiba 2013, for a review of disk formation sce- aseriesoftestsusingamockstellarsamplegeneratedfromthe- narios). Some observational studies (e.g. Juric´etal. 2008) de- oreticalstellarmodels,whichwassubjecttovariouscutsinthe compose the disk into the thin and thick components, which space of observables.The outcomeof these tests allowedus to formedindifferentepisodesofGalaxyformation.Modelswhich define the optimal dataset to address the science problems. In assume different evolutionary history of the two disks (e.g. the final sample, we have 144 stars with a wide range of ages Chiappinietal.1997,2001)arebroadlyconsistentwithobserva- (0.5−13.5Gyr),Galactocentricdistancesfrom6kpcto9kpc, tions.Starsinthethindiskareyoung<8Gyrandα-poor,while and vertical distances from the plane 0 < |Z| < 1.5 kpc. The thethickdiskisolder,metal-poorandα-enhanced(Bensbyetal. sampleisnotlarge,howeveritshouldbenotedthatthestudyis 2003;Kordopatisetal.2011,2013).Inthisinterpretation,atthe exploratory,i.e.layingoutthemethodandthepropertiesofthe smallestdistancesfromtheplane,ourage-metallicityrelationis observed field sample of stars in the Gaia-ESO Survey. At the dominatedbythethindisk.Intheintermediateverticaldistance end of the survey we expect to have a one order of magnitude bin,ourdatawouldindicateapresenceofboththethinandthick increaseinthestellarsample. disk. Ourfindingscanbesummarisedasfollows. While the discrete nature of the disk is one possibility, our First, the observed age-metallicity relation is fairly flat in data can be also explained by other Galaxy formation mod- rangeofagesbetween0and8Gyr(orequivalentlyintheyoung els, which do not explicitly divide the disk into subcompo- disk, for stars close to the plane). We also confirm the previ- nents (Houetal. 2000; Rosˇkaretal. 2008; Rahimietal. 2013; ousresultsthatthereisasignificantscatterofmetallicityatany Kubryketal. 2013; Minchevetal. 2013, 2014). For example, age.Asteepdeclinein[Fe/H]isseenforstarswithagesabove the semi-analytical model by (Scho¨nrich&Binney 2009b, see 9 Gyr. The colour and magnitude cuts on the survey suppress their Fig. 6), which assumes radial migration driven by tran- veryoldmetal-richstarsandyoungmetal-poorstars.However, sient spiral arms, is consistent with our data both what con- thesuppressionrelativetothemostpopulatedlocusontheage- cerns the age-metallicity relation shape and the [Fe/H] scatter metallicityrelationisnotlargerthan50−70%.Inoursample,no at a given age. In accord with our results, this model also pre- solar-metallicity star is observedwith age > 10 Gyr. This may dicts the apparent bimodality in the [Fe/H]-[α/Fe]plane, just indicate that such stars are rare, if they exist at all in the solar as we observe (Fig. 8, bottom panel). This effect is not a con- neighbourhood. sequence of a star formation hiatus (as e.g. in Chiappinietal. [Mg/Fe]ratioscorrelatewithage,suchthatα-richstarsare 2001), but the 1 Gyr timescale of SN Ia coupled with secular older,butthedispersionof[Mg/Fe]abundancesisnotsmallat heatingandchurning(Scho¨nrich&Binney2009a,asimplean- anyage.Inparticular,theoldstarswithagesabove9Gyrhave alytical explanation is given in their Appendix B). There exist a range of α-enhancement, from 0 to 0.4 dex, and metallicity othertypesofmodelsthatalsoshowconsistencieswithourdata. from solar to [Fe/H] ∼ −1. This contrasts with the very tight Forexample,hydrodynamicalN-bodysimulations(Brooketal. correlation of [Mg/Fe] and ages for old stars as suggested by 2012; Minchevetal. 