ebook img

The Fundamentals of Heavy Tails: Properties, Emergence, and Estimation PDF

265 Pages·2022·9.316 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Fundamentals of Heavy Tails: Properties, Emergence, and Estimation

The Fundamentals of Heavy Tails Heavytails–extremeeventsorvaluesmorecommonthanexpected–emergeevery- where:theeconomy,naturalevents,andsocialandinformationnetworksarejusta fewexamples.Yetafterdecadesofprogress,theyarestilltreatedasmysterious,sur- prising,andevencontroversial,primarilybecausethenecessarymathematicalmodels andstatisticalmethodsarenotwidelyknown. Thisbook,forthefirsttime,providesarigorousintroductiontoheavy-taileddistri- butionsaccessibletoanyonewhoknowselementaryprobability.Ittacklesandtames the zoo of terminology for models and properties, demystifying topics such as the generalized central limit theorem and regular variation. It tracks the natural emer- genceofheavy-taileddistributionsfromawidevarietyofgeneralprocesses,building intuition. And it reveals the controversy surrounding heavy tails to be the result of flawedstatistics,thenequipsreaderstoidentifyandestimatewithconfidence.Over 100exercisescompletethisengagingpackage. (cid:3459)(cid:3450)(cid:3474)(cid:3450)(cid:3460)(cid:3467)(cid:3458)(cid:3468)(cid:3457)(cid:3463)(cid:3450)(cid:3463) (cid:3463)(cid:3450)(cid:3458)(cid:3467)isAssociateProfessorinElectricalEngineeringatIITBom- bay. His research focuses on modeling, performance evaluation, and design issues in online learning environments, communication networks, queueing systems, and smartpowergrids.HeistherecipientofbestpaperawardsatIFIPPerformance(2010 and2020)andACMe-Energy(2020). (cid:3450)(cid:3453)(cid:3450)(cid:3462) (cid:3472)(cid:3458)(cid:3454)(cid:3467)(cid:3462)(cid:3450)(cid:3463)isProfessorofComputingandMathematicalSciencesattheCal- ifornia Institute of Technology (Caltech). His research develops tools in machine learning,optimization,control,andeconomicswiththegoalofmakingthenetworked systemsthatgovernourworldsustainableandresilient.Heisbestknownforhiswork spearheadingthedesignofalgorithmsforsustainabledatacentersandheistherecip- ientofnumerousawardsincludingtheACMSigmetricsRisingStaraward,theACM Sigmetrics Test of Time award, the IEEE Communication Society William Bennet Prize,andmultipleteachingandbestpaperawards. (cid:3451)(cid:3454)(cid:3467)(cid:3469) (cid:3475)(cid:3472)(cid:3450)(cid:3467)(cid:3469) is group leader at CWI Amsterdam and Professor of Mathematics at Eindhoven University of Technology. He has expertise in stochastic operations research,queueingtheory,andlargedeviations,andinthecontextofheavytails,he has focused on sample path properties, designing Monte Carlo methods and appli- cations to computer-communication and energy networks. He was area editor of OperationsResearch,theflagshipjournalofhisprofession,from2009to2017,and wastherecipientoftheINFORMSAppliedProbabilitySocietyErlangprize,awarded everytwoyearstoanoutstandingyoungappliedprobabilist. CAMBRIDGE SERIES IN STATISTICAL AND PROBABILISTIC MATHEMATICS EditorialBoard Z.Ghahramani(DepartmentofEngineering,UniversityofCambridge) R.Gill(MathematicalInstitute,LeidenUniversity) F.P.Kelly(DepartmentofPureMathematicsandMathematicalStatistics, UniversityofCambridge) B.D.Ripley(DepartmentofStatistics,UniversityofOxford) S.Ross(DepartmentofIndustrialandSystemsEngineering, UniversityofSouthernCalifornia) M.Stein(DepartmentofStatistics,UniversityofChicago) Thisseriesofhigh-qualityupper-divisiontextbooksandexpositorymonographscoversallaspects ofstochasticapplicablemathematics.Thetopicsrangefrompureandappliedstatisticstoprobability theory,operationsresearch,optimization,andmathematicalprogramming.Thebookscontainclear presentationsofnewdevelopmentsinthefieldandalsoofthestateoftheartinclassicalmethods. Whileemphasizingrigoroustreatmentoftheoreticalmethods,thebooksalsocontainapplications anddiscussionsofnewtechniquesmadepossiblebyadvancesincomputationalpractice. Acompletelistofbooksintheseriescanbefoundatwww.cambridge.org/statistics.. Recenttitlesincludethefollowing: 27. ModelSelectionandModelAveraging,byGerdaClaeskensandNilsLidHjort 28. BayesianNonparametrics,editedbyNilsLidHjortetal. 