DRAFTVERSIONNOVEMBER3,2005 PreprinttypesetusingLATEXstyleemulateapjv.9/08/03 THEFUNDAMENTALSCALINGRELATIONSOFELLIPTICALGALAXIES BRANTROBERTSON1,5,THOMASJ.COX1,LARSHERNQUIST1,MARIJNFRANX2, PHILIPF.HOPKINS1,PAULMARTINI3,VOLKERSPRINGEL4 DraftversionNovember3,2005 ABSTRACT Weexaminethefundamentalscalingrelationsofellipticalgalaxiesformedthroughmergers. Usinghundreds ofsimulationstojudgetheimpactofprogenitorgalaxypropertiesonthepropertiesofmergerremnants,wefind thatgasdissipationprovidesanimportantcontributiontotiltintheFundamentalPlanerelation.Dissipationless 5 mergersofdisksproduceremnantsthatoccupyaplanesimilartothatdelineatedbythevirialrelation. Asthe 0 gascontentofprogenitordiskgalaxiesisincreased,thetiltoftheresultingFundamentalPlanerelationincreases 0 and the slope of the R - M relation steepens. For gas fractions f > 30%, the simulated Fundamental e ⋆ gas 2 Planescalings(R ∝σ1.55I- 0.82)approachthoseobservedintheK-band(R ∝σ1.53I- 0.79). Thedissipationless e e e e v merging of spheroidal galaxies and the re-merging of disk galaxy remnants roughly maintain the tilt of the o Fundamental Plane occupied by the progenitor ellipticals, approximately independent of the orbital energy N orangularmomentum. Drymergingofspheroidalsystemsatredshiftsz<1isthenexpectedtomaintainthe stellar-massFundamentalPlanerelationsimprintedbygas-richmergingduringtheepochofrapidspheroidand 1 supermassiveblackholegrowthatredshiftsz≈1- 3. Inoursimulations,feedbackfromsupermassiveblack hole growth has only a minor influence on the stellar-mass scaling relations of spheroidalgalaxies, but may 1 playaroleinmaintainingtheobservedFundamentalPlanetiltatopticalwavelengthsbysuppressingresidual v starformationinmergerremnants. We estimate that ≈ 40- 100% of the Fundamental Plane tilt induced by structural properties, as opposed 3 to stellar population effects, owes to trends in the central total-to-stellar mass ratio M /M produced by 5 total ⋆ dissipation. Gascoolingallowsforanincreaseincentralstellarphase-spacedensityrelativetodissipationless 0 1 mergers, therebydecreasingthe centralMtotal/M⋆. Lower mass systemsobtain greaterphase-spacedensities 1 thanhighermasssystems,producingagalaxymass-dependentcentralMtotal/M⋆andacorrespondingtiltinthe 5 FundamentalPlane. Weaccountforthesetrendsintheimportanceofdissipationwithgalaxymassintermsof 0 theinefficientcoolingofcollisionallyheatedgasinmassivehalosanddynamicallyvaryinggasconsumption / timescalesinsmallersystems. h p Subjectheadings:galaxies:formation–galaxies:evolution - o r 1. INTRODUCTION Faberetal.1987,hereafterthe“virialscaling”). t s Elliptical galaxies represent a fascinating combination of WhiletheobservationaldeterminationoftheFPwasorig- a inally motivated as a precise distance indicator to improve complexity and regularity. A leading theory for the origin : v of early-type galaxies is based on mergers of disk galax- upon the previously known luminosity (L) – velocity dis- i ies (Toomre&Toomre 1972; Toomre 1977) and likely in- persion(σ) relation (Faber&Jackson 1976), the importance X of the FP scalings and its correspondingly small scatter for volvesgasdissipation,starformation,andsupermassiveblack r theories of elliptical galaxy formation was also realized. holefeedback(Barnes1992;Barnes&Hernquist1992,1996; a The first observationally determined FP scalings (α∼1.3- Mihos&Hernquist1994,1996;DiMatteoetal.2005)inad- 1.4,β∼0.8- 0.9,atopticalwavelengths;Dressleretal.1987; dition to stellar dynamics. Despite their complex origins, Djorgovski&Davis1987)differedfromthevirialscaling,in- early-typegalaxiesobeyaregularsetofscalingrelationsthat dicating a “tilt” relative to the expectation for homologous connecttheirphotometricandkinematicproperties,mostno- systems. TheFPtiltimpliedthatthemass–to–lightratioM/L tably the relation between effective radius R , central stellar e likelyvariesasafunctionofgalaxymassorluminosityas velocitydispersionσ, andaveragecentralsurfacebrightness DIejkonrgoowvnskais&thDeaFvuinsd1a9m8e7n)talPlane(FP;Dressleretal.1987; M ∝Lγ, (2) L R ∝σαI- β. (1) withintherangeγ≈1/5- 1/4.Faberetal.(1987)notedthat e e deviationsfromtheFPcanbeinducedbyM/Lvarianceow- ing to e.g. metallicity or age trends in stellar populations, The virial theorem can be used to calculate this relation dynamical or structural properties, and the relative distribu- for homologous systems, which gives α = 2, β = 1 (e.g., tion of darkand baryonicmatter. In principle, each of these 1 Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cam- effectsmayalsointroduceasystematictiltintotheobserved bridge,MA02138,USA. FPiftheyvaryasafunctionofellipticalgalaxymass. 2LeidenObservatory,P.O.Box9513,NL-2300RALeiden,Netherlands. Thepurposeofthecurrentpaperistogaugetheimportance 3 TheOhioState University, Department ofAstronomy, 140West18th of various contributionsto the tilt in the observed FP in the Ave.,Columbus,OH43210,USA. context of the scenario where elliptical galaxies form from 4 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, 85740GarchingbeiMünchen,Germany. mergers. Using hundreds of simulated galaxy mergers that [email protected] includethephysicsofgascooling,starformation,supernova 2 Robertsonetal. feedback, and black hole accretion and feedback, we deter- iesdependprimarilyongalaxyluminosity. Faber&Jackson mine that gas dissipation may significantly contribute to the (1976)establishedtherelationbetweenluminosityLandve- tilt of the observed FP, in addition to tilt induced by M/L locitydispersionσ,providingfurtherevidencethatellipticals trends from stellar populations. We propose that elliptical follow a regular sequence as a functionof mass. Kormendy galaxies initially form in gas-rich mergers from disk galaxy (1977)showedthatthesurfacebrightnessesandeffectiveradii progenitorswhosegasfractionsexceed f ∼30%,andshow of ellipticals correlate with galaxy luminosity and with one gas thattheseremnantsdisplaysubstantialFPtilt. another(seealsoBinggelietal.1984). Weconnecttheoriginofthistilttothecentralstellarphase- Importantearlyindicationsthatasecondparameter(inad- spacedensityofthe remnants. Insmallmasssystemswhere dition to mass) governs the properties of ellipticals came dissipationismostimportant,thestellarphase-spacedensity with the Terlevichetal. (1981) and Tonry&Davis (1981) ofremnantsincreasessubstantiallyinhigh-gasfractionmerg- work that implied a correlation of L- σ and absorption-line ers. Thecentralstellar phase-spacedensityinmassive ellip- strength–luminosityrelation(Mg - L)residuals.Whilethese 2 ticals remains similar in mergerswith varying gas fractions, findingswerelatercontradicted(e.g.Dressler1984), thatel- withtheirstarsonaverageobtaininglowerphase-spaceden- lipticalgalaxieswerenotaone-parameterfamilyremainedan sities thanreachedin smallersystems. Thismass-dependent importantpossibility. phase-space density trend translates into a mass-dependent The discovery of the FP (Dressleretal. 