ebook img

The Fundamental Scaling Relations of Elliptical Galaxies PDF

21 Pages·2005·0.53 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Fundamental Scaling Relations of Elliptical Galaxies

DRAFTVERSIONNOVEMBER3,2005 PreprinttypesetusingLATEXstyleemulateapjv.9/08/03 THEFUNDAMENTALSCALINGRELATIONSOFELLIPTICALGALAXIES BRANTROBERTSON1,5,THOMASJ.COX1,LARSHERNQUIST1,MARIJNFRANX2, PHILIPF.HOPKINS1,PAULMARTINI3,VOLKERSPRINGEL4 DraftversionNovember3,2005 ABSTRACT Weexaminethefundamentalscalingrelationsofellipticalgalaxiesformedthroughmergers. Usinghundreds ofsimulationstojudgetheimpactofprogenitorgalaxypropertiesonthepropertiesofmergerremnants,wefind thatgasdissipationprovidesanimportantcontributiontotiltintheFundamentalPlanerelation.Dissipationless 5 mergersofdisksproduceremnantsthatoccupyaplanesimilartothatdelineatedbythevirialrelation. Asthe 0 gascontentofprogenitordiskgalaxiesisincreased,thetiltoftheresultingFundamentalPlanerelationincreases 0 and the slope of the R - M relation steepens. For gas fractions f > 30%, the simulated Fundamental e ⋆ gas 2 Planescalings(R ∝σ1.55I- 0.82)approachthoseobservedintheK-band(R ∝σ1.53I- 0.79). Thedissipationless e e e e v merging of spheroidal galaxies and the re-merging of disk galaxy remnants roughly maintain the tilt of the o Fundamental Plane occupied by the progenitor ellipticals, approximately independent of the orbital energy N orangularmomentum. Drymergingofspheroidalsystemsatredshiftsz<1isthenexpectedtomaintainthe stellar-massFundamentalPlanerelationsimprintedbygas-richmergingduringtheepochofrapidspheroidand 1 supermassiveblackholegrowthatredshiftsz≈1- 3. Inoursimulations,feedbackfromsupermassiveblack hole growth has only a minor influence on the stellar-mass scaling relations of spheroidalgalaxies, but may 1 playaroleinmaintainingtheobservedFundamentalPlanetiltatopticalwavelengthsbysuppressingresidual v starformationinmergerremnants. We estimate that ≈ 40- 100% of the Fundamental Plane tilt induced by structural properties, as opposed 3 to stellar population effects, owes to trends in the central total-to-stellar mass ratio M /M produced by 5 total ⋆ dissipation. Gascoolingallowsforanincreaseincentralstellarphase-spacedensityrelativetodissipationless 0 1 mergers, therebydecreasingthe centralMtotal/M⋆. Lower mass systemsobtain greaterphase-spacedensities 1 thanhighermasssystems,producingagalaxymass-dependentcentralMtotal/M⋆andacorrespondingtiltinthe 5 FundamentalPlane. Weaccountforthesetrendsintheimportanceofdissipationwithgalaxymassintermsof 0 theinefficientcoolingofcollisionallyheatedgasinmassivehalosanddynamicallyvaryinggasconsumption / timescalesinsmallersystems. h p Subjectheadings:galaxies:formation–galaxies:evolution - o r 1. INTRODUCTION Faberetal.1987,hereafterthe“virialscaling”). t s Elliptical galaxies represent a fascinating combination of WhiletheobservationaldeterminationoftheFPwasorig- a inally motivated as a precise distance indicator to improve complexity and regularity. A leading theory for the origin : v of early-type galaxies is based on mergers of disk galax- upon the previously known luminosity (L) – velocity dis- i ies (Toomre&Toomre 1972; Toomre 1977) and likely in- persion(σ) relation (Faber&Jackson 1976), the importance X of the FP scalings and its correspondingly small scatter for volvesgasdissipation,starformation,andsupermassiveblack r theories of elliptical galaxy formation was also realized. holefeedback(Barnes1992;Barnes&Hernquist1992,1996; a The first observationally determined FP scalings (α∼1.3- Mihos&Hernquist1994,1996;DiMatteoetal.2005)inad- 1.4,β∼0.8- 0.9,atopticalwavelengths;Dressleretal.1987; dition to stellar dynamics. Despite their complex origins, Djorgovski&Davis1987)differedfromthevirialscaling,in- early-typegalaxiesobeyaregularsetofscalingrelationsthat dicating a “tilt” relative to the expectation for homologous connecttheirphotometricandkinematicproperties,mostno- systems. TheFPtiltimpliedthatthemass–to–lightratioM/L tably the relation between effective radius R , central stellar e likelyvariesasafunctionofgalaxymassorluminosityas velocitydispersionσ, andaveragecentralsurfacebrightness DIejkonrgoowvnskais&thDeaFvuinsd1a9m8e7n)talPlane(FP;Dressleretal.1987; M ∝Lγ, (2) L R ∝σαI- β. (1) withintherangeγ≈1/5- 1/4.Faberetal.(1987)notedthat e e deviationsfromtheFPcanbeinducedbyM/Lvarianceow- ing to e.g. metallicity or age trends in stellar populations, The virial theorem can be used to calculate this relation dynamical or structural properties, and the relative distribu- for homologous systems, which gives α = 2, β = 1 (e.g., tion of darkand baryonicmatter. In principle, each of these 1 Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cam- effectsmayalsointroduceasystematictiltintotheobserved bridge,MA02138,USA. FPiftheyvaryasafunctionofellipticalgalaxymass. 2LeidenObservatory,P.O.Box9513,NL-2300RALeiden,Netherlands. Thepurposeofthecurrentpaperistogaugetheimportance 3 TheOhioState University, Department ofAstronomy, 140West18th of various contributionsto the tilt in the observed FP in the Ave.,Columbus,OH43210,USA. context of the scenario where elliptical galaxies form from 4 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, 85740GarchingbeiMünchen,Germany. mergers. Using hundreds of simulated galaxy mergers that [email protected] includethephysicsofgascooling,starformation,supernova 2 Robertsonetal. feedback, and black hole accretion and feedback, we deter- iesdependprimarilyongalaxyluminosity. Faber&Jackson mine that gas dissipation may significantly contribute to the (1976)establishedtherelationbetweenluminosityLandve- tilt of the observed FP, in addition to tilt induced by M/L locitydispersionσ,providingfurtherevidencethatellipticals trends from stellar populations. We propose that elliptical follow a regular sequence as a functionof mass. Kormendy galaxies initially form in gas-rich mergers from disk galaxy (1977)showedthatthesurfacebrightnessesandeffectiveradii progenitorswhosegasfractionsexceed f ∼30%,andshow of ellipticals correlate with galaxy luminosity and with one gas thattheseremnantsdisplaysubstantialFPtilt. another(seealsoBinggelietal.1984). Weconnecttheoriginofthistilttothecentralstellarphase- Importantearlyindicationsthatasecondparameter(inad- spacedensityofthe remnants. Insmallmasssystemswhere dition to mass) governs the properties of ellipticals came dissipationismostimportant,thestellarphase-spacedensity with the Terlevichetal. (1981) and Tonry&Davis (1981) ofremnantsincreasessubstantiallyinhigh-gasfractionmerg- work that implied a correlation of L- σ and absorption-line ers. Thecentralstellar phase-spacedensityinmassive ellip- strength–luminosityrelation(Mg - L)residuals.Whilethese 2 ticals remains similar in mergerswith varying gas fractions, findingswerelatercontradicted(e.g.Dressler1984), thatel- withtheirstarsonaverageobtaininglowerphase-spaceden- lipticalgalaxieswerenotaone-parameterfamilyremainedan sities thanreachedin smallersystems. Thismass-dependent importantpossibility. phase-space density trend translates into a mass-dependent The discovery of the FP (Dressleretal. 