2013) form a thick-disk like component Haywoodetal.(2013).However,thetrendsfoundbyHaywood through early gas-rich mergers and radial migration driven by etal.(2013)andBensbyetal.(2014)overlapwithour[Mg/Fe]- externalandinternalperturbations.Themostrecentsimulations agerelation. byMinchevetal.(2014,theirFig.9)predictthatmono-agepop- We also show, in agreement with earlier observational and ulationshaveradialabundancegradientsthatdonotchangewith theoretical work, that the radial abundance gradients (Fe, Mg) verticaldistancefromtheplane.Thechangeofradialgradients change as a function of vertical distance from the plane, or with|Z|isthuscausedbyadifferentmixofstellaragesatdiffer- the mean age of a population. At |Z| ≤ 300 pc, we find ent altitudes. We cannotyet test this hypothesisbecause of the ∆[Fe/H]/∆R = −0.068±0.014and ∆[Mg/Fe]/∆R = 0.021± sparsesamplingofstars.However,weconfirmthatthepositive 0.014. For the most populated |Z| bin in our sample, 300 ≤ gradientin[Mg/Fe]atlow|Z|changestonegativeatlargerverti- |Z| ≤ 800 pc we infer ∆[Mg/Fe]/∆R = −0.045± 0.011, and caldistancefromtheplane,wealsoobserveasimilarstructurein ∆[Fe/H]/∆R = −0.114 ± 0.009. The picture is not too dif- themono-agebins.Toputmorequantitativeconstraintsontheir ferent when separating stars according to their age: the gra- 9 M.Bergemannetal.:Agesandabundancesofstarsinthedisk dient of [Mg/Fe] is close to zero for younger stars, but be- Holmberg,J.,Nordstro¨m,B.,&Andersen,J.2009,A&A,501,941 comes negative and very steep for the older stellar popula- Hou,J.L.,Prantzos,N.,&Boissier,S.2000,A&A,362,921 tion, i.e. ∆[Mg/Fe]/∆R = 0.015 ± 0.014 (ages ≤ 7 Gyr) Iglesias,C.A.&Rogers,F.J.1996,ApJ,464,943 Jofre,P.,Heiter,U.,Soubiran,C.,etal.2013,ArXive-prints and ∆[Mg/Fe]/∆R = −0.071 ± 0.029 (ages ≥ 12 Gyr). The Jørgensen,B.R.&Lindegren,L.2005,A&A,436,127 anisotropic distribution of stars in our sample, i.e. larger frac- Juric´,M.,Ivezic´,Zˇ.,Brooks,A.,etal.2008,ApJ,673,864 tionof starsobservedin the innerdisk, shouldbe keptin mind Katz,D.,Soubiran,C.,Cayrel,R.,etal.2011,A&A,525,A90 wheninterpretingthesegradients. Kordopatis,G.,Gilmore,G.,Wyse,R.F.G.,etal.2013,MNRAS,436,3231 Kordopatis,G.,Recio-Blanco,A.,deLaverny,P.,etal.2011,A&A,535,A107 Tosummarise,perhapsthemostimportantresultofthisanal- Kubryk,M.,Prantzos,N.,&Athanassoula,E.2013,MNRAS,436,1479 ysisishowthepropertiesofthedominantstellarpopulationsin Lee,Y.S.,Beers,T.C.,An,D.,etal.2011,ApJ,738,187 thediskchangeasweprobestarswithdifferentages,distances, Lemasle,B.,Franc¸ois,P.,Genovali,K.,etal.2013,A&A,558,A31 Mg abundances, and metallicities. We find more older, α-rich, Le´pine, J.R.D.,Cruz, P.,Scarano, S.J.,etal. 