1987; trend in the ratio of total mass to stellar mass M /M in Djorgovski&Davis 1987) definitively revealed that el- total ⋆ the central regions of ellipticals and a corresponding tilt in liptical galaxy properties are set by at least two parameters. the FP. We then explain this mass-dependent importance of Specifically,ellipticalswerefoundtoobeyarelationbetween dissipationintermsoftheinefficientcoolingofcollisionally R , σ, and I as given by Equation (1), with less than half e e heated gas in massive ellipticals and the dynamically vary- thescatteroftheFaber&Jackson(1976)L- σ relation. The inggasconsumptiontimescaleofsmallersystems. Itisinter- small scatter of the FP was immediately noticed, implying esting,andpossiblysignificant,thatthegasfractionrequired that the process of elliptical galaxy formationmust result in to reproduce the observed tilt in the FP is, as discussed by a veryregular mass-sequence. Faberetal. (1987) notedthat Hernquist(1993) similar to thatneededformergersofdisks mass-to-light ratio (M/L) variations can influence observa- toyieldthehighcentralphasespacedensitiesofellipticals. tions of the FP by inducing tilt relative to the plane defined In accord with other work (e.g., Capelatoetal. 1995; by the virial relation. Much of the subsequent work on the Dantasetal. 2003; Nipotietal. 2003; Boylan-Kolchinetal. FP has centered aroundpossible causes of M/L variation or 2005), we find that subsequent dissipationless merging be- otheroriginsfortiltingtheFPrelativetothevirialplane. tween spheroidal galaxies roughly maintains the FP tilt. Numerous subsequent observations verified and im- Moreover,we findthata singlegenerationof dissipationless proved the FP relation for ellipticals (Luceyetal. re-mergingofremnantswillinducescatterintheM - σrela- 1991a,b; deCarvalho&Djorgovski 1992; Benderetal. BH tionbutwillnotdestroythecorrelation,asspheroidalgalaxy 1992; Jorgensenetal. 1992; Guzmanetal. 1993; mergers also do not dramatically alter the R - M relation Jorgensenetal. 1993; Sagliaetal. 1993; Benderetal. 1994; e ⋆ when viewed as a mass-sequence. Possible dry mergingbe- Prugniel&Simien 1994; Pahreetal. 1995; Jorgensenetal. tweenspheroidalgalaxiesatredshiftsz<1asindicatedbyre- 1996; Prugniel&Simien 1996; Busarelloetal. 1997; centobservations(Belletal.2005;vanDokkum2005)isthus Graham&Colless 1997; Benderetal. 1998; Pahreetal. notexpectedtodestroytightFPorM - σrelationsgenerated 1998b,a; Mobasheretal. 1999; Kronawitteretal. BH duringspheroidformationthroughgas-richmergersathigher 2000; Gerhardetal. 2001; Bernardietal. 2003a; redshifts. Padmanabhanetal. 2004; Wooetal. 2004; Cappellarietal. Thispaperisorganizedasfollows. Wereviewtheobserva- 2005)andextendedtheFPdeterminationstohigherredshifts tionalandtheoreticalworkonellipticalgalaxyformationand (Franx 1993; vanDokkum&Franx 1996; Kelsonetal. scalingrelationsin§2.Wepresentourmethodologyin§3and 1997; Schadeetal. 1997; vanDokkumetal. 1998; ourresultsin§4. Wediscusstheimplicationsofourworkin Jørgensenetal. 1999; Treuetal. 1999; Kelsonetal. §6andsummarizeandconcludein§7. Throughout,weadopt 2000a,b,c; Kochaneketal. 2000; Treuetal. 2001; aflatΛCDMuniversewithΩM=0.3,ΩΛ=0.7,Ωb=0.04,and vanDokkum&Franx 2001; vanDokkumetal. 2001; aHubbleparameterH =100hkms- 1Mpc- 1withh=0.7. Treuetal. 2002; Gebhardtetal. 2003; Rusinetal. 2003; 0 vanDokkum&Stanford 2003; vanDokkum&Ellis 2003; 2. REVIEWOFELLIPTICALGALAXYSCALINGLAWS vanderWeletal.2004). Whilethespecificdetailsmayvary, Scaling laws describing the regularity of the properties of theseworksgenerallyconcludethat ellipticalgalaxieshavebeenknownsinceatleastFish(1964), whoreportedarelationbetweentheirpotentialenergyW and • Atightfundamentalplanebetweentheellipticalgalaxy mass M⋆ asW ∝M⋆3/2. Even earlier, deVaucouleurs(1948, propertiesRe,σ,Ie exists,andextendsinsomeformto hereafterdV)haddemonstratedthatellipticalsgenerallyhave atleastredshiftz∼1. asurfacebrightnessprofilelogI(r)∝r1/4,atleastoversome range in radius r, and implications of the dV profile for the • Ellipticalsare old, with formationredshiftsz>1, and mass-dependentpropertiesofellipticalswererecognizedbe- their color evolution, which controls the FP normal- foretheFish(1964)paper(e.g.,Poveda1958). ization,isroughlyconsistentwithpassiveevolutionof Sandage(1972)foundacolor–magnituderelationforVirgo theirstellarpopulations. and Coma cluster ellipticals (see also Stebbins&Whitford 1952;deVaucouleurs1961). Faber(1973)discoveredasim- • Some of the FP tilt must originate from the changein ilar color–magnitudetrend in LocalGroup and cluster ellip- stellarpopulationM/Lwithgalaxymass,buttheextent ticals,aswellasanabsorption-linestrength–magnituderela- towhichstellarpopulationscontributetoM/L-induced tion, and suggested that these properties of elliptical galax- FPtiltisdebated. GasDissipation&theFP 3 Ofspecificinteresttomodelersaretheobservationsthatmade starsanddarkmatter. Thesecondcategory,termed“dissipa- definite statements about the influence of structural or kine- tional” mergers, consists of simulations that account for gas maticnonhomologyonM/LandtheFPtilt,especiallythose cooling,starformation,thephysicsoftheinterstellarmedium, that conclude directly that these nonhomologies are either andsupernovafeedback.Werefertothethirdcategoryofcal- unimportant or of minor significance (Gerhardetal. 2001; culationsas“full-model”simulationswhich,inadditiontothe Cappellarietal. 2005), significant (e.g. Padmanabhanetal. processes accounted for in the “dissipational” mergers, also 2004), or of possible but as yet not fully determined impor- include supermassive black hole growth and feedback. All tance(e.g.Pahreetal.1998b). threecategoriesofdisk–diskmergersarederivedfromastan- Moreover, elliptical galaxy properties related to the dard set of galaxy models to enable a direct comparison of FP or its projections have been extensively observed. physicalprocesses. These include studies of the photometric profiles (e.g. To perform our numerical simulations, we utilize the deVaucouleurs 1948; Sersic 1968; Kormendy&Illingworth GADGET2 code (Springel 2005). GADGET2 uses the 1982; Burkert 1993; Caonetal. 1993), internal kine- smoothed particle hydrodynamics (SPH) formalism (Lucy matic structure (e.g. Binney 1978; Daviesetal. 