1987; trend in the ratio of total mass to stellar mass M /M in Djorgovski&Davis 1987) definitively revealed that el- total ⋆ the central regions of ellipticals and a corresponding tilt in liptical galaxy properties are set by at least two parameters. the FP. We then explain this mass-dependent importance of Specifically,ellipticalswerefoundtoobeyarelationbetween dissipationintermsoftheinefficientcoolingofcollisionally R , σ, and I as given by Equation (1), with less than half e e heated gas in massive ellipticals and the dynamically vary- thescatteroftheFaber&Jackson(1976)L- σ relation. The inggasconsumptiontimescaleofsmallersystems. Itisinter- small scatter of the FP was immediately noticed, implying esting,andpossiblysignificant,thatthegasfractionrequired that the process of elliptical galaxy formationmust result in to reproduce the observed tilt in the FP is, as discussed by a veryregular mass-sequence. Faberetal. (1987) notedthat Hernquist(1993) similar to thatneededformergersofdisks mass-to-light ratio (M/L) variations can influence observa- toyieldthehighcentralphasespacedensitiesofellipticals. tions of the FP by inducing tilt relative to the plane defined In accord with other work (e.g., Capelatoetal. 1995; by the virial relation. Much of the subsequent work on the Dantasetal. 2003; Nipotietal. 2003; Boylan-Kolchinetal. FP has centered aroundpossible causes of M/L variation or 2005), we find that subsequent dissipationless merging be- otheroriginsfortiltingtheFPrelativetothevirialplane. tween spheroidal galaxies roughly maintains the FP tilt. Numerous subsequent observations verified and im- Moreover,we findthata singlegenerationof dissipationless proved the FP relation for ellipticals (Luceyetal. re-mergingofremnantswillinducescatterintheM - σrela- 1991a,b; deCarvalho&Djorgovski 1992; Benderetal. BH tionbutwillnotdestroythecorrelation,asspheroidalgalaxy 1992; Jorgensenetal. 1992; Guzmanetal. 1993; mergers also do not dramatically alter the R - M relation Jorgensenetal. 1993; Sagliaetal. 1993; Benderetal. 1994; e ⋆ when viewed as a mass-sequence. Possible dry mergingbe- Prugniel&Simien 1994; Pahreetal. 1995; Jorgensenetal. tweenspheroidalgalaxiesatredshiftsz<1asindicatedbyre- 1996; Prugniel&Simien 1996; Busarelloetal. 1997; centobservations(Belletal.2005;vanDokkum2005)isthus Graham&Colless 1997; Benderetal. 1998; Pahreetal. notexpectedtodestroytightFPorM - σrelationsgenerated 1998b,a; Mobasheretal. 1999; Kronawitteretal. BH duringspheroidformationthroughgas-richmergersathigher 2000; Gerhardetal. 2001; Bernardietal. 2003a; redshifts. Padmanabhanetal. 2004; Wooetal. 2004; Cappellarietal. Thispaperisorganizedasfollows. Wereviewtheobserva- 2005)andextendedtheFPdeterminationstohigherredshifts tionalandtheoreticalworkonellipticalgalaxyformationand (Franx 1993; vanDokkum&Franx 1996; Kelsonetal. scalingrelationsin§2.Wepresentourmethodologyin§3and 1997; Schadeetal. 1997; vanDokkumetal. 1998; ourresultsin§4. Wediscusstheimplicationsofourworkin Jørgensenetal. 1999; Treuetal. 1999; Kelsonetal. §6andsummarizeandconcludein§7. Throughout,weadopt 2000a,b,c; Kochaneketal. 2000; Treuetal. 2001; aflatΛCDMuniversewithΩM=0.3,ΩΛ=0.7,Ωb=0.04,and vanDokkum&Franx 2001; vanDokkumetal. 2001; aHubbleparameterH =100hkms- 1Mpc- 1withh=0.7. Treuetal. 2002; Gebhardtetal. 2003; Rusinetal. 2003; 0 vanDokkum&Stanford 2003; vanDokkum&Ellis 2003; 2. REVIEWOFELLIPTICALGALAXYSCALINGLAWS vanderWeletal.2004). Whilethespecificdetailsmayvary, Scaling laws describing the regularity of the properties of theseworksgenerallyconcludethat ellipticalgalaxieshavebeenknownsinceatleastFish(1964), whoreportedarelationbetweentheirpotentialenergyW and • Atightfundamentalplanebetweentheellipticalgalaxy mass M⋆ asW ∝M⋆3/2. Even earlier, deVaucouleurs(1948, propertiesRe,σ,Ie exists,andextendsinsomeformto hereafterdV)haddemonstratedthatellipticalsgenerallyhave atleastredshiftz∼1. asurfacebrightnessprofilelogI(r)∝r1/4,atleastoversome range in radius r, and implications of the dV profile for the • Ellipticalsare old, with formationredshiftsz>1, and mass-dependentpropertiesofellipticalswererecognizedbe- their color evolution, which controls the FP normal- foretheFish(1964)paper(e.g.,Poveda1958). ization,isroughlyconsistentwithpassiveevolutionof Sandage(1972)foundacolor–magnituderelationforVirgo theirstellarpopulations. and Coma cluster ellipticals (see also Stebbins&Whitford 1952;deVaucouleurs1961). Faber(1973)discoveredasim- • Some of the FP tilt must originate from the changein ilar color–magnitudetrend in LocalGroup and cluster ellip- stellarpopulationM/Lwithgalaxymass,buttheextent ticals,aswellasanabsorption-linestrength–magnituderela- towhichstellarpopulationscontributetoM/L-induced tion, and suggested that these properties of elliptical galax- FPtiltisdebated. GasDissipation&theFP 3 Ofspecificinteresttomodelersaretheobservationsthatmade starsanddarkmatter. Thesecondcategory,termed“dissipa- definite statements about the influence of structural or kine- tional” mergers, consists of simulations that account for gas maticnonhomologyonM/LandtheFPtilt,especiallythose cooling,starformation,thephysicsoftheinterstellarmedium, that conclude directly that these nonhomologies are either andsupernovafeedback.Werefertothethirdcategoryofcal- unimportant or of minor significance (Gerhardetal. 2001; culationsas“full-model”simulationswhich,inadditiontothe Cappellarietal. 2005), significant (e.g. Padmanabhanetal. processes accounted for in the “dissipational” mergers, also 2004), or of possible but as yet not fully determined impor- include supermassive black hole growth and feedback. All tance(e.g.Pahreetal.1998b). threecategoriesofdisk–diskmergersarederivedfromastan- Moreover, elliptical galaxy properties related to the dard set of galaxy models to enable a direct comparison of FP or its projections have been extensively observed. physicalprocesses. These include studies of the photometric profiles (e.g. To perform our numerical simulations, we utilize the deVaucouleurs 1948; Sersic 1968; Kormendy&Illingworth GADGET2 code (Springel 2005). GADGET2 uses the 1982; Burkert 1993; Caonetal. 