2011,Monthly Notices ofthe andmetal-poorstarsintheinnerdisk.Intheouterdisk,starsare RoyalAstronomicalSociety,417,698 Lind,K.,Bergemann,M.,&Asplund,M.2012,MNRAS,427,50 onaverageyoungerandα-poor.Althoughourcurrentsampleis Maciel,W.J.,Costa,R.D.D.,&Idiart,T.E.P.2010,A&A,512,A19 small,ourresultslendsupporttocurrentpicturesoftheforma- Magrini,L.,Randich,S.,Romano,D.,etal.2013,ArXive-prints tionoftheGalacticdisk,suchastheinside-outformation.This Minchev,I.,Chiappini,C.,&Martig,M.2013,A&A,558,A9 initial dataset illustrates the potential of the Gaia-ESO Survey. Minchev,I.,Chiappini,C.,&Martig,M.2014,ArXive-prints Naab,T.&Ostriker,J.P.2006,MNRAS,366,899 With upcomingdata releases, we will have a large database of Nordstro¨m,B.,Mayor,M.,Andersen,J.,etal.2004,Astronomy&Astrophysics, spectrathathavebeenreducedandanalysedinasystematicand 418,989 homogeneousmanner.Wewillthusbeabletodistinguishamong Pagel,B.E.J.&Tautvaisiene,G.1995,MNRAS,276,505 themanytheoriesoftheformationofthediskoftheMilkyWay. Pont,F.&Eyer,L.2004,MNRAS,351,487 Rahimi,A.,Carrell,K.,&Kawata,D.2013,ArXive-prints Randich,S.,Gilmore,G.,&Gaia-ESOConsortium.2013,TheMessenger,154, References 47 Rix,H.-W.&Bovy,J.2013,A&ARev.,21,61 Adelberger, E. G., Garc´ıa, A., Robertson, R. G. H., et al. 2011, Reviews of Rosˇkar,R.,Debattista,V.P.,Quinn,T.R.,Stinson,G.S.,&Wadsley,J.2008, ModernPhysics,83,195 ApJ,684,L79 Adibekyan,V.Z.,Sousa,S.G.,Santos,N.C.,etal.2012,A&A,545,A32 Ruchti,G.R.,Fulbright,J.P.,Wyse,R.F.G.,etal.2011,ApJ,737,9 AllendePrieto,C.,Beers,T.C.,Wilhelm,R.,etal.2006,ApJ,636,804 Schlegel,D.J.,Finkbeiner,D.P.,&Davis,M.1998,ApJ,500,525 AllendePrieto,C.&Lambert,D.L.1999,A&A,352,555 Schlesinger,K.J.,Johnson,J.A.,Rockosi,C.M.,etal.2012,ApJ,761,160 Anders,F.,Chiappini,C.,Santiago,B.X.,etal.2013,ArXive-prints Schoenrich,R.&Bergemann,M.2013,ArXive-prints Andrievsky,S.M.,Bersier,D.,Kovtyukh,V.V.,etal.2002a,A&A,384,140 Scho¨nrich,R.&Binney,J.2009a,MNRAS,396,203 Andrievsky,S.M.,Kovtyukh,V.V.,Luck,R.E.,etal.2002b,A&A,381,32 Scho¨nrich,R.&Binney,J.2009b,MNRAS,399,1145 Bensby,T.,Alves-Brito,A.,Oey,M.S.,Yong,D.,&Mele´ndez,J.2010,A&A, Serenelli,A.M.,Bergemann,M.,Ruchti,G.,&Casagrande,L.2013,MNRAS, 516,L13 429,3645 Bensby,T.,Alves-Brito,A.,Oey,M.S.,Yong,D.,&Mele´ndez,J.2011,ApJ, Shimanskaya,N.N.,Mashonkina,L.I.,&Sakhibullin,N.A.2000,Astronomy 735,L46 Reports,44,530 Bensby,T.,Feltzing,S.,&Lundstro¨m,I.2003,A&A,410,527 Stanghellini,L.&Haywood,M.2010,ApJ,714,1096 Bensby,T.,Feltzing,S.,&Oey,M.S.2014,A&A,562,A71 Valenti,J.A.&Piskunov,N.1996,A&AS,118,595 Bergemann,M.,Lind,K.,Collet,R.,Magic,Z.,&Asplund,M.2012,MNRAS, Velazquez,H.&White,S.D.M.1999,MNRAS,304,254 427,27 Weiss,A.&Schlattl,H.2008,Ap&SS,316,99 Blackwell, D. E., Petford, A. D., & Shallis, M. J. 1980, Astronomy & Yong,D.,Carney,B.W.,&Friel,E.D.2012,AJ,144,95 Astrophysics,82,249 Blanco-Cuaresma,S.,Soubiran,C.,Jofre´,P.,&Heiter,U.2014,ArXive-prints Boeche,C.,Siebert,A.,Piffl,T.,etal.2013,A&A,559,A59 Acknowledgements. This work was partly supported by the European Union Bovy,J.,Rix,H.-W.,&Hogg,D.W.2012a,ApJ,751,131 FP7 programme through ERC grant number 320360. AS is supported by Bovy,J.,Rix,H.