1983; 1977; Gingold&Monaghan1977) in its entropy-conserving Davies&Birkinshaw 1988; Benderetal. 1994), metallic- formulation(Springel&Hernquist2002)tocalculatethedy- ity (deCarvalho&Djorgovski 1992; Benderetal. 1993, namical evolution of the gas and a tree-based method to 1996; Bernardietal. 1998, 2003b), and the M - σ rela- computegravitationalforcesbetweenparticles(Barnes&Hut BH tion (e.g. Gebhardtetal. 2000; Ferrarese&Merritt 2000; 1986). Tremaineetal. 2002). An important, related property is Allprogenitorgalaxieswerecreatedusingthemethodsde- the size-stellar mass relation (Shenetal. 2003; Trujilloetal. scribedinSpringeletal.(2005),whichallowforthegenera- 2004;Trujillo&Aguerri2004;McIntoshetal.2005),thatin- tion of stable equilibrium galaxy models. Each galaxy con- dicates a power-law correlation between some characteristic tains an extended dark matter halo, and may also consist of galaxysizeandthestellarmassorluminosity. a stellar disk, gaseous disk, stellar bulge, and a supermas- Interpreting these observations has been the focus of sive black hole particle. The collisionless components of various theoretical efforts (see, e.g. Barnes&Hernquist thegalaxymodelsarerequiredtosatisfytheJeansequations 1992, for a description of early results). Notably, sim- whilethestructureofthegascomponentisdeterminedbythe ulations of the formation of ellipticals and their prop- equationofhydrostaticequilibriumandanintegralconstraint erties in the context of the merger hypothesis have onthesurfacemassdensity. been performed using a variety of progenitor mod- els including spheroidal (White 1979; Capelatoetal. 3.1. DissipationlessDiskSimulations 1995; Dantasetal. 2003; González-García&vanAlbada Thedissipationlessdiskprogenitorsconsistofanexponen- 2003; Nipotietal. 2003), disk (Toomre&Toomre 1972; tial stellar disk embedded in a dark matter halo with virial Gerhard 1981; Farouki&Shapiro 1982; Faroukietal. 1983; velocities in the range V = 80- 500 km s- 1. We initial- Barnes&Hernquist 1991; Barnes 1992; Hernquist 1992, vir ize the size of the disk according to the Moetal. (1998) 1993;Hernquistetal. 1993; Mihos&Hernquist1994, 1996; formalism for dissipational disk galaxy formation (see also Hibbard&vanGorkom 1996; Bekki 1998; Dubinski 1998; Fall&Efstathiou1980;Blumenthaletal.1986)assumingthe Naabetal.1999;Naab&Burkert2001;Aceves&Velázquez disk contains a fraction of the total galaxy angular mo- 2005), and cosmologicalsystems (e.g. Aarseth&Fall 1980; mentum equal to its mass fraction, which we set to m ≡ Sáizetal. 2004). Analytical models of elliptical galaxies d M /M =0.041to matchthe MilkyWay-like modelused have also been formulated (Hernquist 1990; Ciotti 1991; disk vir bySpringeletal. (2005). Thediskscalelengthr isthende- Ciottietal. 1996; Ciotti 1996; Ciotti&Bertin 1999), aiding d terminedbythe galaxyspin λandthe darkmatterhalocon- the interpretation of both the observational and simulation centrationC . We adoptλ=0.033,whichisnearthemode results. In what follows, we combine features of many of vir of the redshift- and mass- independent distribution of dark these previous theoretical endeavors by simulating mergers matter halo spins measured in cosmological N-body simu- between dissipational and dissipationless disk galaxies, lations (Vitvitskaetal. 2002). For the Navarro-Frenk-White spheroidal systems, and merger remnants to determine their haloconcentrationC (Navarroetal.1997,NFW),weadopt fundamentalscalingrelations. vir themass-andredshift-dependentdarkmatterhaloconcentra- tionsmeasuredbyBullocketal.(2001) 3. METHODOLOGY Galaxymergingcombinesmuchcomplexphysics, includ- M - 0.13 ing e.g. the collisionless dynamicsof dark matter and stars, C (M ,z)≈9 vir (1+z)- 1, (3) vir vir (cid:18)M (cid:19) gasdissipation,starformation,andfeedbackfromsupernovae coll,0 apnridncbilpalcekbheoelsesgernotiwalthf.orWdheitleermeaicnhinogfmtheersgeerprreomcensasnetspmroapyeirn- whereMcoll,0∼8×1012h- 1M⊙ isthelinearcollapsemassat redshift z=0. In all cases, the stellar disk scaleheight h = ties, their relative importancehas notbeen fullyestablished. d 0.2r , similar to the MilkyWay (c.f. Siegeletal. 2002). We Bycomparingthestructureofmergerremnantsinsimulations d model the dark matter halo with a Hernquist (1990) density which systematically include or exclude various processes, profileoftheform we attempt to both test the merger hypothesis and identify themostimportantphysicalmechanisms. M a ρ (r)= DM , (4) Tothisend,weperformasetofhundredsofsimulationsof h 2π r(r+a)3 galaxymergers.Oursuiteconsistsofthreecategoriesofdisk– diskmergersandoneclassofspheroid-spheroidmergers.The wherethescalelengtha(C )mapstheHernquist(1990)pro- vir firstcategoryofsimulations,refereedtoas“dissipationless,” file parametersto the appropriateNFW haloparameters(for includesonlysimulationsofdisksconsistingofcollisionless details,seeSpringeletal.2005). 4 Robertsonetal. TABLE1. GALAXYMERGERS Model Progenitor Redshift GasFraction ISMPressurization PericentricSeparation #ofSimulations Vvir[kms- 1] z fgas qEOS rperi “Full-Model”SimulationswithBlackHoles Local 80,115,160,226,320,500 0 0.4,0.8 0.25,1.0 2rd 24 Intermediate- z 80,115,160,226,320,500 2,3 0.4,0.8 0.25,1.0 2rd 48 High- z 115,160,226,320,500 6 0.4,0.8 0.25,1.0 2rd 20 HaloConcentrations 160 0 0.4 1.0 2rd 5 DiskOrientation 160 0 0.4 1.0 Table2 14 OrbitalConfiguration 160 0 0.4 1.0 Table2 18 DissipationalSimulations Local 80,115,160,226,320,500 0 0.4,0.8 0.25,1.0 2rd 24 Intermediate- z 80,115,160,226,320,500 2,3 0.4,0.8 0.25,1.0 2rd 48 High- z 115,160,226,320,500 6 0.4,0.8 0.25,1.0 2rd 20 fgasRuns 80,115,160,226,320,500 0 0.01,0.025,0.05 0.25,1.0 2rd 72 0.1,0.2,0.4 DissipationlessSimulations Local 80,115,160,226,320,500 0 0.0 – 2rd 6 Intermediate- z 80,115,160,226,320,500 2,3 0.0 – 2rd 12 High- z 80,115,160,226,320,500 6 0.0 – 2rd 6 WideOrbit 80,115,160,226,320,500 0 0.0 – 0.4Rvir 6 WideOrbit,Int.- z 80,115,160,226,320,500 2,3 0.0 – 0.4Rvir 12 WideOrbit,High- z 80,115,160,226,320,500 6 0.0 – 0.4Rvir 6 Bulge,Local 80,115,160,226,320,500 0 0.0 – 2rd 6 Bulge,Intermediate- z 80,115,160,226,320,500 2,3 0.0 – 2rd 12 Bulge,High- z 80,115,160,226,320,500 6 0.0 – 2rd 6 High-Res 80,115,160,226,320,500 0 0.0 – 2rd 6 SpheroidSimulations Local 80,115,160,226,320,500 0 0.0 – 0.025Rvir 6 Wide/EllipticalOrbit 80,115,160,226,320,500 0 0.0 – 0.4Rvir 6 Full-ModelRe-mergers 80,115,160,226 0 0.4 0.25 0.05Rvir 4 FollowingRobertsonetal.