1993), internal kine- smoothed particle hydrodynamics (SPH) formalism (Lucy matic structure (e.g. Binney 1978; Daviesetal. 1983; 1977; Gingold&Monaghan1977) in its entropy-conserving Davies&Birkinshaw 1988; Benderetal. 1994), metallic- formulation(Springel&Hernquist2002)tocalculatethedy- ity (deCarvalho&Djorgovski 1992; Benderetal. 1993, namical evolution of the gas and a tree-based method to 1996; Bernardietal. 1998, 2003b), and the M - σ rela- computegravitationalforcesbetweenparticles(Barnes&Hut BH tion (e.g. Gebhardtetal. 2000; Ferrarese&Merritt 2000; 1986). Tremaineetal. 2002). An important, related property is Allprogenitorgalaxieswerecreatedusingthemethodsde- the size-stellar mass relation (Shenetal. 2003; Trujilloetal. scribedinSpringeletal.(2005),whichallowforthegenera- 2004;Trujillo&Aguerri2004;McIntoshetal.2005),thatin- tion of stable equilibrium galaxy models. Each galaxy con- dicates a power-law correlation between some characteristic tains an extended dark matter halo, and may also consist of galaxysizeandthestellarmassorluminosity. a stellar disk, gaseous disk, stellar bulge, and a supermas- Interpreting these observations has been the focus of sive black hole particle. The collisionless components of various theoretical efforts (see, e.g. Barnes&Hernquist thegalaxymodelsarerequiredtosatisfytheJeansequations 1992, for a description of early results). Notably, sim- whilethestructureofthegascomponentisdeterminedbythe ulations of the formation of ellipticals and their prop- equationofhydrostaticequilibriumandanintegralconstraint erties in the context of the merger hypothesis have onthesurfacemassdensity. been performed using a variety of progenitor mod- els including spheroidal (White 1979; Capelatoetal. 3.1. DissipationlessDiskSimulations 1995; Dantasetal. 2003; González-García&vanAlbada Thedissipationlessdiskprogenitorsconsistofanexponen- 2003; Nipotietal. 2003), disk (Toomre&Toomre 1972; tial stellar disk embedded in a dark matter halo with virial Gerhard 1981; Farouki&Shapiro 1982; Faroukietal. 1983; velocities in the range V = 80- 500 km s- 1. We initial- Barnes&Hernquist 1991; Barnes 1992; Hernquist 1992, vir ize the size of the disk according to the Moetal. (1998) 1993;Hernquistetal. 1993; Mihos&Hernquist1994, 1996; formalism for dissipational disk galaxy formation (see also Hibbard&vanGorkom 1996; Bekki 1998; Dubinski 1998; Fall&Efstathiou1980;Blumenthaletal.1986)assumingthe Naabetal.1999;Naab&Burkert2001;Aceves&Velázquez disk contains a fraction of the total galaxy angular mo- 2005), and cosmologicalsystems (e.g. Aarseth&Fall 1980; mentum equal to its mass fraction, which we set to m ≡ Sáizetal. 2004). Analytical models of elliptical galaxies d M /M =0.041to matchthe MilkyWay-like modelused have also been formulated (Hernquist 1990; Ciotti 1991; disk vir bySpringeletal. (2005). Thediskscalelengthr isthende- Ciottietal. 1996; Ciotti 1996; Ciotti&Bertin 1999), aiding d terminedbythe galaxyspin λandthe darkmatterhalocon- the interpretation of both the observational and simulation centrationC . We adoptλ=0.033,whichisnearthemode results. In what follows, we combine features of many of vir of the redshift- and mass- independent distribution of dark these previous theoretical endeavors by simulating mergers matter halo spins measured in cosmological N-body simu- between dissipational and dissipationless disk galaxies, lations (Vitvitskaetal. 2002). For the Navarro-Frenk-White spheroidal systems, and merger remnants to determine their haloconcentrationC (Navarroetal.1997,NFW),weadopt fundamentalscalingrelations. vir themass-andredshift-dependentdarkmatterhaloconcentra- tionsmeasuredbyBullocketal.(2001) 3. METHODOLOGY Galaxymergingcombinesmuchcomplexphysics, includ- M - 0.13 ing e.g. the collisionless dynamicsof dark matter and stars, C (M ,z)≈9 vir (1+z)- 1, (3) vir vir (cid:18)M (cid:19) gasdissipation,starformation,andfeedbackfromsupernovae coll,0 apnridncbilpalcekbheoelsesgernotiwalthf.orWdheitleermeaicnhinogfmtheersgeerprreomcensasnetspmroapyeirn- whereMcoll,0∼8×1012h- 1M⊙ isthelinearcollapsemassat redshift z=0. In all cases, the stellar disk scaleheight h = ties, their relative importancehas notbeen fullyestablished. d 0.2r , similar to the MilkyWay (c.f. Siegeletal. 2002). We Bycomparingthestructureofmergerremnantsinsimulations d model the dark matter halo with a Hernquist (1990) density which systematically include or exclude various processes, profileoftheform we attempt to both test the merger hypothesis and identify themostimportantphysicalmechanisms. M a ρ (r)= DM , (4) Tothisend,weperformasetofhundredsofsimulationsof h 2π r(r+a)3 galaxymergers.Oursuiteconsistsofthreecategoriesofdisk– diskmergersandoneclassofspheroid-spheroidmergers.The wherethescalelengtha(C )mapstheHernquist(1990)pro- vir firstcategoryofsimulations,refereedtoas“dissipationless,” file parametersto the appropriateNFW haloparameters(for includesonlysimulationsofdisksconsistingofcollisionless details,seeSpringeletal.2005). 4 Robertsonetal. TABLE1. GALAXYMERGERS Model Progenitor Redshift GasFraction ISMPressurization PericentricSeparation #ofSimulations Vvir[kms- 1] z fgas qEOS rperi “Full-Model”SimulationswithBlackHoles Local 80,115,160,226,320,500 0 0.4,0.8 0.25,1.0 2rd 24 Intermediate- z 80,115,160,226,320,500 2,3 0.4,0.8 0.25,1.0 2rd 48 High- z 115,160,226,320,500 6 0.4,0.8 0.25,1.0 2rd 20 HaloConcentrations 160 0 0.4 1.0 2rd 5 DiskOrientation 160 0 0.4 1.0 Table2 14 OrbitalConfiguration 160 0 0.4 1.0 Table2 18 DissipationalSimulations Local 80,115,160,226,320,500 0 0.4,0.8 0.25,1.0 2rd 24 Intermediate- z 80,115,160,226,320,500 2,3 0.4,0.8 0.25,1.0 2rd 48 High- z 115,160,226,320,500 6 0.4,0.8 0.25,1.0 2rd 20 fgasRuns 80,115,160,226,320,500 0 0.01,0.025,0.05 0.25,1.0 2rd 72 0.1,0.2,0.4 DissipationlessSimulations Local 80,115,160,226,320,500 0 0.0 – 2rd 6 Intermediate- z 80,115,160,226,320,500 2,3 0.0 – 2rd 12 High- z 80,115,160,226,320,500 6 0.0 – 2rd 6 WideOrbit 80,115,160,226,320,500 0 0.0 – 0.4Rvir 6 WideOrbit,Int.- z 80,115,160,226,320,500 2,3 0.0 – 0.4Rvir 12 WideOrbit,High- z 80,115,160,226,320,500 6 0.0 – 0.4Rvir 6 Bulge,Local 80,115,160,226,320,500 0 0.0 – 2rd 6 Bulge,Intermediate- z 80,115,160,226,320,500 2,3 0.0 – 2rd 12 Bulge,High- z 80,115,160,226,320,500 6 0.0 – 2rd 6 High-Res 80,115,160,226,320,500 0 0.0 – 2rd 6 SpheroidSimulations Local 80,115,160,226,320,500 0 0.0 – 0.025Rvir 6 Wide/EllipticalOrbit 80,115,160,226,320,500 0 0.0 – 0.4Rvir 6 Full-ModelRe-mergers 80,115,160,226 0 0.4 0.25 0.05Rvir 4 FollowingRobertsonetal.