The Fundamentals of Heavy Tails Heavytails–extremeeventsorvaluesmorecommonthanexpected–emergeevery- where:theeconomy,naturalevents,andsocialandinformationnetworksarejusta fewexamples.Yetafterdecadesofprogress,theyarestilltreatedasmysterious,sur- prising,andevencontroversial,primarilybecausethenecessarymathematicalmodels andstatisticalmethodsarenotwidelyknown. Thisbook,forthefirsttime,providesarigorousintroductiontoheavy-taileddistri- butionsaccessibletoanyonewhoknowselementaryprobability.Ittacklesandtames the zoo of terminology for models and properties, demystifying topics such as the generalized central limit theorem and regular variation. It tracks the natural emer- genceofheavy-taileddistributionsfromawidevarietyofgeneralprocesses,building intuition. And it reveals the controversy surrounding heavy tails to be the result of flawedstatistics,thenequipsreaderstoidentifyandestimatewithconfidence.Over 100exercisescompletethisengagingpackage. (cid:3459)(cid:3450)(cid:3474)(cid:3450)(cid:3460)(cid:3467)(cid:3458)(cid:3468)(cid:3457)(cid:3463)(cid:3450)(cid:3463) (cid:3463)(cid:3450)(cid:3458)(cid:3467)isAssociateProfessorinElectricalEngineeringatIITBom- bay. His research focuses on modeling, performance evaluation, and design issues in online learning environments, communication networks, queueing systems, and smartpowergrids.HeistherecipientofbestpaperawardsatIFIPPerformance(2010 and2020)andACMe-Energy(2020). (cid:3450)(cid:3453)(cid:3450)(cid:3462) (cid:3472)(cid:3458)(cid:3454)(cid:3467)(cid:3462)(cid:3450)(cid:3463)isProfessorofComputingandMathematicalSciencesattheCal- ifornia Institute of Technology (Caltech). His research develops tools in machine learning,optimization,control,andeconomicswiththegoalofmakingthenetworked systemsthatgovernourworldsustainableandresilient.Heisbestknownforhiswork spearheadingthedesignofalgorithmsforsustainabledatacentersandheistherecip- ientofnumerousawardsincludingtheACMSigmetricsRisingStaraward,theACM Sigmetrics Test of Time award, the IEEE Communication Society William Bennet Prize,andmultipleteachingandbestpaperawards. (cid:3451)(cid:3454)(cid:3467)(cid:3469) (cid:3475)(cid:3472)(cid:3450)(cid:3467)(cid:3469) is group leader at CWI Amsterdam and Professor of Mathematics at Eindhoven University of Technology. He has expertise in stochastic operations research,queueingtheory,andlargedeviations,andinthecontextofheavytails,he has focused on sample path properties, designing Monte Carlo methods and appli- cations to computer-communication and energy networks. He was area editor of OperationsResearch,theflagshipjournalofhisprofession,from2009to2017,and wastherecipientoftheINFORMSAppliedProbabilitySocietyErlangprize,awarded everytwoyearstoanoutstandingyoungappliedprobabilist. CAMBRIDGE SERIES IN STATISTICAL AND PROBABILISTIC MATHEMATICS EditorialBoard Z.Ghahramani(DepartmentofEngineering,UniversityofCambridge) R.Gill(MathematicalInstitute,LeidenUniversity) F.P.Kelly(DepartmentofPureMathematicsandMathematicalStatistics, UniversityofCambridge) B.D.Ripley(DepartmentofStatistics,UniversityofOxford) S.Ross(DepartmentofIndustrialandSystemsEngineering, UniversityofSouthernCalifornia) M.Stein(DepartmentofStatistics,UniversityofChicago) Thisseriesofhigh-qualityupper-divisiontextbooksandexpositorymonographscoversallaspects ofstochasticapplicablemathematics.Thetopicsrangefrompureandappliedstatisticstoprobability theory,operationsresearch,optimization,andmathematicalprogramming.Thebookscontainclear presentationsofnewdevelopmentsinthefieldandalsoofthestateoftheartinclassicalmethods. Whileemphasizingrigoroustreatmentoftheoreticalmethods,thebooksalsocontainapplications anddiscussionsofnewtechniquesmadepossiblebyadvancesincomputationalpractice. Acompletelistofbooksintheseriescanbefoundatwww.cambridge.org/statistics.. Recenttitlesincludethefollowing: 27. ModelSelectionandModelAveraging,byGerdaClaeskensandNilsLidHjort 28. BayesianNonparametrics,editedbyNilsLidHjortetal. 