(2005b),wescaletheprogenitor mergerwithawiderparabolicorbitincreasedtor =0.4R peri vir galaxypropertiestoapproximatethestructureofdiskgalax- tojudgetheeffectofincreasedorbitalangularmomentumon ies appropriate for redshifts z=0, 2, 3, and 6. Varying the the dissipationless merger remnants. In addition, we repeat progenitorgalaxiesinthismannerenablesustodeterminethe eachnearly-radialmergerwithbulgecomponentsincludedin impactofredshift-dependentgalaxypropertiesonthescaling the galaxies with mass fraction m ≡ M /M = 0.1367 b bulge vir lawsofellipticals. KeepingthevirialvelocityV fixedwith to match the Milky Way-like model used in Springeletal. vir redshift,wescaletheprogenitorvirialmassandvirialradius (2005). WemodelthebulgeswithaHernquist(1990)density usingtherelations profile form (see Equation 4) where we set the bulge scale- lengthb=0.2r . Eachbulgecontains20,000particles, with M = Vv3ir (5) the number ofddisk particles reduced to 60,000 to maintain vir 10GH(z) thesamemassresolution. Finally,were-runallthepuredisk simulationsatredshiftz=0withhigherresolutiondissipation- V R = vir , (6) lessmodelswith 180,000darkmatterparticlesand120,000 vir 10H(z) disk particles to examine issues related to numericalresolu- tion. While we discuss these tests in more detail in §4, we whereH(z) isthe Hubbleparameter. To suitablyresolvethe noteherethatthelargesetofdissipationlesssimulationspro- forcesbetweenparticlesinmodelsofhigher-redshiftsystems, wereducethegravitationalsmoothingby(1+z)- 1. Thehalo ducesresultsveryconsistentwiththerestrictedsetofhigher resolutionruns. Inallweperform78dissipationlesssimula- concentrationsalsovarywithredshiftandmassaccordingto tions,andweprovideacompletelistinginTable(1). Equation(3)andthediskscalelengthsdecreasewithredshift through their dependenceon R andC . We note that the vir vir 3.2. DissipationalDiskSimulations redshift-dependenceofdiskscalelengthsagreeswellwiththe distributionofdiskscalelengthsseenouttoredshiftz≈1(e.g. To gauge the impact of dissipational gas physics on the Ravindranathetal.2004;Bardenetal.2005). properties of merger remnants, we perform a suite of disk At each redshift, we consider three separate types of dis- galaxymergersthat includegas cooling, star formation, and sipationless disk mergers. First, we examine equal mass supernovafeedback. Thedissipationaldisk progenitorscon- mergers of pure disk galaxies on prograde-prograde copla- tain exponential gaseous and stellar disks and Hernquist nar parabolicorbitswith the pericentricpassage distance set (1990)darkmatterhalos,withtheirdisksizesdeterminedby to r = 2r . The galaxies each contain 60,000 dark mat- theMoetal.(1998)formalismasdescribedin§3.1. Thever- peri d terand80,000stellardiskparticles. Second,werepeateach ticalstructureofthegaseousdisksaredeterminedbyaninte- GasDissipation&theFP 5 gralconstraintfromthesurfacemassdensityandtherequire- mentofhydrostaticequilibriumwithinthegalaxypotential. TABLE2. ORBITALVARIATIONS The thermal properties of the gas are determined us- ing the multiphase interstellar medium (ISM) model of DiskOrientations Springel&Hernquist (2003). Star formation is prescribed Models [dθe1g] [dφe1g] [dθe2g] [dφe2g] [h-r1pekripc] in the manner of Springel&Hernquist (2003), constrained to approximate the Schmidt (1959) law for disk galax- b 180 0 0 0 5.0 c 180 0 180 0 5.0 ies as measured by Kennicutt (1998), including a density d 90 0 0 0 5.0 threshold. Below this threshold the gas is modeled as a e 30 60 - 30 45 5.0 single-phase medium which is not star-forming. Dense gas f 60 60 150 0 5.0 above the threshold is modeled as a hybrid of cold, dense g 150 0 - 30 45 5.0 h 0 0 0 0 5.0 cloudsembeddedin a hot, diffuse mediumas envisionedby i 0 0 71 30 5.0 McKee&Ostriker(1977). Thetemperatureofthehotphase j - 109 90 71 90 5.0 issetbysupernovafeedbackandtheefficiencyofcloudevap- k - 109 - 30 71 - 30 5.0 l - 109 30 180 0 5.0 oration,andhasanenergyperunitmassthatfarexceedsthe m 0 0 71 90 5.0 coldphase. Eventhoughmostofthegasbymassiscold,the n - 109 - 30 71 30 5.0 hightemperatureofthehotphasemorethancompensatesfor o - 109 30 71 - 30 5.0 its small mass fraction, acting to pressurize the star-forming p - 109 90 180 0 5.0 gas,andleadingtoaneffectiveequationofstateP (ρ)thatis eff OrbitalConfigurations stifferthanisothermal(foranumericalfit,seeRobertsonetal. e1 30 60 - 30 45 2.5 2004).ThemultiphasemodelofSpringel&Hernquist(2003) e2 30 60 - 30 45 10.0 has been generalized by Springeletal. (2005) to allow for e3 30 60 - 30 45 15.0 an effective equation of state parameter q that linearly e4 30 60 - 30 45 20.0 EOS interpolates between an isothermal gas (q = 0) and the e5 30 60 - 30 45 40.0 EOS e6 30 60 - 30 45 30.0 fully-pressurized multiphase ISM model (q = 1). In- EOS h1 0 0 0 0 2.5 creasing qEOS improves the dynamical stability of the gas h2 0 0 0 0 10.0 and can prevent Toomre (1964) instability even in gas-rich h3 0 0 0 0 15.0 systems (Springel&Hernquist 2003; Robertsonetal. 2004; h4 0 0 0 0 20.0 h5 0 0 0 0 40.0 Springel&Hernquist2005;Robertsonetal.2005a). h6 0 0 0 0 30.0 Forourdissipationalmodels, we re-runtheVvir=80- 500 k1 - 109 - 30 71 - 30 2.5 kms- 1 purediskmergersimulationsfrom§3.1withtwogas k2 - 109 - 30 71 - 30 10.0 fractionsof f =0.4,0.8,eachwithtwoequationofstatepa- k3 - 109 - 30 71 - 30 15.0 gas k4 - 109 - 30 71 - 30 20.0 rametersqEOS=0.25,1.0,atredshiftsz=0,2,3,and6. Each k5 - 109 - 30 71 - 30 40.0 progenitor galaxy has 60,000 dark matter particles, 40,000 k6 - 109 - 30 71 - 30 30.0 stellar disk particles, and 40,000gas particles. The systems are merged on prograde-prograde parabolic coplanar orbits withr =2r .Foranequationofstateparameterq =0.25 peri d EOS tion and feedback should preserve the power-law scaling of we also systematicallyvarythe gasfractionofz=0 progen- theM - σrelationbetweenredshiftsz=0- 6. itors using f = 0.01, 0.025, 0.05, 0.1, 0.2 and 0.4. Our BH gas Thefull-modelsimulationsaugmentthepurediskdissipa- dissipationalsimulationcategoryhasatotalof164runs,with tionalmergersimulationsfrom§3.2withsupermassiveblack thecompletelistofsimulationsprovidedinTable(1). holegrowthasdescribedabove. Eachprogenitorgalaxyhas 3.3. Full-ModelDiskSimulations 40,000stellardiskparticlesand40,000gasparticles,andare mergedon prograde-progradeparaboliccoplanarorbitswith Our full-modelcategory simulations include the complete r =2r . The modelsare calculated forV =80- 500km physical model presented in Springeletal. (2005), account- peri d vir ing for gas cooling, star formation, supernova feedback, s- 1 galaxies at z= 0, 2, and 3 and Vvir = 115- 500 km s- 1 the Springel&Hernquist (2003) ISM model described in galaxies at z=6. Simulations are performed with