(2005b),wescaletheprogenitor mergerwithawiderparabolicorbitincreasedtor =0.4R peri vir galaxypropertiestoapproximatethestructureofdiskgalax- tojudgetheeffectofincreasedorbitalangularmomentumon ies appropriate for redshifts z=0, 2, 3, and 6. Varying the the dissipationless merger remnants. In addition, we repeat progenitorgalaxiesinthismannerenablesustodeterminethe eachnearly-radialmergerwithbulgecomponentsincludedin impactofredshift-dependentgalaxypropertiesonthescaling the galaxies with mass fraction m ≡ M /M = 0.1367 b bulge vir lawsofellipticals. KeepingthevirialvelocityV fixedwith to match the Milky Way-like model used in Springeletal. vir redshift,wescaletheprogenitorvirialmassandvirialradius (2005). WemodelthebulgeswithaHernquist(1990)density usingtherelations profile form (see Equation 4) where we set the bulge scale- lengthb=0.2r . Eachbulgecontains20,000particles, with M = Vv3ir (5) the number ofddisk particles reduced to 60,000 to maintain vir 10GH(z) thesamemassresolution. Finally,were-runallthepuredisk simulationsatredshiftz=0withhigherresolutiondissipation- V R = vir , (6) lessmodelswith 180,000darkmatterparticlesand120,000 vir 10H(z) disk particles to examine issues related to numericalresolu- tion. While we discuss these tests in more detail in §4, we whereH(z) isthe Hubbleparameter. To suitablyresolvethe noteherethatthelargesetofdissipationlesssimulationspro- forcesbetweenparticlesinmodelsofhigher-redshiftsystems, wereducethegravitationalsmoothingby(1+z)- 1. Thehalo ducesresultsveryconsistentwiththerestrictedsetofhigher resolutionruns. Inallweperform78dissipationlesssimula- concentrationsalsovarywithredshiftandmassaccordingto tions,andweprovideacompletelistinginTable(1). Equation(3)andthediskscalelengthsdecreasewithredshift through their dependenceon R andC . We note that the vir vir 3.2. DissipationalDiskSimulations redshift-dependenceofdiskscalelengthsagreeswellwiththe distributionofdiskscalelengthsseenouttoredshiftz≈1(e.g. To gauge the impact of dissipational gas physics on the Ravindranathetal.2004;Bardenetal.2005). properties of merger remnants, we perform a suite of disk At each redshift, we consider three separate types of dis- galaxymergersthat includegas cooling, star formation, and sipationless disk mergers. First, we examine equal mass supernovafeedback. Thedissipationaldisk progenitorscon- mergers of pure disk galaxies on prograde-prograde copla- tain exponential gaseous and stellar disks and Hernquist nar parabolicorbitswith the pericentricpassage distance set (1990)darkmatterhalos,withtheirdisksizesdeterminedby to r = 2r . The galaxies each contain 60,000 dark mat- theMoetal.(1998)formalismasdescribedin§3.1. Thever- peri d terand80,000stellardiskparticles. Second,werepeateach ticalstructureofthegaseousdisksaredeterminedbyaninte- GasDissipation&theFP 5 gralconstraintfromthesurfacemassdensityandtherequire- mentofhydrostaticequilibriumwithinthegalaxypotential. TABLE2. ORBITALVARIATIONS The thermal properties of the gas are determined us- ing the multiphase interstellar medium (ISM) model of DiskOrientations Springel&Hernquist (2003). Star formation is prescribed Models [dθe1g] [dφe1g] [dθe2g] [dφe2g] [h-r1pekripc] in the manner of Springel&Hernquist (2003), constrained to approximate the Schmidt (1959) law for disk galax- b 180 0 0 0 5.0 c 180 0 180 0 5.0 ies as measured by Kennicutt (1998), including a density d 90 0 0 0 5.0 threshold. Below this threshold the gas is modeled as a e 30 60 - 30 45 5.0 single-phase medium which is not star-forming. Dense gas f 60 60 150 0 5.0 above the threshold is modeled as a hybrid of cold, dense g 150 0 - 30 45 5.0 h 0 0 0 0 5.0 cloudsembeddedin a hot, diffuse mediumas envisionedby i 0 0 71 30 5.0 McKee&Ostriker(1977). Thetemperatureofthehotphase j - 109 90 71 90 5.0 issetbysupernovafeedbackandtheefficiencyofcloudevap- k - 109 - 30 71 - 30 5.0 l - 109 30 180 0 5.0 oration,andhasanenergyperunitmassthatfarexceedsthe m 0 0 71 90 5.0 coldphase. Eventhoughmostofthegasbymassiscold,the n - 109 - 30 71 30 5.0 hightemperatureofthehotphasemorethancompensatesfor o - 109 30 71 - 30 5.0 its small mass fraction, acting to pressurize the star-forming p - 109 90 180 0 5.0 gas,andleadingtoaneffectiveequationofstateP (ρ)thatis eff OrbitalConfigurations stifferthanisothermal(foranumericalfit,seeRobertsonetal. e1 30 60 - 30 45 2.5 2004).ThemultiphasemodelofSpringel&Hernquist(2003) e2 30 60 - 30 45 10.0 has been generalized by Springeletal. (2005) to allow for e3 30 60 - 30 45 15.0 an effective equation of state parameter q that linearly e4 30 60 - 30 45 20.0 EOS interpolates between an isothermal gas (q = 0) and the e5 30 60 - 30 45 40.0 EOS e6 30 60 - 30 45 30.0 fully-pressurized multiphase ISM model (q = 1). In- EOS h1 0 0 0 0 2.5 creasing qEOS improves the dynamical stability of the gas h2 0 0 0 0 10.0 and can prevent Toomre (1964) instability even in gas-rich h3 0 0 0 0 15.0 systems (Springel&Hernquist 2003; Robertsonetal. 2004; h4 0 0 0 0 20.0 h5 0 0 0 0 40.0 Springel&Hernquist2005;Robertsonetal.2005a). h6 0 0 0 0 30.0 Forourdissipationalmodels, we re-runtheVvir=80- 500 k1 - 109 - 30 71 - 30 2.5 kms- 1 purediskmergersimulationsfrom§3.1withtwogas k2 - 109 - 30 71 - 30 10.0 fractionsof f =0.4,0.8,eachwithtwoequationofstatepa- k3 - 109 - 30 71 - 30 15.0 gas k4 - 109 - 30 71 - 30 20.0 rametersqEOS=0.25,1.0,atredshiftsz=0,2,3,and6. Each k5 - 109 - 30 71 - 30 40.0 progenitor galaxy has 60,000 dark matter particles, 40,000 k6 - 109 - 30 71 - 30 30.0 stellar disk particles, and 40,000gas particles. The systems are merged on prograde-prograde parabolic coplanar orbits withr =2r .Foranequationofstateparameterq =0.25 peri d EOS tion and feedback should preserve the power-law scaling of we also systematicallyvarythe gasfractionofz=0 progen- theM - σrelationbetweenredshiftsz=0- 6. itors using f = 0.01, 0.025, 0.05, 0.1, 0.2 and 0.4. Our BH gas Thefull-modelsimulationsaugmentthepurediskdissipa- dissipationalsimulationcategoryhasatotalof164runs,with tionalmergersimulationsfrom§3.2withsupermassiveblack thecompletelistofsimulationsprovidedinTable(1). holegrowthasdescribedabove. Eachprogenitorgalaxyhas 3.3. Full-ModelDiskSimulations 40,000stellardiskparticlesand40,000gasparticles,andare mergedon prograde-progradeparaboliccoplanarorbitswith Our full-modelcategory simulations include the complete r =2r . The modelsare calculated forV =80- 500km physical model presented in Springeletal. (2005), account- peri d vir ing for gas cooling, star formation, supernova feedback, s- 1 galaxies at z= 0, 2, and 3 and Vvir = 115- 500 km s- 1 the Springel&Hernquist (2003) ISM model described in galaxies at z=6. Simulations are performed with gas frac- §3.2, and a prescription for supermassive black hole growth