29. FromFiniteSampletoAsymptoticMethodsinStatistics,byPranabK.Sen,JulioM.Singer andAntonioC.PedrosadeLima 30. BrownianMotion,byPeterMörtersandYuvalPeres 31. Probability:TheoryandExamples(FourthEdition),byRickDurrett 32. AnalysisofMultivariateandHigh-DimensionalData,byIngeKoch 33. StochasticProcesses,byRichardF.Bass 34. RegressionforCategoricalData,byGerhardTutz 35. ExercisesinProbability(SecondEdition),byLoïcChaumontandMarcYor 36. StatisticalPrinciplesfortheDesignofExperiments,byR.Mead,S.G.GilmourandA.Mead 37. QuantumStochastics,byMou-HsiungChang 38. Nonparametric Estimation under Shape Constraints, by Piet Groeneboom and GeurtJongbloed 39. LargeSampleCovarianceMatricesandHigh-DimensionalDataAnalysis,byJianfengYao, ShurongZhengandZhidongBai 40. Mathematical Foundations of Infinite-Dimensional Statistical Models, by Evarist Giné and RichardNickl 41. Confidence,Likelihood,Probability,byToreSchwederandNilsLidHjort 42. ProbabilityonTreesandNetworks,byRussellLyonsandYuvalPeres 43. RandomGraphsandComplexNetworks(Volume1),byRemcovanderHofstad 44. Fundamentals of Nonparametric Bayesian Inference, by Subhashis Ghosal and AadvanderVaart 45. Long-RangeDependenceandSelf-Similarity,byVladasPipirasandMuradS.Taqqu 46. PredictiveStatistics,byBertrandS.ClarkeandJenniferL.Clarke 47. High-DimensionalProbability,byRomanVershynin 48. High-DimensionalStatistics,byMartinJ.Wainwright 49. Probability:TheoryandExamples(FifthEdition),byRickDurrett 50. StatisticalModel-basedClusteringandClassification,byCharlesBouveyronetal. 51. SpectralAnalysisforUnivariateTimeSeries,byDonaldB.PercivalandAndrewT.Walden 52. StatisticalHypothesisTestinginContext,byMichaelP.FayandEricaBrittain The Fundamentals of Heavy Tails Properties, Emergence, and Estimation Jayakrishnan Nair IndianInstituteofTechnology,Bombay Adam Wierman CaliforniaInstituteofTechnology Bert Zwart CWIAmsterdamandEindhovenUniversityofTechnology UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 103PenangRoad,#05-06/07,VisioncrestCommercial,Singapore238467 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781316511732 DOI:10.1017/9781009053730 ©JayakrishnanNair,AdamWierman,andBertZwart2022 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2022 PrintedintheUnitedKingdombyTJBooksLimited,PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-1-316-51173-2Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Preface pageix Acknowledgments xiii 1 Introduction 1 1.1 DefiningHeavy-TailedDistributions 5 1.2 ExamplesofHeavy-TailedDistributions 9 1.3 What’sNext 24 1.4 Exercises 24 PartI Properties 27 2 ScaleInvariance,PowerLaws,andRegularVariation 29 2.1 ScaleInvarianceandPowerLaws 30 2.2 ApproximateScaleInvarianceandRegularVariation 32 2.3 AnalyticPropertiesofRegularlyVaryingFunctions 36 2.4 AnExample:ClosurePropertiesofRegularlyVaryingDistributions 48 2.5 AnExample:BranchingProcesses 50 2.6 AdditionalNotes 53 2.7 Exercises 54 3 Catastrophes,Conspiracies,andSubexponentialDistributions 56 3.1 ConspiraciesandCatastrophes 58 3.2 SubexponentialDistributions 62 3.3 AnExample:Randomsums 67 3.4 AnExample:ConspiraciesandCatastrophesinRandomWalks 72 3.5 AdditionalNotes 80 3.6 Exercises 81 4 ResidualLives,HazardRates,andLongTails 85 4.1 ResidualLivesandHazardRates 86 4.2 HeavyTailsandResidualLives 90 4.3 Long-TailedDistributions 93 4.4 AnExample:RandomExtrema 97 4.5 AdditionalNotes 100 4.6 Exercises 101 v vi Contents PartII Emergence 105 5 AdditiveProcesses 107 5.1 TheCentralLimitTheorem 108 5.2 GeneralizingtheCentralLimitTheorem 112 5.3 UnderstandingStableDistributions 114 5.4 TheGeneralizedCentralLimitTheorem 118 5.5 