gas frac- §3.2, and a prescription for supermassive black hole growth tionsof fgas=0.4,0.8eachwithequationofstateparameters and feedback. The supermassive black holes are included ofqEOS=0.25,1.0. Furthermore,werun14variationsofthe as “sink” particles, with seed masses of 105h- 1M⊙. The Vvir=160kms- 1progenitormergerwherewechangethedisk black holes are allowed to grow according to spherical orientationaccordingtothemethodofBarnes(1992)tochar- Bondi-Hoyle-Lyttleton accretion (Hoyle&Lyttleton 1939; acterizetheeffectsofdiskalignment(seeTable2),andrunan Bondi&Hoyle 1944;Bondi1952). The mass accretionrate additional 18 simulations where for 3 different orientations ˙ wevarythepericentricpassagedistance. Wealsorunasetof M is determined from the density and sound speed of the 5 additionalsimulationsof theV =160km s- 1 halo where gas near the black hole. A fraction ǫ =0.1 of the accretion vir f wesimulatedarkmatterhaloconcentrationsofC =5,7,9, rate is radiatively released, of which a fraction η =0.05 vir therm 11,and13. Inall,weperformatotalof129full-modelsim- is coupled as thermal feedback into gas within an SPH ker- ulationsandacompletelistoftheserunsisprovidedinTable nel smoothing length of the black hole. The strength of the (1). thermalcouplingiscomparabletothethermalfeedbackcou- pling of supernova energy used in cosmologicalsimulations (e.g. Abadietal. 2003), and reproducesthe M - σ relation 3.4. SpheroidSimulations BH observedlocally(DiMatteoetal.2005). Usingthesamefull- Toexplorethepropertiesofremnantsformedbythemerg- model simulations presented here, Robertsonetal. (2005b) ing of spheroidal systems, we also perform a suite of equal havealso demonstratedthatthismodelforblackholeaccre- mass spheroid-spheroid mergers. The spheroid progenitors 6 Robertsonetal. consist of stellar spheroids embedded in dark matter halos, The mean-squaredscatter about the direct best-fit plane can both having Hernquist (1990) profiles. We assume a stellar thenbecharacterizedbythequantity massfractionof f =0.05andtheconcentrationsofthehalos are adjusted to ac⋆count for the mass-dependence measured ∆2 = σI2IσR2RσV2V- σI2IσR4V- σR2RσI4V (14) in cosmological simulations (see Section 3.1). The sizes of (cid:10) (cid:11) (cid:0) - σ2 σ4 +2σ2 σ2 σ2 the stellar spheroids are set to follow the Shenetal. (2003) VV IR IR IV RV Re- M⋆relationformassivegalaxiesas × σI2IσV2V- σI4V - 1(cid:1). (cid:0) (cid:1) R =4.16 M⋆ 0.56kpc, (7) Whenappropriatewecomparethequantity ∆2 1/2 withthe e (cid:18)1011M⊙(cid:19) scatterdeterminedfromobservationalsampl(cid:10)es. (cid:11) TheremnantpropertiesarealsocomparedtotheR - M re- (see also Boylan-Kolchinetal. 2005). We vary the circular e ⋆ velocity of the halos between V = 80- 500 km s- 1. The lation,whichhasbeenmeasuredobservationallyintheSDSS vir (Shenetal. 2003) and may be representedby the power-law spheroidgalaxiesmergeoneithernearly-radialparabolicor- form bits with r =0.025R or wide elliptical orbitswith ellip- peri vir R ∝Mµ. (15) ticityǫ=0.5andr =0.4R . Eachspheroidprogenitorhas e ⋆ peri vir 1,200,000dark matter and 80,000stellar particles. A com- The R - M relation allowsfor a usefulcomparisonof rem- e ⋆ pletelistofthespheroid–spheroidmergersisprovidedinTa- nant sizes for simulations with differing angular momenta, ble(1). progenitorredshifts,ISMphysics,orgasdissipation.Inaddi- Todeterminetheimpactsubsequentre-mergingbetweenel- tion, we find that the relative locationof remnantsin the FP lipticalsformedfromdiskgalaxymergersmighthaveonthe can often be related to the impact of different physical pro- structural properties of the remnants, we also re-merge disk cessesontheeffectiveradii. TheR - M relationalsoserves e ⋆ galaxyremnantsfromthez=0full-modelsimulations.These asausefulcalibrationforourmethodtomeasuretheFPprop- remnantsaremergedonparabolicorbitswithrperi=0.05Rvir, ertiesoftheremnants. Asmentionedin§3.4,asubsetofour whereRvir isthe virialradiusoftheoriginaldiskprogenitor. simulationsuite involvesthe mergingof equilibriummodels Were-mergeremnantswithprogenitorgalaxycircularveloc- of spheroidsinitialized to satisfy the Shenetal. (2003) rela- itiesintherangeVvir=80- 226kms- 1. Acompletelistofthe tion. Asdiscussedinfurtherdetailin§4.4,theanalysistech- re-mergersimulationsisprovidedinTable(1). nique used to measure the FP properties of remnants accu- ratelyrecoverstheShenetal.(2003)relationwhenappliedto 3.5. Analysis thespheroidmodelprogenitorsandaffirmsourabilitytode- Eachsimulationisevolveduntilthemergeriscompleteand terminesimulatedremnantpropertieswithreasonablefidelity. theremnantsarefullyrelaxed,requiringintegrationsoftypi- cally2-4Gyr. Theremnantsarethenkinematicallyanalyzed 3.6. ComparisonwithObservations by measuringthe half-massstellar effectiveradiiR , the av- e WeadopttheapproachofplottingtheFPpropertiesofsim- erageone-dimensionalvelocitydispersionσ withina circu- ulatedremnantsintheR - σ2I- 1 virialplanecoordinatesys- larapertureofradiusR ,andtheaveragestellarsurfacemass e e e tem.ThetiltoftheFPrelativetothevirialplanecanbequan- densityI measuredwithin R as I ≡M (r<R )/πR2. The e e e ⋆ e e tifiedthroughthepower-lawrelation quantities R , σ, and I are averaged over 100 random sight e e linestotheremnant. R ∝ σ2I- 1 λ, (16) Once the FP parameters R , σ, and I are determined, we e e e e (cid:0) (cid:1) employthedirectfittingmethodofBernardietal.(2003a)to where λ=1 indicatesan alignmentof the FP with the virial determinethe best-fit FP scalings. The directfitting method plane. Whenappropriate,wemeasurethisestimateoftheFP seekstominimize tilt relative to the virial plane by linear least-squares fitting. Ourchoiceof coordinatesystemsisnotunique,andalterna- ∆=logR - αlogσ- βlogI - δ, (8) e e tiverepresentationsoftheFPincludetheκ-spacecoordinate whereαandβaretheFPscalingindicesdefinedbyEquation system(Benderetal.1992)orthebest-fitFPcoordinatesde- (1). Theminimizationof∆requires terminedbyobservationsinvariouspassbands. Theprimary advantage of choosing the virial plane coordinate system is (σ2σ2 - σ2 σ2 ) the easily determined tilt, which provides a gauge of possi- α= II RV IR IV (9) (σ2σ2 - σ4) blevariationsinthecentraltotal-to-stellarmassMtotal/M⋆ or II VV II kinematicnonhomologyofremnantsas a functionofgalaxy (σ2 σ2 - σ2 σ2 ) mass. β= VV IR RV IV (10) (σ2σ2 - σ4 ) For our purposes, we choose not to use stellar population II VV IV synthesistocomparewithdeterminationsoftheFPinoptical δ=hlogR i- αhlogσi- βhlogI i, (11) passbands. ObservationsindicatethattrendsintheM/Lratio e e owingtostellarpopulationeffects(e.g. ageormetallicity)as wheretheaveragehlogXiovertheNdatasamplesconsidered a function of galaxy mass or luminosity will contribute sig- isdefinedas nificantlytotheFPtilt,especiallyatshort-wavelengths(fora hlogXi≡ logXi/N (12) recentresultonthisissue,seeCappellarietal.2005). Obser- Xi vationshavealsodeterminedthatellipticalgalaxiesaretypi- cally old and their stellar populations redden passively with andtheco-variantdispersionisdefinedas time (e.g. Benderetal. 