tionsof fgas=0.4,0.8eachwithequationofstateparameters and feedback. The supermassive black holes are included ofqEOS=0.25,1.0. Furthermore,werun14variationsofthe as “sink” particles, with seed masses of 105h- 1M⊙. The Vvir=160kms- 1progenitormergerwherewechangethedisk black holes are allowed to grow according to spherical orientationaccordingtothemethodofBarnes(1992)tochar- Bondi-Hoyle-Lyttleton accretion (Hoyle&Lyttleton 1939; acterizetheeffectsofdiskalignment(seeTable2),andrunan Bondi&Hoyle 1944;Bondi1952). The mass accretionrate additional 18 simulations where for 3 different orientations ˙ wevarythepericentricpassagedistance. Wealsorunasetof M is determined from the density and sound speed of the 5 additionalsimulationsof theV =160km s- 1 halo where gas near the black hole. A fraction ǫ =0.1 of the accretion vir f wesimulatedarkmatterhaloconcentrationsofC =5,7,9, rate is radiatively released, of which a fraction η =0.05 vir therm 11,and13. Inall,weperformatotalof129full-modelsim- is coupled as thermal feedback into gas within an SPH ker- ulationsandacompletelistoftheserunsisprovidedinTable nel smoothing length of the black hole. The strength of the (1). thermalcouplingiscomparabletothethermalfeedbackcou- pling of supernova energy used in cosmologicalsimulations (e.g. Abadietal. 2003), and reproducesthe M - σ relation 3.4. SpheroidSimulations BH observedlocally(DiMatteoetal.2005). Usingthesamefull- Toexplorethepropertiesofremnantsformedbythemerg- model simulations presented here, Robertsonetal. (2005b) ing of spheroidal systems, we also perform a suite of equal havealso demonstratedthatthismodelforblackholeaccre- mass spheroid-spheroid mergers. The spheroid progenitors 6 Robertsonetal. consist of stellar spheroids embedded in dark matter halos, The mean-squaredscatter about the direct best-fit plane can both having Hernquist (1990) profiles. We assume a stellar thenbecharacterizedbythequantity massfractionof f =0.05andtheconcentrationsofthehalos are adjusted to ac⋆count for the mass-dependence measured ∆2 = σI2IσR2RσV2V- σI2IσR4V- σR2RσI4V (14) in cosmological simulations (see Section 3.1). The sizes of (cid:10) (cid:11) (cid:0) - σ2 σ4 +2σ2 σ2 σ2 the stellar spheroids are set to follow the Shenetal. (2003) VV IR IR IV RV Re- M⋆relationformassivegalaxiesas × σI2IσV2V- σI4V - 1(cid:1). (cid:0) (cid:1) R =4.16 M⋆ 0.56kpc, (7) Whenappropriatewecomparethequantity ∆2 1/2 withthe e (cid:18)1011M⊙(cid:19) scatterdeterminedfromobservationalsampl(cid:10)es. (cid:11) TheremnantpropertiesarealsocomparedtotheR - M re- (see also Boylan-Kolchinetal. 2005). We vary the circular e ⋆ velocity of the halos between V = 80- 500 km s- 1. The lation,whichhasbeenmeasuredobservationallyintheSDSS vir (Shenetal. 2003) and may be representedby the power-law spheroidgalaxiesmergeoneithernearly-radialparabolicor- form bits with r =0.025R or wide elliptical orbitswith ellip- peri vir R ∝Mµ. (15) ticityǫ=0.5andr =0.4R . Eachspheroidprogenitorhas e ⋆ peri vir 1,200,000dark matter and 80,000stellar particles. A com- The R - M relation allowsfor a usefulcomparisonof rem- e ⋆ pletelistofthespheroid–spheroidmergersisprovidedinTa- nant sizes for simulations with differing angular momenta, ble(1). progenitorredshifts,ISMphysics,orgasdissipation.Inaddi- Todeterminetheimpactsubsequentre-mergingbetweenel- tion, we find that the relative locationof remnantsin the FP lipticalsformedfromdiskgalaxymergersmighthaveonthe can often be related to the impact of different physical pro- structural properties of the remnants, we also re-merge disk cessesontheeffectiveradii. TheR - M relationalsoserves e ⋆ galaxyremnantsfromthez=0full-modelsimulations.These asausefulcalibrationforourmethodtomeasuretheFPprop- remnantsaremergedonparabolicorbitswithrperi=0.05Rvir, ertiesoftheremnants. Asmentionedin§3.4,asubsetofour whereRvir isthe virialradiusoftheoriginaldiskprogenitor. simulationsuite involvesthe mergingof equilibriummodels Were-mergeremnantswithprogenitorgalaxycircularveloc- of spheroidsinitialized to satisfy the Shenetal. (2003) rela- itiesintherangeVvir=80- 226kms- 1. Acompletelistofthe tion. Asdiscussedinfurtherdetailin§4.4,theanalysistech- re-mergersimulationsisprovidedinTable(1). nique used to measure the FP properties of remnants accu- ratelyrecoverstheShenetal.(2003)relationwhenappliedto 3.5. Analysis thespheroidmodelprogenitorsandaffirmsourabilitytode- Eachsimulationisevolveduntilthemergeriscompleteand terminesimulatedremnantpropertieswithreasonablefidelity. theremnantsarefullyrelaxed,requiringintegrationsoftypi- cally2-4Gyr. Theremnantsarethenkinematicallyanalyzed 3.6. ComparisonwithObservations by measuringthe half-massstellar effectiveradiiR , the av- e WeadopttheapproachofplottingtheFPpropertiesofsim- erageone-dimensionalvelocitydispersionσ withina circu- ulatedremnantsintheR - σ2I- 1 virialplanecoordinatesys- larapertureofradiusR ,andtheaveragestellarsurfacemass e e e tem.ThetiltoftheFPrelativetothevirialplanecanbequan- densityI measuredwithin R as I ≡M (r<R )/πR2. The e e e ⋆ e e tifiedthroughthepower-lawrelation quantities R , σ, and I are averaged over 100 random sight e e linestotheremnant. R ∝ σ2I- 1 λ, (16) Once the FP parameters R , σ, and I are determined, we e e e e (cid:0) (cid:1) employthedirectfittingmethodofBernardietal.(2003a)to where λ=1 indicatesan alignmentof the FP with the virial determinethe best-fit FP scalings. The directfitting method plane. Whenappropriate,wemeasurethisestimateoftheFP seekstominimize tilt relative to the virial plane by linear least-squares fitting. Ourchoiceof coordinatesystemsisnotunique,andalterna- ∆=logR - αlogσ- βlogI - δ, (8) e e tiverepresentationsoftheFPincludetheκ-spacecoordinate whereαandβaretheFPscalingindicesdefinedbyEquation system(Benderetal.1992)orthebest-fitFPcoordinatesde- (1). Theminimizationof∆requires terminedbyobservationsinvariouspassbands. Theprimary advantage of choosing the virial plane coordinate system is (σ2σ2 - σ2 σ2 ) the easily determined tilt, which provides a gauge of possi- α= II RV IR IV (9) (σ2σ2 - σ4) blevariationsinthecentraltotal-to-stellarmassMtotal/M⋆ or II VV II kinematicnonhomologyofremnantsas a functionofgalaxy (σ2 σ2 - σ2 σ2 ) mass. β= VV IR RV IV (10) (σ2σ2 - σ4 ) For our purposes, we choose not to use stellar population II VV IV synthesistocomparewithdeterminationsoftheFPinoptical δ=hlogR i- αhlogσi- βhlogI i, (11) passbands. ObservationsindicatethattrendsintheM/Lratio e e owingtostellarpopulationeffects(e.g. ageormetallicity)as wheretheaveragehlogXiovertheNdatasamplesconsidered a function of galaxy mass or luminosity will contribute sig- isdefinedas nificantlytotheFPtilt,especiallyatshort-wavelengths(fora hlogXi≡ logXi/N (12) recentresultonthisissue,seeCappellarietal.2005). Obser- Xi vationshavealsodeterminedthatellipticalgalaxiesaretypi- cally old and their stellar populations redden passively with andtheco-variantdispersionisdefinedas time (e.g. Benderetal. 