29. FromFiniteSampletoAsymptoticMethodsinStatistics,byPranabK.Sen,JulioM.Singer andAntonioC.PedrosadeLima 30. BrownianMotion,byPeterMörtersandYuvalPeres 31. Probability:TheoryandExamples(FourthEdition),byRickDurrett 32. AnalysisofMultivariateandHigh-DimensionalData,byIngeKoch 33. StochasticProcesses,byRichardF.Bass 34. RegressionforCategoricalData,byGerhardTutz 35. ExercisesinProbability(SecondEdition),byLoïcChaumontandMarcYor 36. StatisticalPrinciplesfortheDesignofExperiments,byR.Mead,S.G.GilmourandA.Mead 37. QuantumStochastics,byMou-HsiungChang 38. Nonparametric Estimation under Shape Constraints, by Piet Groeneboom and GeurtJongbloed 39. LargeSampleCovarianceMatricesandHigh-DimensionalDataAnalysis,byJianfengYao, ShurongZhengandZhidongBai 40. Mathematical Foundations of Infinite-Dimensional Statistical Models, by Evarist Giné and RichardNickl 41. Confidence,Likelihood,Probability,byToreSchwederandNilsLidHjort 42. ProbabilityonTreesandNetworks,byRussellLyonsandYuvalPeres 43. RandomGraphsandComplexNetworks(Volume1),byRemcovanderHofstad 44. Fundamentals of Nonparametric Bayesian Inference, by Subhashis Ghosal and AadvanderVaart 45. Long-RangeDependenceandSelf-Similarity,byVladasPipirasandMuradS.Taqqu 46. PredictiveStatistics,byBertrandS.ClarkeandJenniferL.Clarke 47. High-DimensionalProbability,byRomanVershynin 48. High-DimensionalStatistics,byMartinJ.Wainwright 49. Probability:TheoryandExamples(FifthEdition),byRickDurrett 50. StatisticalModel-basedClusteringandClassification,byCharlesBouveyronetal. 51. SpectralAnalysisforUnivariateTimeSeries,byDonaldB.PercivalandAndrewT.Walden 52. StatisticalHypothesisTestinginContext,byMichaelP.FayandEricaBrittain The Fundamentals of Heavy Tails Properties, Emergence, and Estimation Jayakrishnan Nair IndianInstituteofTechnology,Bombay Adam Wierman CaliforniaInstituteofTechnology Bert Zwart CWIAmsterdamandEindhovenUniversityofTechnology UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 103PenangRoad,#05-06/07,VisioncrestCommercial,Singapore238467 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781316511732 DOI:10.1017/9781009053730 ©JayakrishnanNair,AdamWierman,andBertZwart2022 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2022 PrintedintheUnitedKingdombyTJBooksLimited,PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-1-316-51173-2Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Preface pageix Acknowledgments xiii 1 Introduction 1 1.1 DefiningHeavy-TailedDistributions 5 1.2 ExamplesofHeavy-TailedDistributions 9 1.3 What’sNext 24 1.4 Exercises 24 PartI Properties 27 2 ScaleInvariance,PowerLaws,andRegularVariation 29 2.1 ScaleInvarianceandPowerLaws 30 2.2 ApproximateScaleInvarianceandRegularVariation 32 2.3 AnalyticPropertiesofRegularlyVaryingFunctions 36 2.4 AnExample:ClosurePropertiesofRegularlyVaryingDistributions 48 2.5 AnExample:BranchingProcesses 50 2.6 AdditionalNotes 53 2.7 Exercises 54 3 Catastrophes,Conspiracies,andSubexponentialDistributions 56 3.1 ConspiraciesandCatastrophes 58 3.2 SubexponentialDistributions 62 3.3 AnExample:Randomsums 67 3.4 AnExample:ConspiraciesandCatastrophesinRandomWalks 72 3.5 AdditionalNotes 80 3.6 Exercises 81 4 ResidualLives,HazardRates,andLongTails 85 4.1 ResidualLivesandHazardRates 86 4.2 HeavyTailsandResidualLives 90 4.3 Long-TailedDistributions 93 4.4 AnExample:RandomExtrema 97 4.5 AdditionalNotes 100 4.6 Exercises 101 v vi Contents PartII Emergence 105 5 AdditiveProcesses 107 5.1 TheCentralLimitTheorem 108 5.2 GeneralizingtheCentralLimitTheorem 112 5.3 UnderstandingStableDistributions 114 5.4 TheGeneralizedCentralLimitTheorem 118 5.5 AVariation:TheEmergenceofHeavyTailsinRandomWalks 120 5.6 AdditionalNotes 124 5.7 Exercises 125 6 MultiplicativeProcesses 127 6.1 TheMultiplicativeCentralLimitTheorem 128 6.2 VariationsonMultiplicativeProcesses 131 6.3 AnExample:PreferentialAttachmentandYuleProcesses 138 6.4 AdditionalNotes 144 6.5 Exercises 145 7 ExtremalProcesses 148 7.1 ALimitTheoremforMaxima 150 7.2 UnderstandingMax-StableDistributions 154 7.3 TheExtremalCentralLimitTheorem 156 7.4 AnExample:ExtremesofRandomWalks 161 7.5 AVariation:TheTimebetweenRecordBreakingEvents 168 7.6 AdditionalNotes 170 7.7 Exercises 171 PartIII Estimation 175 8 EstimatingPower-LawDistributions:ListentotheBody 177 8.1 ParametricEstimationofPower-LawsUsingLinearRegression 179 8.2 MaximumLikelihoodEstimationforPower-LawDistributions 185 8.3 PropertiesoftheMaximumLikelihoodEstimator 187 8.4 VisualizingtheMLEviaRegression 189 8.5 ARecipeforParametricEstimationofPower-LawDistributions 192 8.6 AdditionalNotes 194 8.7 Exercises 195 9 EstimatingPower-LawTails:LettheTailDotheTalking 197 9.1 TheFailureofParametricEstimation 199 9.2 TheHillEstimator 203 9.3 PropertiesoftheHillEstimator 205 9.4 TheHillPlot 209 9.5 BeyondHillandRegularVariation 215 9.6 WhereDoestheTailBegin? 226 9.7 GuidelinesforEstimatingHeavy-TailedPhenomena 233 Contents vii 9.8 AdditionalNotes 235 9.9 Exercises 236 CommonlyUsedNotation 238 References 240 Index 249