1996; vanDokkum&Franx 1996). σ2 = logX - hlogXi logY - hlogYi /N. (13) These constraints imply that to properly recover the short- XY i i wavelengthphotometricFP,preciseinformationonthestellar Xi (cid:0) (cid:1)(cid:0) (cid:1) GasDissipation&theFP 7 FIG.1.— FundamentalPlane(FP)relationproducedbythemergingofdis- FIG. 2.— EffectiveradiusRe–stellarmassM⋆relationproducedbythe sipationlessdiskgalaxymodelsappropriateforredshiftsz=0(black),z=2 mergingofdissipationlessdiskgalaxymodelsappropriateforredshiftsz=0 (red),z=3(blue),andz=6(green)onnearlyradial, parabolicorbits. All (black),z=2(red),z=3(blue),andz=6(green)onnearlyradial,parabolic modelsincludedarkmatterhalos. Thedissipationlessmergingofpuredisk orbits.Allmodelsincludedarkmatterhalos.Thedissipationlessmergingof models(solidtriangles)anddiskmodelswithbulges(solidcircles)produce purediskmodels(solidtriangles)anddiskmodelswithbulges(solidcircles) similarFPrelationsnearlyparalleltotheplanedefinedbythevirialrelation. produceRe- M⋆relationsshallowerthanthatmeasuredformassivegalaxies Increasingtheangularmomentumoftheorbitbylengtheningthepericentric intheSloanDigitalSkySurvey(Shenetal.2003).Forcomparison,thebest passagedistanceoftheorbitproducesanoffsetintheFPbyincreasingthe least-squaresfittotheRe- M⋆relationofpurediskmergerremnantsisplotted effectiveradiusoftheremnants(opencircles),butthesystemsstillobtaina (dottedline). FPscalingsimilartothevirialplane. Selecthigherresolutionrunsclosely follow theFPdelineated bytheirlowerresolutioncounter-parts (opendia- monds). Forcomparison, the best least-squares fitto the FP of pure disk mergerremnantsisplotted(dottedline). calpassbandluminosities(e.g.Bruzual&Charlot2003),and typicalK-bandmass-to-lightratiosarewithin≈35%ofunity for stellar populations formed at redshifts 0.75 < z < 5.0. age, metallicity, and formation-redshiftdistribution of ellip- Thesepropertiesmakecomparisonsbetweenthestellar-mass tical galaxies as a function of stellar mass at z=0 must be and near-IR FP scalings somewhat more sensible than com- obtained. We note that knowing only either the formation- parisons with shorter-wavelength photometric FP scalings, redshift (e.g. the redshift of the last major gas-rich merger) thoughnotideal. or mean stellar age of elliptical galaxies may not be suffi- Inprinciple,amorestraight-forwardcomparisonwouldbe cient to determine the photometric FP of the entire ellipti- tousehigh-resolutioncosmologicalsimulationsofgalaxyfor- cal galaxy population. Recent surveys indicate that ellipti- mation to probe the fundamental plane with simultaneously calstypicallyundergoa majordissipationlessmergeratred- accountingformetallicityandstellarageeffects. Previousat- shiftsz<1(Belletal.2005;vanDokkum2005),and,inprin- temptstocompareresultsofcosmologicalsimulationsforthe ciple, such mergers may induce galaxy mass-dependent tilt scalinglawsofellipticalgalaxieswithobservationshavebeen fromstructuraleffectsthataredisjointfromM/Leffectsfrom made(e.g.Sáizetal.2004),butwithspatialresolutionsome stellarpopulationsthatcharacteristicallypredatethoseevents. ≈20 times worse than the isolated merger simulations pre- Clearly, applying stellar population synthesis models to el- sentedhere.Suchspatialresolutionislargerthantheeffective liptical galaxies produced in individual galaxy merger sim- radiiofevenmoderately-sized(M ≥21)early-typegalaxies. r ulationsto producesimulated photometricFP scalings with- However,themetallicitiesandagesofthestellarpopulations out attempting to correct for the cosmologically-determined ofgalaxiesproducedin cosmologicalsimulationscan be es- propertiesoftherealellipticalpopulationislikelytoonaive. timated throughouttheir formation, and the results of stellar Furthermore,comparingdirectlystellar-massFPscalingsde- populationsynthesismodelingwouldthereforebeeasytoin- termined from simulations with short-wavelength (e.g. B- terpret. bandorSloang-band)photometricFPscalingsshouldbeper- We mention here that semi-analytic techniques could formedwithextremecautionastheshort-wavelengthFPmay be combined with the results of high-resolution merger have additionalsourcesof tilt notpresentin the stellar-mass simulations in an attempt to account for the redshift- FP. dependent formation of the elliptical galaxy population. With these concerns in mind, our stellar-mass FP results For example, Robertsonetal. (2005a) used the results of will be comparedwith the near-infrared(IR) FP determined Hopkinsetal. (2005a), who inferred a redshift-dependent by Pahreetal. (1998b). While, as Pahreetal. (1998b) note, black hole mass function from the quasar luminosity func- tilt owing to stellar population effects may still be present tion, to determine the influence of the redshift-dependent and is not tightly constrained, structural or dynamical non- formation times of elliptical galaxies on the M - σ rela- BH homologies can contribute significantly to the FP scaling in tion. Using the results from Robertsonetal. (2005a) and thenear-IR.TheK-bandmagnitudesofstellarpopulationsof Hopkinsetal. (2005a), Hopkinsetal. (2005b) combinedthe agivenagearelessinfluencedbymetallicitythantheiropti- redshift-dependentpropertiesofgalaxyremnants,theM - σ BH 8 Robertsonetal. FIG. 3.— FundamentalPlane(FP)relationproducedbythemergingof FIG. 4.