1996; vanDokkum&Franx 1996). σ2 = logX - hlogXi logY - hlogYi /N. (13) These constraints imply that to properly recover the short- XY i i wavelengthphotometricFP,preciseinformationonthestellar Xi (cid:0) (cid:1)(cid:0) (cid:1) GasDissipation&theFP 7 FIG.1.— FundamentalPlane(FP)relationproducedbythemergingofdis- FIG. 2.— EffectiveradiusRe–stellarmassM⋆relationproducedbythe sipationlessdiskgalaxymodelsappropriateforredshiftsz=0(black),z=2 mergingofdissipationlessdiskgalaxymodelsappropriateforredshiftsz=0 (red),z=3(blue),andz=6(green)onnearlyradial, parabolicorbits. All (black),z=2(red),z=3(blue),andz=6(green)onnearlyradial,parabolic modelsincludedarkmatterhalos. Thedissipationlessmergingofpuredisk orbits.Allmodelsincludedarkmatterhalos.Thedissipationlessmergingof models(solidtriangles)anddiskmodelswithbulges(solidcircles)produce purediskmodels(solidtriangles)anddiskmodelswithbulges(solidcircles) similarFPrelationsnearlyparalleltotheplanedefinedbythevirialrelation. produceRe- M⋆relationsshallowerthanthatmeasuredformassivegalaxies Increasingtheangularmomentumoftheorbitbylengtheningthepericentric intheSloanDigitalSkySurvey(Shenetal.2003).Forcomparison,thebest passagedistanceoftheorbitproducesanoffsetintheFPbyincreasingthe least-squaresfittotheRe- M⋆relationofpurediskmergerremnantsisplotted effectiveradiusoftheremnants(opencircles),butthesystemsstillobtaina (dottedline). FPscalingsimilartothevirialplane. Selecthigherresolutionrunsclosely follow theFPdelineated bytheirlowerresolutioncounter-parts (opendia- monds). Forcomparison, the best least-squares fitto the FP of pure disk mergerremnantsisplotted(dottedline). calpassbandluminosities(e.g.Bruzual&Charlot2003),and typicalK-bandmass-to-lightratiosarewithin≈35%ofunity for stellar populations formed at redshifts 0.75 < z < 5.0. age, metallicity, and formation-redshiftdistribution of ellip- Thesepropertiesmakecomparisonsbetweenthestellar-mass tical galaxies as a function of stellar mass at z=0 must be and near-IR FP scalings somewhat more sensible than com- obtained. We note that knowing only either the formation- parisons with shorter-wavelength photometric FP scalings, redshift (e.g. the redshift of the last major gas-rich merger) thoughnotideal. or mean stellar age of elliptical galaxies may not be suffi- Inprinciple,amorestraight-forwardcomparisonwouldbe cient to determine the photometric FP of the entire ellipti- tousehigh-resolutioncosmologicalsimulationsofgalaxyfor- cal galaxy population. Recent surveys indicate that ellipti- mation to probe the fundamental plane with simultaneously calstypicallyundergoa majordissipationlessmergeratred- accountingformetallicityandstellarageeffects. Previousat- shiftsz<1(Belletal.2005;vanDokkum2005),and,inprin- temptstocompareresultsofcosmologicalsimulationsforthe ciple, such mergers may induce galaxy mass-dependent tilt scalinglawsofellipticalgalaxieswithobservationshavebeen fromstructuraleffectsthataredisjointfromM/Leffectsfrom made(e.g.Sáizetal.2004),butwithspatialresolutionsome stellarpopulationsthatcharacteristicallypredatethoseevents. ≈20 times worse than the isolated merger simulations pre- Clearly, applying stellar population synthesis models to el- sentedhere.Suchspatialresolutionislargerthantheeffective liptical galaxies produced in individual galaxy merger sim- radiiofevenmoderately-sized(M ≥21)early-typegalaxies. r ulationsto producesimulated photometricFP scalings with- However,themetallicitiesandagesofthestellarpopulations out attempting to correct for the cosmologically-determined ofgalaxiesproducedin cosmologicalsimulationscan be es- propertiesoftherealellipticalpopulationislikelytoonaive. timated throughouttheir formation, and the results of stellar Furthermore,comparingdirectlystellar-massFPscalingsde- populationsynthesismodelingwouldthereforebeeasytoin- termined from simulations with short-wavelength (e.g. B- terpret. bandorSloang-band)photometricFPscalingsshouldbeper- We mention here that semi-analytic techniques could formedwithextremecautionastheshort-wavelengthFPmay be combined with the results of high-resolution merger have additionalsourcesof tilt notpresentin the stellar-mass simulations in an attempt to account for the redshift- FP. dependent formation of the elliptical galaxy population. With these concerns in mind, our stellar-mass FP results For example, Robertsonetal. (2005a) used the results of will be comparedwith the near-infrared(IR) FP determined Hopkinsetal. (2005a), who inferred a redshift-dependent by Pahreetal. (1998b). While, as Pahreetal. (1998b) note, black hole mass function from the quasar luminosity func- tilt owing to stellar population effects may still be present tion, to determine the influence of the redshift-dependent and is not tightly constrained, structural or dynamical non- formation times of elliptical galaxies on the M - σ rela- BH homologies can contribute significantly to the FP scaling in tion. Using the results from Robertsonetal. (2005a) and thenear-IR.TheK-bandmagnitudesofstellarpopulationsof Hopkinsetal. (2005a), Hopkinsetal. (2005b) combinedthe agivenagearelessinfluencedbymetallicitythantheiropti- redshift-dependentpropertiesofgalaxyremnants,theM - σ BH 8 Robertsonetal. FIG. 3.— FundamentalPlane(FP)relationproducedbythemergingof FIG. 4.— EffectiveradiusRe–stellarmassM⋆relationproducedbythe gas-richdiskgalaxieswithdarkmatterhalos,starformationandsupernova mergingofgas-richdiskgalaxieswithdarkmatterhalos,starformationand feedback.Shownareremnantsproducedbymergersappropriateforredshifts supernovafeedback. Shownareremnantsproducedbymergersappropriate z=0(blackcircles), z=2(reddiamonds),z=3(bluetriangles), andz=6 forredshiftsz=0(blackcircles),z=2(reddiamonds),z=3(bluetriangles), (greensquares)withnearlyradial,parabolicorbits. Thedissipationalmerg- andz=6(greensquares)withnearlyradial, parabolicorbits. Thedissipa- ingofpurediskmodelsproducesaFPnearlyparalleltotheobservedinfrared tionalmergingofpurediskmodelsproducesaRe- M⋆relationroughlypar- FP(Pahreetal.1998b)andisalmostindependentoftheredshiftscalingsof alleltothatmeasuredformassivegalaxiesintheSloanDigitalSkySurvey theprogenitorsystems. Forcomparison,thebestleast-squaresfittotheFP (Shenetal.2003). Forcomparison,thebestleast-squaresfittotheRe- M⋆ delineatedbytheremnantsisplotted(solidline). relationsdelineatedbythedissipationalsimulations(solidline)anddissipa- tionlesssimulations(dottedline)areplotted. TABLE3. BEST-FITSCALINGS 1 shows the location of dissipationless merger remnants in Models FundamentalPlane Re- M⋆ the virial coordinate system, and plots remnants from pro- α β λ ∆2 µ genitors appropriate for various redshifts. The best-fit FP (cid:10) (cid:11) Dissipationless 2.00 1.01 1.00 0.018 0.45 scalings produced by pure disk systems (solid triangles) are Dissipational 1.58 0.80 0.80 0.065 0.57 α=2.00, β =1.01, with almost no tilt relative to the virial Full-Model 1.55 0.82 0.79 0.062 0.57 plane (λ = 1.00). Individually, progenitors at each of the GasFraction fgasRuns foursimulatedredshiftsproducemergerremnantsalsoclosely alignedwiththevirialplane(λ=0.97- 1.03).Includingstel- fgas=0.01 1.81 0.75 0.97 0.009 0.41 fgas=0.025 2.11 0.74 0.96 0.011 0.41 larbulgesintheprogenitors(solidcircles)producesasimilar fgas=0.05 2.07 0.64 0.95 0.011 0.41 FPscaling(α=1.95,β=0.98;λ=0.97). Amoresubstantial fgas=0.1 2.01 0.61 0.92 0.014 0.42 changeintheFPisrealizedbyincreasingthepericentricpas- fgas=0.2 1.89 1.20 0.89 0.024 0.44 sagedistanceoftheencountersfrom2r to0.4R (opencir- fgas=0.4 1.64 1.07 0.83 0.033 0.51 d vir cles), whichcorrespondinglyincreasesthe total angularmo- mentaofthemergingsystems. Remnantsproducedinthedis- sipationlesswideorbitmergerstypicallyhavelargereffective radii, inducing an offset of ∆logR ∼- 0.4 in the FP. How- relation,andtheredshift-dependentblackholemassfunction e ever,thewideorbitFPscalings(α=1.97,β=1.04;λ=0.97) tomodeltheevolutionofthered-galaxyluminosityfunction are still very similar to both the nearly radial orbit FP and and color-magnitude relation. A combination of the results virialscalings. Increasingthenumberofdarkmatterparticles from Hopkinsetal. (2005b) and the stellar-mass FP relation per halo to 180,000 in the progenitors(open diamonds) has presented here could be used to account for the effects of verylittleeffectontheresultingFP,suggestingourresultsare color-magnitudeevolutiononthe photometricFP, butwould notstronglyinfluencedbyournumericalresolution. likelyinvolveotherassumptionsbeyondthoseemployedhere The R - M relation produced by merging dissipationless andwedefersuchanalysisforfuturework. e ⋆ disk progenitors, shown in Figure 2, reflects the trends ap- parent in the FP those mergers generate and additional fea- 4. RESULTS turesowingtoredshift-dependentprogenitorproperties. The Below,wepresenttheFPandR - M relationsforthedis- e ⋆ merging of pure disk galaxies (solid triangles) appropriate sipationless,dissipational,full-model,andspheroidalmerger for various redshifts generates remnants with a shallower simulations.ForeachFPandRe- M⋆relation,welistthebest mean R - M relation (µ≈0.45, solid line) than that mea- e ⋆ fitscalingsinTable3. sured in late-type galaxies in the Sloan Digital Sky Survey (Shenetal. 2003, µ≈0.56). The remnants also systemati- 4.1. DissipationlessDiskSimulations callydecreasein effectiveradiuswith redshift,reflectingthe Themergingof thedissipationlessdisksdescribedin §3.1 decrease in progenitor disk scalelength and pericentric pas- produces a FP relation similar to the virial scaling. Figure sagedistance. Widerorbitmergers(opencircles)withlarger GasDissipation&theFP 9 FIG. 5.— Fundamental Plane (FP) relation produced by the merging FIG. 6.— Effective radius Re – stellar mass M⋆ relation produced by ofgas-richdiskgalaxies withdarkmatterhalos, starformation, supernova themergingofgas-richdiskgalaxieswithdarkmatterhalos,starformation, feedback,andaprescriptionforfeedbackfromaccretingsupermassiveblack supernovafeedback, andaprescription forfeedback fromaccreting super- holes. Shownareremnants produced bymergers appropriate forredshifts massiveblackholes. Shownareremnantsproducedbymergersappropriate z=0(blackcircles), z=2(reddiamonds),z=3(bluetriangles), andz=6 forredshiftsz=0(blackcircles),z=2(reddiamonds),z=3(bluetriangles), (green squares) with nearly radial, parabolic orbits. The merging of pure andz=6(greensquares)withnearlyradial,parabolicorbits.Alsoplottedare diskgalaxiesusingourfullphysicalmodelproducesaFPnearlyparallelto remnants produced byvarying the system angular momentum through the theobservedinfraredFP(Pahreetal.1998b)andnearlycoincidentwiththe initialdiskorientation(purplepentagons)andpericentricpassagedistances FPproducedbysimilarsimulationswithoutblackholes. TheFPrelationis (orangehexagons)forasinglepairofprogenitormodels,whichproducesa roughlyindependentoftheredshiftscalingsoftheprogenitorsystemsandthe spreadintheremnanteffectiveradius.Themergingofpurediskgalaxiesus- locationofremnantswithinFPisfairlyinsensitivetoalargevarietyofdisk ingourfullphysicalmodelproducesaRe- M⋆relationroughlyparalleltothat orientations(purplepentagons)andorbitalconfigurations(orangehexagons), measuredformassivegalaxiesintheSloanDigitalSkySurvey(Shenetal. aschangesintheeffectiveradiusarecompensatedbychangesinthevelocity 2003),thoughwithanoffset.TheresultantRe- M⋆relationshiftsdownward dispersionandsurfacemassdensity. Forcomparison,thebestleast-squares with the redshift of the progenitor systems as the remnants decrease with fittotheFPdelineatedbytheremnantsisplotted(solidline). size. Forcomparison,thebestleast-squaresfittotheRe- M⋆relationdelin- eatedbytheseremnants(solidline),aswellasthedissipationlessdiskmodel Re- M⋆relation(dottedline)andtheShenetal.(2003)relation(dashedline) areplotted. angularmomentaproduceremnantswithlargereffectiveradii whilegalaxiescontainingbulges(solidcircles),andtherefore lessspecificangularmomenta,produceremnantswithsmaller effectiveradii. Theseresultsareconsistentwithexpectations galaxiesvarysubstantiallywithredshift. Combined,varying fordissipationlesssystemswheretheenergyandangularmo- thegasfractionabove f >0.4,changingthe ISMpressur- gas menta of the model system are manifestly conserved. As a ization dramatically, and scaling the progenitor systems for finalnoteforthedissipationlessruns,increasingthenumeri- redshiftsz=0- 6 produceonly a small amountof scatter in calresolutionofthedarkmatterby3×(opendiamonds)gives thedissipationalmodelFP( ∆2 1/2=0.065). consistentresults,suggestingthatartificialheatingofthestel- The Re- M⋆ relation of th(cid:10)e re(cid:11)mnants, shown in Figure 4, larcomponentbydiscretenesseffectsinthedarkmatterhalo ismorestronglyinfluencedby therangeof progenitorprop- isnotstronglyinfluencingthestructureoftheremnants. erties. Thesmallerprogenitorgalaxiesappropriateforhigher redshiftsproducesmallerremnants,whiletheless-pressurized 4.2. DissipationalDiskSimulations ISM models also decrease the effective radii of the rem- Themergingofgas-richdiskgalaxyprogenitorsincluding nants.ThedissipationalmodelR - M relationissignificantly e ⋆ dissipationresultsinFPandR - M relationsthatdiffersub- steeper (solid line, µ= 0.57) than the relation produced by e ⋆ stantiallyfromtheanalogousrelationsproducedbythemerg- thedissipationlessmergingofdiskgalaxies(dottedline, µ= ing of dissipationless disks. Figure 3 shows the FP relation 0.45),andcompareswellwiththerelationmeasuredforlate- generatedby the dissipationalmodeldisk galaxiesappropri- type galaxies in the SDSS (Shenetal. 