AVariation:TheEmergenceofHeavyTailsinRandomWalks 120 5.6 AdditionalNotes 124 5.7 Exercises 125 6 MultiplicativeProcesses 127 6.1 TheMultiplicativeCentralLimitTheorem 128 6.2 VariationsonMultiplicativeProcesses 131 6.3 AnExample:PreferentialAttachmentandYuleProcesses 138 6.4 AdditionalNotes 144 6.5 Exercises 145 7 ExtremalProcesses 148 7.1 ALimitTheoremforMaxima 150 7.2 UnderstandingMax-StableDistributions 154 7.3 TheExtremalCentralLimitTheorem 156 7.4 AnExample:ExtremesofRandomWalks 161 7.5 AVariation:TheTimebetweenRecordBreakingEvents 168 7.6 AdditionalNotes 170 7.7 Exercises 171 PartIII Estimation 175 8 EstimatingPower-LawDistributions:ListentotheBody 177 8.1 ParametricEstimationofPower-LawsUsingLinearRegression 179 8.2 MaximumLikelihoodEstimationforPower-LawDistributions 185 8.3 PropertiesoftheMaximumLikelihoodEstimator 187 8.4 VisualizingtheMLEviaRegression 189 8.5 ARecipeforParametricEstimationofPower-LawDistributions 192 8.6 AdditionalNotes 194 8.7 Exercises 195 9 EstimatingPower-LawTails:LettheTailDotheTalking 197 9.1 TheFailureofParametricEstimation 199 9.2 TheHillEstimator 203 9.3 PropertiesoftheHillEstimator 205 9.4 TheHillPlot 209 9.5 BeyondHillandRegularVariation 215 9.6 WhereDoestheTailBegin? 226 9.7 GuidelinesforEstimatingHeavy-TailedPhenomena 233 Contents vii 9.8 AdditionalNotes 235 9.9 Exercises 236 CommonlyUsedNotation 238 References 240 Index 249 Preface Heavytailsareacontinualsourceofexcitementandconfusionastheyarerepeatedly“dis- covered”innewcontexts.Thisistrueacrossthesocialsciences,thephysicalsciences,and especiallytheinformationsciences,whereheavy-tailspopupseeminglyeverywhere–from degree distributions in the web and social networks to file sizes and interarrival times of computejobs.However,despitenearlyacenturyofworkonheavytails,theyarestilltreated asmysterious,duetotheircounterintuitiveproperties;surprising,sincethecentrallimitthe- orem trains us to expect the “Normal” distribution; and even controversial, since intuitive statisticaltoolscanleadtofalsediscoveries. The goal of this book is to show that heavy-tailed distributions need not be mysterious and should not be surprising or controversial either. The book strives to demystify heavy- taileddistributionsbyshowinghowtoreasonformallyabouttheircounterintuitiveproperties by demonstrating that the emergence of heavy-tailed phenomena should be expected (not surprising)andbyrevealingthatmostofthecontroversysurroundingheavy-tailsistheresult of bad statistics and can be avoided by using the proper tools. It proceeds by offering a coherentcollectionofbite-sizedintroductionstothebigquestions: Howcanweunderstandtheseeminglycounterintuitivepropertiesofheavy-tailed distributions? Whyareheavy-taileddistributionssocommon? Howcanheavy-taileddistributionsbeestimatedfromdata? Thesequestionsareimportantnotjusttomathematiciansbutalsotocomputerscientists, economists,socialscientists,astronomers,andbeyond.Heavy-taileddistributionstrulycome up everywhere in the world around us, and understanding their consequences is crucial to an understanding of the world. Despite this, many students learn probability and statistics without being taught how to think carefully about the heavy tails. Our mission is to make thispracticeathingofthepast. Thisbookaimstoprovideanaccessibleintroductiontothefundamentalsofheavytails.It coversmathematicallydeepconceptsthataretypicallytaughtingraduate-levelcourses,such asthegeneralizedcentrallimittheorem,extremevaluetheory,andregularvariation;butit does so using only elementary mathematical tools in order to make these topics accessible to anyone who has had an introductory probability course. To make this possible we have explicitlychosen,attimes,nottoproveresultsinfullgenerality.Instead,wehaveworkedto rigorouslypresentthecoreideainassimpleamanneraspossible,pushingasidetechnicalities ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.