— EffectiveradiusRe–stellarmassM⋆relationproducedbythe gas-richdiskgalaxieswithdarkmatterhalos,starformationandsupernova mergingofgas-richdiskgalaxieswithdarkmatterhalos,starformationand feedback.Shownareremnantsproducedbymergersappropriateforredshifts supernovafeedback. Shownareremnantsproducedbymergersappropriate z=0(blackcircles), z=2(reddiamonds),z=3(bluetriangles), andz=6 forredshiftsz=0(blackcircles),z=2(reddiamonds),z=3(bluetriangles), (greensquares)withnearlyradial,parabolicorbits. Thedissipationalmerg- andz=6(greensquares)withnearlyradial, parabolicorbits. Thedissipa- ingofpurediskmodelsproducesaFPnearlyparalleltotheobservedinfrared tionalmergingofpurediskmodelsproducesaRe- M⋆relationroughlypar- FP(Pahreetal.1998b)andisalmostindependentoftheredshiftscalingsof alleltothatmeasuredformassivegalaxiesintheSloanDigitalSkySurvey theprogenitorsystems. Forcomparison,thebestleast-squaresfittotheFP (Shenetal.2003). Forcomparison,thebestleast-squaresfittotheRe- M⋆ delineatedbytheremnantsisplotted(solidline). relationsdelineatedbythedissipationalsimulations(solidline)anddissipa- tionlesssimulations(dottedline)areplotted. TABLE3. BEST-FITSCALINGS 1 shows the location of dissipationless merger remnants in Models FundamentalPlane Re- M⋆ the virial coordinate system, and plots remnants from pro- α β λ ∆2 µ genitors appropriate for various redshifts. The best-fit FP (cid:10) (cid:11) Dissipationless 2.00 1.01 1.00 0.018 0.45 scalings produced by pure disk systems (solid triangles) are Dissipational 1.58 0.80 0.80 0.065 0.57 α=2.00, β =1.01, with almost no tilt relative to the virial Full-Model 1.55 0.82 0.79 0.062 0.57 plane (λ = 1.00). Individually, progenitors at each of the GasFraction fgasRuns foursimulatedredshiftsproducemergerremnantsalsoclosely alignedwiththevirialplane(λ=0.97- 1.03).Includingstel- fgas=0.01 1.81 0.75 0.97 0.009 0.41 fgas=0.025 2.11 0.74 0.96 0.011 0.41 larbulgesintheprogenitors(solidcircles)producesasimilar fgas=0.05 2.07 0.64 0.95 0.011 0.41 FPscaling(α=1.95,β=0.98;λ=0.97). Amoresubstantial fgas=0.1 2.01 0.61 0.92 0.014 0.42 changeintheFPisrealizedbyincreasingthepericentricpas- fgas=0.2 1.89 1.20 0.89 0.024 0.44 sagedistanceoftheencountersfrom2r to0.4R (opencir- fgas=0.4 1.64 1.07 0.83 0.033 0.51 d vir cles), whichcorrespondinglyincreasesthe total angularmo- mentaofthemergingsystems. Remnantsproducedinthedis- sipationlesswideorbitmergerstypicallyhavelargereffective radii, inducing an offset of ∆logR ∼- 0.4 in the FP. How- relation,andtheredshift-dependentblackholemassfunction e ever,thewideorbitFPscalings(α=1.97,β=1.04;λ=0.97) tomodeltheevolutionofthered-galaxyluminosityfunction are still very similar to both the nearly radial orbit FP and and color-magnitude relation. A combination of the results virialscalings. Increasingthenumberofdarkmatterparticles from Hopkinsetal. (2005b) and the stellar-mass FP relation per halo to 180,000 in the progenitors(open diamonds) has presented here could be used to account for the effects of verylittleeffectontheresultingFP,suggestingourresultsare color-magnitudeevolutiononthe photometricFP, butwould notstronglyinfluencedbyournumericalresolution. likelyinvolveotherassumptionsbeyondthoseemployedhere The R - M relation produced by merging dissipationless andwedefersuchanalysisforfuturework. e ⋆ disk progenitors, shown in Figure 2, reflects the trends ap- parent in the FP those mergers generate and additional fea- 4. RESULTS turesowingtoredshift-dependentprogenitorproperties. The Below,wepresenttheFPandR - M relationsforthedis- e ⋆ merging of pure disk galaxies (solid triangles) appropriate sipationless,dissipational,full-model,andspheroidalmerger for various redshifts generates remnants with a shallower simulations.ForeachFPandRe- M⋆relation,welistthebest mean R - M relation (µ≈0.45, solid line) than that mea- e ⋆ fitscalingsinTable3. sured in late-type galaxies in the Sloan Digital Sky Survey (Shenetal. 2003, µ≈0.56). The remnants also systemati- 4.1. DissipationlessDiskSimulations callydecreasein effectiveradiuswith redshift,reflectingthe Themergingof thedissipationlessdisksdescribedin §3.1 decrease in progenitor disk scalelength and pericentric pas- produces a FP relation similar to the virial scaling. Figure sagedistance. Widerorbitmergers(opencircles)withlarger GasDissipation&theFP 9 FIG. 5.— Fundamental Plane (FP) relation produced by the merging FIG. 6.— Effective radius Re – stellar mass M⋆ relation produced by ofgas-richdiskgalaxies withdarkmatterhalos, starformation, supernova themergingofgas-richdiskgalaxieswithdarkmatterhalos,starformation, feedback,andaprescriptionforfeedbackfromaccretingsupermassiveblack supernovafeedback, andaprescription forfeedback fromaccreting super- holes. Shownareremnants produced bymergers appropriate forredshifts massiveblackholes. Shownareremnantsproducedbymergersappropriate z=0(blackcircles), z=2(reddiamonds),z=3(bluetriangles), andz=6 forredshiftsz=0(blackcircles),z=2(reddiamonds),z=3(bluetriangles), (green squares) with nearly radial, parabolic orbits. The merging of pure andz=6(greensquares)withnearlyradial,parabolicorbits.Alsoplottedare diskgalaxiesusingourfullphysicalmodelproducesaFPnearlyparallelto remnants produced byvarying the system angular momentum through the theobservedinfraredFP(Pahreetal.1998b)andnearlycoincidentwiththe initialdiskorientation(purplepentagons)andpericentricpassagedistances FPproducedbysimilarsimulationswithoutblackholes. TheFPrelationis (orangehexagons)forasinglepairofprogenitormodels,whichproducesa roughlyindependentoftheredshiftscalingsoftheprogenitorsystemsandthe spreadintheremnanteffectiveradius.Themergingofpurediskgalaxiesus- locationofremnantswithinFPisfairlyinsensitivetoalargevarietyofdisk ingourfullphysicalmodelproducesaRe- M⋆relationroughlyparalleltothat orientations(purplepentagons)andorbitalconfigurations(orangehexagons), measuredformassivegalaxiesintheSloanDigitalSkySurvey(Shenetal. aschangesintheeffectiveradiusarecompensatedbychangesinthevelocity 2003),thoughwithanoffset.TheresultantRe- M⋆relationshiftsdownward dispersionandsurfacemassdensity. Forcomparison,thebestleast-squares with the redshift of the progenitor systems as the remnants decrease with fittotheFPdelineatedbytheremnantsisplotted(solidline). size. Forcomparison,thebestleast-squaresfittotheRe- M⋆relationdelin- eatedbytheseremnants(solidline),aswellasthedissipationlessdiskmodel Re- M⋆relation(dottedline)andtheShenetal.(2003)relation(dashedline) areplotted. angularmomentaproduceremnantswithlargereffectiveradii whilegalaxiescontainingbulges(solidcircles),andtherefore lessspecificangularmomenta,produceremnantswithsmaller effectiveradii. Theseresultsareconsistentwithexpectations galaxiesvarysubstantiallywithredshift. Combined,varying fordissipationlesssystemswheretheenergyandangularmo- thegasfractionabove f >0.4,changingthe ISMpressur- gas menta of the model system are manifestly conserved. As a ization dramatically, and scaling the progenitor systems for finalnoteforthedissipationlessruns,increasingthenumeri- redshiftsz=0- 6 produceonly a small amountof scatter in calresolutionofthedarkmatterby3×(opendiamonds)gives thedissipationalmodelFP( ∆2 1/2=0.065). consistentresults,suggestingthatartificialheatingofthestel- The Re- M⋆ relation of th(cid:10)e re(cid:11)mnants, shown in Figure 4, larcomponentbydiscretenesseffectsinthedarkmatterhalo ismorestronglyinfluencedby therangeof progenitorprop- isnotstronglyinfluencingthestructureoftheremnants. erties. Thesmallerprogenitorgalaxiesappropriateforhigher redshiftsproducesmallerremnants,whiletheless-pressurized 4.2. DissipationalDiskSimulations ISM models also decrease the effective radii of the rem- Themergingofgas-richdiskgalaxyprogenitorsincluding nants.ThedissipationalmodelR - M relationissignificantly e ⋆ dissipationresultsinFPandR - M relationsthatdiffersub- steeper (solid line, µ= 0.57) than the relation produced by e ⋆ stantiallyfromtheanalogousrelationsproducedbythemerg- thedissipationlessmergingofdiskgalaxies(dottedline, µ= ing of dissipationless disks. Figure 3 shows the FP relation 0.45),andcompareswellwiththerelationmeasuredforlate- generatedby the dissipationalmodeldisk galaxiesappropri- type galaxies in the SDSS (Shenetal. 