2003). The dissipa- ately scaled for various redshifts. The dissipational model tionalsimulationsproduceanR - M relationthathasalower e ⋆ FP displays a tilt relative to the virial plane (λ=0.8), with R normalizationthantheShenetal.(2003)relation,butsub- e a scaling (α=1.58, β =0.80) similar to the near-IR photo- sequent re-mergingand a cosmologically-representativedis- metricFP(Pahreetal.1998b,α=1.53,β=0.79). Thedissi- tributionoforbitswilllikelydecreasethediscrepancybyin- pationalmodelFPincludesremnantsproducedfromprogen- creasing R at a given stellar mass. Since these the dissipa- e itorsthatvarybyafactor2×ingasfraction(f =0.4,0.8), tionless remnants lie above the Shenetal. (2003) relation, gas includingeitherstrongly(q =1.0)orweakly(q =0.25) re-merging and higher angular momentum orbits will only EOS EOS pressurized ISM equations-of-state. For gas-rich systems furtherincreasethisdiscrepancywithrealellipticalgalaxies. (f ≥0.4),thegasfractionandISMphysicsoftheprogeni- While a proper accounting for the distribution of formation gas torshaveonlyaslighteffectontheFP.Theredshift-dependent redshifts for elliptical galaxies would alter the R - M rela- e ⋆ propertiesofprogenitorsystemshavelittleeffectonthesim- tionbyweightingtheremnantsunequally,themergersofdisk ulated FP plane, even as the structuralpropertiesof the disk galaxieswheredissipationisimportantwillneverthelesspro- 10 Robertsonetal. FIG. 7.— FundamentalPlane(FP)relationproducedbythemergingof FIG. 8.— Effective radius Re –stellar massM⋆ relations produced by spheroidalgalaxymodels. UsingHernquist(1990)stellarspheroidsmodels themergingofspheroidalgalaxymodels. ThemergersofHernquist(1990) withdarkmatterhalosasinitialconditions(bluetriangles),theremnantspro- stellarspheroidsinitialconditionswithdarkmatterhalos(bluetriangles),ini- ducedbydissipationlessspheroidmergersappropriateforredshiftz=0,with tialized to the Shenetal. (2003)relation (dashed line), with nearly radial, nearlyradial,parabolicorbits(blackcircles)andwide,ellipticalorbitswith parabolic orbits (black circles) and wide, elliptical orbits with circularity circularityǫ=0.5(reddiamonds)arecalculated.Theremnantsofspheroidal ǫ=0.5 (red diamonds) are simulated. The remnants of spheroidal merg- mergersproduceaFPrelation similartotheirprogenitor systems, roughly ersproduceaRe- M⋆relationslightlyshallowerthantheobservedrelation, independentoftheorbitalenergyorangularmomentum.Alsoshownarese- roughlyindependentoftheorbitalenergyorangularmomentum.Alsoshown lectspheroidalremnantsfromgas-richdiskgalaxymergersimulationsthat arespheroidal remnants fromgas-richdiskgalaxy mergersimulations that includestarformation,supernovafeedback,andaprescriptionforfeedback includestarformation,supernovafeedback,andaprescriptionforfeedback fromaccretingsupermassiveblackholes(orangesquares). Thediskgalaxy fromaccretingsupermassiveblackholes(orangesquares). Thediskgalaxy mergerremnants occupy a FPrelation similar tothat observed in infrared mergerremnantsoccupyaRe- M⋆relationwiththesamescalingasobserved observations(solidline). There-mergingofthesediskgalaxyremnantson inSDSS(dashedline).There-mergingofthesediskgalaxymergerremnants nearlyradial, parabolic orbits (greencircles), furtherdemonstrates thatthe onnearlyradial,parabolicorbits(greencircles)producesasimilarRe- M⋆ mergingofspheroidalremnantsproducesaFPsimilartothatoccupiedbythe relationasthedissipationless mergingofspheroidalgalaxies. Forcompar- progenitorsystems(e.g.Capelatoetal.1995;Dantasetal.2003;Nipotietal. ison,thebestleast-squaresfittotheRe- M⋆ relationdelineatedbythedis- 2003;Boylan-Kolchinetal.2005).Forcomparison,thebestleast-squaresfit sipationlessspheroidalmergerremnants(dashed-dottedline),theShenetal. totheFPdelineatedbythedissipationlessdiskmergerremnants(dottedline) (2003)relation,andtherelationproducedbysimulationsusingthefullphys- andspheroidalmergerremnants(dash-dottedline)isplotted. icalmodel(solidline)areplotted. ducea R - M relationthat is steeper than thatproducedby e ⋆ dissipationlessmerging. 4.3. Full-ModelDiskSimulations Introducingthe effectsofblackholefeedbackthroughthe full-model simulations produces a set of fundamental scal- ing relations similar to those in dissipational mergers with- out black holes. The fundamental plane produced by the full-model simulations yields nearly the same FP scalings (α=1.55,β=0.82)andtilt(λ=0.79)asthedissipationalsim- ulations(see§4.2),andissimilartotheobservednear-IRscal- ings(Pahreetal.1998b). Thesesimulatedremnantsexhibita scatter abouttheir mean FP of ∆2 1/2 =0.062, comparable to boththe observedscatter int(cid:10)he F(cid:11)Pat opticalwavelengths (e.g.Bernardietal.2003a)andthatproducedbythedissipa- tionalsimulations.Blackholefeedbackcausesthefull-model remnants to be slightly larger than the dissipational model remnantsasfeedback-drivenwindsremovegaseousmaterial fromtheinnermostregionsoftheremnantsthatwouldother- wisecontributetothecentralstellarcontent. Figure5shows FIG. 9.— BlackholemassMBH –stellarvelocitydispersionrelationσ thefull-modelremnantsproducedbymergersappropriatefor relationmeasurementsforgalaxiesproducedbythere-mergingofdiskgalaxy variousredshiftsonnearlyradial,parabolicorbits.Theresul- mergerremnants that obey the local MBH- σ relation (e.g., Tremaineetal. 2002, solidline). Whilethe number ofre-mergers examined is limited, a tantFPrelationisroughlyindependentoftheredshiftscalings singlegeneration ofdissipationless mergers after theinitial formative gas- oftheprogenitorsystemsandthelocationofremnantswithin richmergers that generate the MBH- σ relation is notexpected tostrongly theFPisfairlyinsensitivetotheorientationsofthedisks(pur- altertheobservedMBH- σrelationbutmaybeasourceofscatter. plepentagons,seeTable2)andorbitalconfiguration(orange

Description:
mergers of pure disk galaxies on prograde-prograde copla- nar parabolic orbits with the .. least-squares fit to the Re −M⋆ relation of pure disk merger remnants is plotted. (dotted line). cal passband Schade, D., Barrientos, L. F., & Lopez-Cruz, O. 1997, ApJ, 477, L17+. Schmidt, M. 1959, ApJ,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.