-W.,Hogg,D.W.,etal.2012b,ApJ,755,115 the MICINN grant AYA2011-24704 and by the ESF EUROCORES Program Bovy,J.,Rix,H.-W.,Liu,C.,etal.2012c,ApJ,753,148 EuroGENESIS (MICINN grant EUI2009-04170). The results presented here Brook,C.B.,Gibson,B.K.,Martel,H.,&Kawata,D.2005,ApJ,630,298 benefited fromdiscussions heldduringGaia-ESOworkshops andconferences Brook,C.B.,Kawata,D.,Gibson,B.K.,&Freeman,K.C.2004,ApJ,612,894 supported by the ESF (European Science Foundation) through the GREAT Brook,C.B.,Stinson,G.S.,Gibson,B.K.,etal.2012,MNRAS,426,690 (GaiaResearchforEuropeanAstronomyTraining)ResearchNetworkProgram. Burkert,A.,Truran,J.W.,&Hensler,G.1992,ApJ,391,651 Based on data products from observations made with ESO Telescopes at the Casagrande, L.,Ramirez, I.,Melendez, J.,Bessell, M.,& Asplund, M.2010, LaSillaParanalObservatoryunderprogrammeID188.B-3002.Thisworkwas Astronomy&Astrophysics,512,A54 partly supported by the European Union FP7programme through ERC grant Casagrande,L.,Schoenrich,R.,Asplund,M.,etal.2011,VizieROn-lineData number 320360 and by the Leverhulme Trust through grant RPG-2012-541. Catalog,353,09138 Weacknowledge thesupport from INAFand Ministero dell’ Istruzione, dell’ Casagrande,L.,Scho¨nrich,R.,Asplund,M.,etal.2011,A&A,530,A138 Universita`’ e della Ricerca (MIUR) in the form of the grant ”Premiale VLT Cassisi,S.,Salaris,M.,&Irwin,A.W.2003,ApJ,588,862 2012”. GRR and SF acknowledge support by grant No. 2011-5042 from the Cheng,J.Y.,Rockosi,C.M.,Morrison,H.L.,etal.2012,ApJ,752,51 SwedishResearchCouncil.WeacknowledgesupportfromtheSwedishNational Chiappini,C.,Matteucci,F.,&Gratton,R.1997,ApJ,477,765 Space Board (Rymdstyrelsen). T.B. was funded by grant No. 621-2009-3911 Chiappini,C.,Matteucci,F.,&Romano,D.2001,ApJ,554,1044 fromTheSwedishResearchCouncil. Edvardsson,B.,Andersen,J.,Gustafsson,B.,etal.1993,A&A,275,101 Feltzing,S.&Chiba,M.2013,NewARev.,57,80 Feltzing,S.,Holmberg,J.,&Hurley,J.R.2001,A&A,377,911 AppendixA: Tests Freytag,B.,Ludwig,H.-G.,&Steffen,M.1996,A&A,313,497 Friel,E.D.,Janes,K.A.,Tavarez,M.,etal.2002,AJ,124,2693 To check for systematic biases caused by the method itself, Fuhrmann,K.2008,MNRAS,384,173 weperformedMonte-Carlosimulationsbygeneratingarandom Gilmore,G.,Randich,S.,Asplund,M.,etal.2012,TheMessenger,147,25 Gonza´lezHerna´ndez,J.I.&Bonifacio,P.2009,A&A,497,497 sample of synthetic stars assuming a Salpeter IMF, a constant Gustafsson,B.,Edvardsson,B.,Eriksson,K.,etal.2008,A&A,486,951 starformationrate,andauniform[Fe/H]distributionovertime. Hayden,M.R.,Holtzman,J.A.,Bovy,J.,etal.2013,ArXive-prints Thesampleis restrictedtothe low-massrange0.7 ≤ M/M ≤ ⊙ Haywood,M.,DiMatteo,P.,Lehnert,M.,Katz,D.,&Gomez,A.2013,ArXiv 1.5 and −2.2 ≤ [Fe/H] ≤ 0.4, representative of the Gaia-ESO e-prints surveyUVESsample.Massand[Fe/H]arediscretisedtomatch Heiter,U.,Soubiran,C.,Netopil,M.,&Paunzen,E.2014,A&A,561,A93 Holmberg,J.,Nordstro¨m,B.,&Andersen,J.2007,A&A,475,519 the values present in the grid. Along each track, Teff and logg 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.