2003). The dissipa- ately scaled for various redshifts. The dissipational model tionalsimulationsproduceanR - M relationthathasalower e ⋆ FP displays a tilt relative to the virial plane (λ=0.8), with R normalizationthantheShenetal.(2003)relation,butsub- e a scaling (α=1.58, β =0.80) similar to the near-IR photo- sequent re-mergingand a cosmologically-representativedis- metricFP(Pahreetal.1998b,α=1.53,β=0.79). Thedissi- tributionoforbitswilllikelydecreasethediscrepancybyin- pationalmodelFPincludesremnantsproducedfromprogen- creasing R at a given stellar mass. Since these the dissipa- e itorsthatvarybyafactor2×ingasfraction(f =0.4,0.8), tionless remnants lie above the Shenetal. (2003) relation, gas includingeitherstrongly(q =1.0)orweakly(q =0.25) re-merging and higher angular momentum orbits will only EOS EOS pressurized ISM equations-of-state. For gas-rich systems furtherincreasethisdiscrepancywithrealellipticalgalaxies. (f ≥0.4),thegasfractionandISMphysicsoftheprogeni- While a proper accounting for the distribution of formation gas torshaveonlyaslighteffectontheFP.Theredshift-dependent redshifts for elliptical galaxies would alter the R - M rela- e ⋆ propertiesofprogenitorsystemshavelittleeffectonthesim- tionbyweightingtheremnantsunequally,themergersofdisk ulated FP plane, even as the structuralpropertiesof the disk galaxieswheredissipationisimportantwillneverthelesspro- 10 Robertsonetal. FIG. 7.— FundamentalPlane(FP)relationproducedbythemergingof FIG. 8.— Effective radius Re –stellar massM⋆ relations produced by spheroidalgalaxymodels. UsingHernquist(1990)stellarspheroidsmodels themergingofspheroidalgalaxymodels. ThemergersofHernquist(1990) withdarkmatterhalosasinitialconditions(bluetriangles),theremnantspro- stellarspheroidsinitialconditionswithdarkmatterhalos(bluetriangles),ini- ducedbydissipationlessspheroidmergersappropriateforredshiftz=0,with tialized to the Shenetal. (2003)relation (dashed line), with nearly radial, nearlyradial,parabolicorbits(blackcircles)andwide,ellipticalorbitswith parabolic orbits (black circles) and wide, elliptical orbits with circularity circularityǫ=0.5(reddiamonds)arecalculated.Theremnantsofspheroidal ǫ=0.5 (red diamonds) are simulated. The remnants of spheroidal merg- mergersproduceaFPrelation similartotheirprogenitor systems, roughly ersproduceaRe- M⋆relationslightlyshallowerthantheobservedrelation, independentoftheorbitalenergyorangularmomentum.Alsoshownarese- roughlyindependentoftheorbitalenergyorangularmomentum.Alsoshown lectspheroidalremnantsfromgas-richdiskgalaxymergersimulationsthat arespheroidal remnants fromgas-richdiskgalaxy mergersimulations that includestarformation,supernovafeedback,andaprescriptionforfeedback includestarformation,supernovafeedback,andaprescriptionforfeedback fromaccretingsupermassiveblackholes(orangesquares). Thediskgalaxy fromaccretingsupermassiveblackholes(orangesquares). Thediskgalaxy mergerremnants occupy a FPrelation similar tothat observed in infrared mergerremnantsoccupyaRe- M⋆relationwiththesamescalingasobserved observations(solidline). There-mergingofthesediskgalaxyremnantson inSDSS(dashedline).There-mergingofthesediskgalaxymergerremnants nearlyradial, parabolic orbits (greencircles), furtherdemonstrates thatthe onnearlyradial,parabolicorbits(greencircles)producesasimilarRe- M⋆ mergingofspheroidalremnantsproducesaFPsimilartothatoccupiedbythe relationasthedissipationless mergingofspheroidalgalaxies. Forcompar- progenitorsystems(e.g.Capelatoetal.1995;Dantasetal.2003;Nipotietal. ison,thebestleast-squaresfittotheRe- M⋆ relationdelineatedbythedis- 2003;Boylan-Kolchinetal.2005).Forcomparison,thebestleast-squaresfit sipationlessspheroidalmergerremnants(dashed-dottedline),theShenetal. totheFPdelineatedbythedissipationlessdiskmergerremnants(dottedline) (2003)relation,andtherelationproducedbysimulationsusingthefullphys- andspheroidalmergerremnants(dash-dottedline)isplotted. icalmodel(solidline)areplotted. ducea R - M relationthat is steeper than thatproducedby e ⋆ dissipationlessmerging. 4.3. Full-ModelDiskSimulations Introducingthe effectsofblackholefeedbackthroughthe full-model simulations produces a set of fundamental scal- ing relations similar to those in dissipational mergers with- out black holes. The fundamental plane produced by the full-model simulations yields nearly the same FP scalings (α=1.55,β=0.82)andtilt(λ=0.79)asthedissipationalsim- ulations(see§4.2),andissimilartotheobservednear-IRscal- ings(Pahreetal.1998b). Thesesimulatedremnantsexhibita scatter abouttheir mean FP of ∆2 1/2 =0.062, comparable to boththe observedscatter int(cid:10)he F(cid:11)Pat opticalwavelengths (e.g.Bernardietal.2003a)andthatproducedbythedissipa- tionalsimulations.Blackholefeedbackcausesthefull-model remnants to be slightly larger than the dissipational model remnantsasfeedback-drivenwindsremovegaseousmaterial fromtheinnermostregionsoftheremnantsthatwouldother- wisecontributetothecentralstellarcontent. Figure5shows FIG. 9.— BlackholemassMBH –stellarvelocitydispersionrelationσ thefull-modelremnantsproducedbymergersappropriatefor relationmeasurementsforgalaxiesproducedbythere-mergingofdiskgalaxy variousredshiftsonnearlyradial,parabolicorbits.Theresul- mergerremnants that obey the local MBH- σ relation (e.g., Tremaineetal. 2002, solidline). Whilethe number ofre-mergers examined is limited, a tantFPrelationisroughlyindependentoftheredshiftscalings singlegeneration ofdissipationless mergers after theinitial formative gas- oftheprogenitorsystemsandthelocationofremnantswithin richmergers that generate the MBH- σ relation is notexpected tostrongly theFPisfairlyinsensitivetotheorientationsofthedisks(pur- altertheobservedMBH- σrelationbutmaybeasourceofscatter. plepentagons,seeTable2)andorbitalconfiguration(orange
Description: