ebook img

The Fundamental Plane of the Broad-line Region in Active Galactic Nuclei PDF

2.2 MB·
by  Pu Du
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Fundamental Plane of the Broad-line Region in Active Galactic Nuclei

TOAPPEARINTheAstrophysicalJournalLetters. PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 THEFUNDAMENTALPLANEOFTHEBROAD-LINEREGIONINACTIVEGALACTICNUCLEI PUDU1,JIAN-MINWANG1,2,*,CHENHU1,LUISC.HO3,4,YAN-RONGLI1 ANDJIN-MINGBAI5 Received2015November21;accepted2015December30 ABSTRACT Broad emission lines in active galactic nuclei (AGNs) mainly arise from gas photoionized by continuum radiation from an accretion disk around a central black hole. The shape of the broad-line profile, described 6 by D =FWHM/σ , the ratio of full width at half maximum to the dispersion of broad Hβ, reflects the 1 Hβ Hβ ˙ 0 dynamicsofthebroad-lineregion(BLR)andcorrelateswiththedimensionlessaccretionrate(M)orEddington ˙ 2 ratio (Lbol/LEdd). At the same time, M and Lbol/LEdd correlate with RFe, the ratio of optical Fe II to Hβ n linefluxemission. AssemblingallAGNswithreverberationmappingmeasurementsofbroadHβ, bothfrom a the literature and from new observations reported here, we find a strong bivariate correlation of the form J log(M˙,L /L )=α+βD +γR ,whereα=(2.47,0.31),β=- (1.59,0.82)andγ=(1.34,0.80).Werefer bol Edd Hβ Fe 8 tothisasthefundamentalplaneoftheBLR.Weapplytheplanetoasampleofz<0.8quasarstodemonstrate theprevalenceofsuper-EddingtonaccretingAGNsarequitecommonatlowredshifts. ] Subjectheadings:blackholes:accretion–galaxies:active–galaxies:nuclei A G . 1. INTRODUCTION plex (e.g., Baldwinetal. 2004). It may be influenced by h different hydrogen density of BLR gas (Verneretal. 2004), Broademissionlinesareahallmarkfeatureoftype1active p or diverse contributionfrom microturbulence(Baldwinetal. galactic nuclei (AGNs) and quasars (Osterbrock&Mathews o- 1986). As pervasive as they are, many basic properties 2004). Inaddition,FeII lagsaregenerallylongerbyafactor ofafewthanHβinbroad-lineSeyfert1galaxies(Barthetal. r of the broad-line region (BLR), such as its basic geom- t 2013; Cheloucheetal. 2014) and roughly equal to Hβ lags s etry, dynamics, and physical connection to the accretion a disk around the supermassive black hole (BH), remain ill- in narrow-line Seyfert 1s (Huetal. 2015), implying the po- [ defined. AGN spectra exhibit both tremendous diversity as tentialconnectionofRFe withthedistributionorstructureof well as discernable patterns of systematic regularity. Prin- line-emitting gas. The RFe- Lbol/LEdd correlation indicates 2 that Eddington ratios probably regulate all above mentioned v cipalcomponentanalysishasisolatedseveraldominantrela- properties of BLR. It should be noted that R also corre- 1 tionships among emission-line properties (Boroson&Green Fe lates with some other properties like X-ray spectral slopes 9 1992;Sulenticetal. 2000). Themain varyingtrendof those (e.g.,Wangetal.1996;Laoretal.1997;Sulenticetal.2000), 3 properties,whichisso-calledEigenvector1(EV1),hasbeen but it likely originates from relation of those properties and 1 demonstrated to be driven by Eddington ratios, L /L , bol Edd Eddingtonratios (e.g., Wangetal. 2004; Risalitietal. 2009; 0 whereL isthebolometricluminosityandtheEddingtonlu- bol Shemmeretal.2006;Brightmanetal.2013). 1. minosityLEdd=1.5×1038(M•/M⊙)(Boroson&Green1992; The overall breadth of the broad emission lines, notably Sulenticetal. 2000; Shen&Ho 2014). As one of the most 0 Hβ, reflects both the virial velocity and inclination of the 6 prominentvariablesinEV1,therelativestrengthofbroadop- BLR (Kollatschny&Zetzl 2011; Shen&Ho 2014). The 1 ticalFeIIemission,expressedas shape of the line profile may encode more information on : v F the detailed dynamics of the BLR (e.g., Collinetal. 2006; i RFe= FeII, (1) Kollatschny&Zetzl2011), whichitself maydependonfun- X FHβ damental properties such as the accretion or outflow rate. r may correlate with L /L . Sources with high Edding- The broad Hβ lines of NLS1s tend to have more sharply a bol Edd tonratios(accretionrates),forinstanceso-callednarrow-line peaked (∼Lorentzian) profiles compared to type 1 AGNs Seyfert 1 galaxies (Osterbrock&Pogge 1985), emit excep- withmorenormalEddingtonratios(Véron-Cettyetal.2001; tionally strong Fe II lines compared with the normal ones Zamfiretal. 2010). As a non-parametric description of the (Boroson&Green 1992; Huetal. 2008; Dongetal. 2011). lineprofile,onecandefine However, the underlying physical mechanism that controls RFe remains unclear, as the formation of Fe II is very com- D = FWHM, (2) Hβ σ 1Key Laboratory for Particle Astrophysics, Institute of High Energy Hβ Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing where σ is the dispersion (second moment) of the Hβ 100049,China Hβ 2NationalAstronomicalObservatoriesofChina,ChineseAcademyof line. The value of D is 2.35, 3.46, 2.45, 2.83 and 0 for Hβ Sciences,20ADatunRoad,Beijing100020,China a Gaussian, a rectangular, a triangular, an edge-on rotating 3Kavli Institute for Astronomy and Astrophysics, Peking University, ring, anda Lorentzianprofiles(fora pureLorentzianprofile Beijing100871,China σ →∞ and thus D =0), respectively (e.g., Collinetal. 4DepartmentofAstronomy,SchoolofPhysics,PekingUniversity,Bei- Hβ Hβ 2006). The quantity D correlates loosely with Edding- jing100871,China Hβ 5Yunnan Observatories, Chinese Academy of Sciences, Kunming ton ratio (Collinetal. 2006) and, as the ratio of the rota- 650011,China tional and turbulent components of the line-emitting clouds *Correspondingauthor,[email protected] (Kollatschny&Zetzl 2011), gives a simple, convenient pa- 2 rameterthatmayberelatedtothedynamicsoftheBLR. 1 galaxies (Czerny&Elvis 1987; Sun&Malkan 1989; WhileR andD eachcorrelatesseparatelywithEdding- Laor&Netzer 1989; Collinetal. 2002; Brocksoppetal. Fe Hβ ton ratio, we demonstrate that both R and D combined 2006; Kishimotoetal. 2008; Davis&Laor 2011; Fe Hβ correlateevenmoretightlywithEddingtonratio(anddimen- Capellupoetal. 2015). The effective temperature dis- sionlessaccretionrate).Thisbivariaterelation,whichwecall tribution is given by T = 6.2 × 104m˙1/4 m1/4R- 3/4K, athbele“sf,upnldaaumsiebnlytarlepllaatnede”t7ootfhtehestBruLcRturlienkansdtwdoyndairmecictsobosfetrhve- where m˙•,0.1 = M˙•/0.1M⊙eyffr- 1, M˙• is mass•a,0c.1cre7tion14rates, BLR, with the dimensionless accretion rate. Applying the m7 = M•/107M⊙, and R14 = R/1014cm (Franketal. 2002). BLR fundamental plane to a large sample of Sloan Digital Here the effect of the inner boundary is neglected because Sky Survey (SDSS) quasars, we find that a large fraction of theregionemittingopticalradiationisfarfromtheboundary. quasarsatz<0.8havesuper-Eddingtonaccretionrates. Introducingx=hν/kTeff, we havethe spectralluminosityby integratingovertheentiredisk, 2. MEASUREMENTS ∞ x5/3 2.1. TheReverberation-mappedAGNsample Lν=1.58×1028m˙2•/,03.1m27/3ν114/3cosiZ ex- 1dx ergs- 1Hz- 1, WeselectallAGNswithreverberationmapping(RM)data xin (3) (hereonlybroadHβ line), whichyieldrobustBH massesti- where i is the disk inclination relative to the observer and mates needed for our analysis. All RM AGNs before 2013 ν =ν/1014Hz. Sincelong-wavelengthphotonsareradiated 14 are summarized by Bentzetal. (2013). We took all of 41 fromlargediskradii,theintegralterminEquation(3)canbe AGNs from Bentzetal. (2013). Three additional sources well approximated by 1.93 for x =0 (Davis&Laor 2011). in (pMubrlkis1h5ed1.1,ONurGpCro5je2c7t3t,oKseAa1rc8h58f+or48su5p0e)rw-Eedrdeinsugbtosneqaucecnretlty- We thus have M˙• =0.53 ℓ44/cosi 3/2m-71 M⊙ yr- 1, and the ing massive black holes (SEAMBHs) has monitored about dimensionlessaccretionr(cid:0)ate8 (cid:1) A25GcNasndtoidadtaetsea(nDdusuetccael.ss2f0u1ll5y)manedasoutrheedrHfiβvelaogbsje(τcHtβs)minon1i4- M˙ =20.1 ℓ44 3/2m- 2, (4) toredbetween2014-2015(tobe submitted). We measureFe (cid:18)cosi(cid:19) 7 (II20u1s5in).gFthoersraemveerbaeprpartiooanc-hmaaspHpeudeAtGalN. (s20w0i8th)oauntdpHubuliesthaeld. where ℓ44 is the 5100 Å luminosity in units of 1044ergs- 1. Thisconvenientexpressioncaneasilyconvertluminosityand measurements of Fe II and Hβ flux, we fit the mean spec- BHmassintodimensionlessaccretionrates. Inthispaper,we tra from the monitoringcampaigns, using the fitting scheme describedin Huetal.(2015). Inshort, the spectrumisfitted take an average value of cosi=0.75, which corresponds to theopeningangleofthedustytorus(e.g.,Davis&Laor2011; withseveralcomponentssimultaneously:(1)apowerlawfor continuum,(2)FeIItemplatefromBoroson&Green(1992), Duetal.2015). TheuncertaintiesofM˙ duetoi(∈[0,45◦]) (3)hostgalaxytemplateifnecessary,(4)broadHβ,(5)broad are∆logM˙=1.5∆logcosi.0.15fromEquation(4),where HeIIλ4686emissionline,and(6)severalGaussiansfornar- we took ∆logcosi .0.1. This uncertainty is significantly row lines such as [O III] λλ4959, 5007. The flux of broad smallerthantheaverageerrorbarsoflogM˙ (∼0.35),andis opticalFeIIismeasuredbyintegrationfrom4434Åto4684 thusneglected. Å.Table1liststhe63RMAGNsweconsider,alongwiththe The dimensionless accretion rate is related to the more ˙ BH mass, 5100 Å luminosity, dimensionless accretion rate, widelyusedEddingtonratioviaLbol/LEdd=ηM,whereη is FWTHheMs,aσmHpβl,eRcFoevearnsdadawtaidseourarcnegse.of accretion rates, M˙ ≈ tThheeraudnicaetirvtaeineftifiecsieonfcEyd,danindgLtobonlr≈at1io0sLr5e1s00ul(tKfarospmiethtealf.a2c0t0th0a)t. thebolometriccorrectiondependsonbothaccretionratesand 10- 3- 103, from the regime of a Shakura&Sunyaev (1973) BH mass (Jinetal. 2012). In our following discussion, we standard disk to a slim disk (Abramowiczetal. 1988). We ˙ takeR fromthepublishedliteratureifavailable;otherwise, willusebothM andLbol/LEdd. Fe we measureitfromtheaveragedspectrafollowingthespec- 3. FUNDAMENTALPLANEOFTHEBLR tralfittingschemeofHuetal.(2008,2015). Asthevariabil- ity of Hβ is unusuallymuchlargerthan thatof Fe II in sub- 3.1. Correlations Eddington AGNs, the uncertainties of RFe are mainly gov- Figure1aand1c showthe R - (M˙,L /L ) plotsand ernedbyHβ variability,whichonaverageis∼20%. yieldthefollowingcorrelations:Fe bol Edd fBLWR eisesthtiemvaitreiathlefaBcHtomr,aVsFsWaHsMMi•s=HfβBLRFVWF2WHHMMc,τaHnβd/GG,wishethree (0.66±0.04)+(0.30±0.03)logM˙, aggraavinitsattitohneaMlc•o-nsσtarnetl.aItniopnraocftiicnea,ctthiveefagcatloarxifeBsLR(Oisnckaelinbreattaeld. RFe= (1.20±0.07)+(0.55±0.06)log Lbol/LEdd . (5) 2004;Ho&Kim2014). Forconsistencywithourearlierse- (cid:0) (cid:1) riesofpapers,weadopt f =1. We define the scatter of a correlation as ∆X = BLR N (X- X)2/N, where N is the number of objects, 2.2. AccretionratesandEddingtonratios q i=1 i P We derived accretion rates from the disk model of 8 Theapplicability ofEq. (4)toSEAMBHscanbejustifiedbytheself- Shakura&Sunyaev (1973), which has been exten- similarsolutionofslimdisks(Wangetal.1999;Wang&Zhou1999). The sively applied to fit the spectra of quasars and Seyfert solutionshowsthatthe5100Å photonsareemittedfromR5100/RSch≈4.3× 103m-71/2,andthephotontrappingradiusRtrap/RSch≈144M˙100,whereRSch 7 Borrowing the terminology from galaxy formation (e.g., istheSchwartzschild radius. Eq. (4)holdsprovidedthatR5100&Rtrap,or Djorgovski&Davis1987)andaccretingBHs(e.g.,Merlonietal.2003) M˙.3×103m- 1/2.NoSEAMBHsofarhasexceededthislimit. 7 3 TABLE1 THESAMPLEOFREVERBERATION-MAPPEDAGNS Objects logL5100 log(cid:0)M•/M⊙(cid:1) logM˙ FWHM σline DHβ RFe Ref. (ergs- 1) (kms- 1) (kms- 1) Mrk335 4444433333.....7787666449±±±±±00000.....0000066667 67666.....9089832427++-+-+-+- 000000000.........111211111128514040 11111.....2232178957++-+-+-+- 000000000.........323232331090909108 12117076299746.29±±..±±21323760 11115433478720.01.±±.±±656860 11111.....2321470323±±±±±00000.....0011011635 00000.....7763677992 44441,,,,5572a,,,663aa,4 - 0.11 - 0.17 PPGG00002562++122591 4444..9871±±00..0023 88..1654+-+- 0000....01119314 -00..6559+-+-0000..22..328015 25504048±±5763 12713687±±13000 12..4361±±00..0095 00..3132 44,,55,,88aa NOTE. —AllthevaluesoflogL5100,log(M•/M⊙)andlogM˙arecompiledfromDuetal. (2015). Valuesinboldfacearetheweightedaveragesofallthe measurementsforthisobject. Ref.:(1)Duetal.2014;(2)Wangetal.2014;(3)Huetal.2015;(4)Duetal.2015;(5)Collinetal.2006;(6)Petersonetal.1998;(7)Grieretal.2012;(8) Kaspietal.2000. ThesuperscriptaforreferencesindicatesthatRFeismeasuredinthispaper;bindicatesthatFWHMandσHβ aremeasuredfromSDSSspectra(theHβwidth ofSEAMBHsissignificantlybroadenedbythe5′′longslitofourcampaign;seedetailsinRef. 4);cmeanstheMCMCBHmassisused(seeSection2.2);d meansthatD istakenfromthelatestmeasurementsinKollatschny&Zetzl(2011).NGC5548markedwitheismeasuredfromitsmeanannualspectrainthe Hβ AGNwatchdatabase;theaveragevalueisprovidedhere.WefirstcalculateD foreachmeasurement,andthenaverage.Inthemaintext,weusetheseaveraged Hβ numbersfortheobjectswithmultipleRMmeasurements(treatedasonepointinallfigures). ForNGC7469,whichwasmappedtwiceCollieretal.(1998) andPetersonetal.(2014),theHβlagsarenotverydifferentbuttheHβFWHMisverydifferent;takethevaluesofFWHMmeasuredbyKollatschny&Zetzl (2011).NGC4051andPG1700+518haveverysmallvaluesofD inRef.5,butKollatschny&Zetzl(2011)providesnewmeasurements,whichareusedhere. Hβ Thistableisavailableinitsentiretyinamachine-readableformintheonlinejournal.Aportionisshownhereforguidanceregardingitsformandcontent. andX representsR , D , M˙, orL /L . ThePearson’s and a standard R- L relation9. The RM AGNs overlap very correlation coefficieFnet (rH)β, null-probabbolilityEdd(p), and scatters wellwiththeSDSSsample,onboththeR - (M˙,L /L ) (aare)iannddic(act)e,dwinetfihnedpltohtast.tBheycRomp- aMrin˙gc(orr,rpe,la∆tiRonFe)isinslpiganhetllys andthe DHβ- (M˙,Lbol/LEdd) plots. We noFete thatamboolngEtdhde Fe mappedAGNsthereis asmallpopulation(.9%; Figure1a stronger than that of RFe- Lbol/LEdd. In high-M˙ AGNs, andc) of AGNswith RFe >1.4 ofwhatappearto be super- both Hβ and continuum variability are significantly smaller Eddingtonsources. Their values of M˙ are likely underesti- thanthoseinsub-EddingtonAGNs. Ontheotherhand,Fe II matedbecausetheir blackholemasseswere estimatedusing reverberatesinaverysimilarlyfashiontoHβ withrespectto thestandardR- Lrelation. thecontinuum(Huetal.2015).Indeed,itcanbeseenthatthe scatter of the correlation gets larger with decreasing M˙ or 3.2. FundamentalPlane Lidbeoal/tLhEadtd.FTehIIeRstrFeen-g(tMhi˙s,Lnbootl/gLoEvdedr)nceodrrbeylamtioentasllsiucpitpyobrtusttbhye tioTnhsebe(RtwFeee,nDtHhβe)-B(LMR˙,sLtrbuocl/tuLrEedda)ndredlaytnioanmsicresflweictthcBoHnnaecc-- theionizingfluxandhydrogendensity(Verneretal.2004). cretion. Weinvestigatewhetherthesetwounivariatecorrela- WeplottheD - (M˙,L /L )relationsinFigure1band tions can be unified into a single bivariate correlationof the Hβ bol Edd 1dandfind form log(M˙,L /L )=α +β D +γ R , (7) bol Edd k k Hβ k Fe (2.01±0.05)- (0.39±0.04)logM˙, where (α ,β ,γ ) are coefficients to be determined by data k k k D = (6) (k=1,2). Wedefine Hβ (1.28±0.09)- (0.72±0.08)log L /L . bol Edd 2 The above two correlations are similar, b(cid:0)ut the for(cid:1)mer is χ2k = N1 N (cid:16)logAσ2ik-+αβk-σ2βkD+Hiβγ- σγ2kRiFe(cid:17) , (8) slightlystrongerthanthelatter. Collinetal.(2006)alsofound Xi=1 Ai k DHiβ k RiFe lbdaiuukcteeotrtthoroeetlieharmterioeplasnhucabklstesiotzwfaerheteehignmahtDu-tcMhHhβe˙waDAneGdakNL-ebsr(oMlit/nhL˙at,EhnLdedoir(u/ssreLase.mtTph)leheiic.rsoWFirsriegemluwaratoeiionu6nll)yds, wbMahirnesrimoefiAzloikng=gAχ(,M2D,˙w,HLβeb,ooalb/ntLdaEindRd)F,eσoAfi,thσeDHiiβ- thanodbσjeRciFte, areresptehcetievrerloyr. cannot be an artifact of the iHnβclusion ofboFlWEHddM in M˙. For α =2.47±0.k34; β =- 1.59±0.14; and γ =1.34±0.20, 1 1 1 a constant σ of RM AGNs, the accretion rates span over about5dexwHβhereasluminositiesspanover4.5;however,the α2=0.31±0.30; β2=- 0.82±0.11; and γ2=0.80±0.20. D - M˙ relation has a scatter of only ∆ =0.3- 0.4. The Hβ D 9 This is an empirical relation between the BLR size and the con- correlationsareintrinsic. tinuum. From the recent work of Bentz et al. (2013), it has the form Figure 1 also shows, as background,the SDSS DR5 sam- RBLR=33.65ℓ044.53ltd. However, Duetal.(2015)foundthatitonlyapplies ple of Huetal. (2008). The sample comprises4037z.0.8 tosub-EddingtonAGNs;itdependsonM˙ forsuper-EddingtonAGNs. We quasarswithcriteriaofS/N≥10andEW(Fe II)≥25Å (this donotconsider thedependence ofthe R- L relation onM˙ forthe SDSS excludes Fe II-weak quasars). BH masses assume fBLR =1 sampleinthispaper. 4 y 0.4 t i l i b 0.2 a b o 0.0 r P 2.0 (a) (c) β H 1.5 F / I I Fe 1.0 F = Fe 0.5 R r=0.65 r=0.60 0.0 p=7.3×10−9 p=2.2×10−7 ∆RFe=0.35 ∆RFe=0.38 3.5 r=−0.79 r=−0.74 (b) p=1.1×10−14 (d) p=6.6×10−12 ∆DHβ=0.36 ∆DHβ=0.41 β 3.0 H σ / M 2.5 H W F 2.0 = β H 1.5 D SDSS SDSS 1.0 RM−AGN RM−AGN −4 −3 −2 −1 0 1 2 3 −3 −2 −1 0 1 10 10 10 10 10 10 10 10 10 10 10 10 10 0.00.20.4 Accretion rate (M˙) Eddington ratio (LBol/LEdd) Probability FIG.1.—Correlationsbetween(a)RFe- M˙and(b)DHβ- M˙.ThePearson’scoefficient,null-probability,andscatteroftheX- M˙correlationaregivenby (r,p,∆X). Inpanel(a),theSDSSquasarsoverlapwiththeRMAGNsquitewell,exceptforAGNswithRFe&1.4. Thiscouldbebecausetheseobjectsare super-Eddingtonaccretors,inwhichthenormalR- Lrelation(Bentzetal.2013)overestimatesR aswellasBHmass(Duetal.2015),andhenceM˙isgreatly Hβ underestimated(seedetailsinthetext).Inpanel(b),theSDSSsamplealsooverlapswellwiththeRMAGNs,butthelow- M˙AGNsliebeyondthelocusofthe SDSSsample.TherearesomeSDSSquasarswithextremelyhighaccretionrates,M˙&102,suggestingthatweshouldmonitortheminthefutureofSEAMBH project. ThehistogramsindicatethedistributionsofRFe,DHβ andM˙onanormalizedscale. WenotethatthereisnosignificantcorrelationbetweenRFeand DHβ,eitherintheRMAGNorSDSSsample,indicatingthatDHβ andRFeareindependentfromeachother,althoughbothcorrelatewithM˙.Panels(c)and(d) arethesameas(a)and(b),butforEddingtonratios. Theerrorbarsof(α ,β ,γ )arederivedfrombootstrapsim- We apply the M˙- plane (Equation 7) to a sample of 4037 k k k ulations. The bivariate correlations, plotted in Figure 2, are objectsHuetal.(2008),whichwereselectedfromtheSDSS muchstrongerthanindividualcorrectionsofFigure1(seethe DR5 sample composed of N ≈ 15,000 quasars with z . tot correlation coefficients and null-probability). We call these 0.8. We calculate fractions of quasars with M˙ ≥M˙, δ = c ntweTwohcseiomrirmpellpealtiimcoanetasiosaunsrsethmoefefnuEtnsqduoaafmtiaeonnstian(lg7pl)lea-anerepeoocfehxthcseiptiBencLgtr.Ru.mForofma NcrMit˙icc/aNltaoct,cwrehtieornerNaMte˙cinisqtuheestniuomn.bFeorroofbqjuecatssawrsiathndMM˙≥˙c 3is,twhee quasar—strength of Fe II and shape of broad Hβ—we can findδ3=N3/Ntot≈0.18. Similarly,wehaveδ10=N10/Ntot≈ deducethestatusofitsaccretionflow. Thiscanbeveryuse- 0.12 and δ100 =N100/Ntot ≈0.02. These numbersshow that fulwhenappliedtolargesamplesofquasarstoinvestigatethe super-Eddington accreting AGNs are quite common in the cosmologicalgrowthofBHs. Ourmethodcanbeusefullyap- Universeat z<0.8. We shouldnote that these fractionsare plied to quasars with suitable spectroscopyin the rest-frame lower limits, as a result of the selection criteria imposed by Hβregion,forwhichthestrengthofFeIIcanbemeasuredor Huetal. Detailedresultsoftheapplicationofourtechnique constrained. tothelatestsampleofSDSSquasarswillbecarriedoutina separatepaper. 3.3. ApplicationtoSDSSsample 5 1 3 2 0 ) 1 d d E ˙M L / −1 g 0 Bol o L l ( g −1 lo −2 −2 r=0.87 r=0.80 p=2.7×10−20 p=2.5×10−15 −3 ∆M˙ =0.70 −3 ∆LBol/LEdd =0.48 −3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2.47−1.59DHβ +1.34RFe 0.31−0.82DHβ +0.80RFe FIG.2.—ThefundamentalplaneofAGNBLRs,showingaphysicalconnectionbetweenaccretiondisksandBLRs. Thedependentvariableis(left)M˙and (right)Eddingtonratio.ThetwoobservablesofRFeandDHβ canbereadilymeasuredfromsingle-epochspectra,allowingustoconstraintheaccretionstatusof thecentralengine. 4. CONCLUSIONS plication of the BLR fundamental plane shows that super- EddingtonaccretingAGNsarequitecommoninamonglow- Thispaperstudiescorrelationsamongthreedimensionless redshiftquasars. AGN parameters: accretion rate (or Eddington ratio), shape ofthebroadHβ line,andfluxratioofopticalFeII toHβ. A strongcorrelationamongthemisfound,whichwedenoteas This research is supported by the Strategic Priority thefundamentalplaneofAGNBLRs(Equation7). TheBLR Research Program - The Emergence of Cosmological fundamentalplaneenablesustoconvenientlyexploretheac- Structures of the Chinese Academy of Sciences, Grant cretion status of the AGN central engine using single-epoch No. XDB09000000, by NSFC grants NSFC-11173023, - spectra, opening up many interesting avenues for exploring 11133006, -11373024, -11233003 and -11473002, and a AGNs,includingtheircosmologicalevolution. Asimpleap- NSFC-CASjointkeygrantofU1431228. REFERENCES Abramowicz,M.A.,Czerny,B.,Lasota,J.-P.,&Szuszkiewicz,E.1988, Jin,C.,Ward,M.,&Done,C.2012,MNRAS,425,907 ApJ,332,646 Kaspi,S.,Smith,P.S.,Netzer,H.,etal.2000,ApJ,533,631 Baldwin,J.A.,Ferland,G.J.,Korista,K.T.,Hamann,F.,&LaCluyzé,A. KishimotoM.,AntonucciR.,BlaesO.,etal.2008,Nature,454,492 2004,ApJ,615,610 Kollatschny,W.,&Zetzl,M.2011,Nature,470,366 Barth,A.J.,Pancoast,A.,Bennert,V.N.etal.2013,ApJ,769,128 Laor,A.&Netzer,H.1989,MNRAS,238,897 Bentz,M.C.,Denney,K.D.,Grier,C.J.,etal.2013,ApJ,767,149 Laor,A.,Fiore,F.,Elvis,M.,Wilkes,B.J.,&McDowell,J.C.1997,ApJ, Brightman,M.,Silverman,J.D.,Mainieri,V.,etal.2013,MNRAS,433, 477,93 2485 Merloni,A.,Heinz,S.,&diMatteo,T.2003,MNRAS,345,1057 Brocksopp,C.,Starling,R.L.C.,Schady,P.,etal.2006,MNRAS,366,953 Onken,C.A.,Ferrarese,L.,Merritt,D.,etal.2004,ApJ,615,645 Boroson,T.A.,&Green,R.F.1992,ApJS,80,109 Osterbrock,D.E.,&Mathews,W.G.1986,ARA&A,24,171 Capellupo,D.M.,Netzer,H.,Lira,P.etal.,2015,MNRAS,446,3427 Osterbrock,D.E.,&Pogge,R.W.1985,ApJ,297,166 Chelouche,D.,Rafter,S.E.,Cotlier,G.I.&Barth,A.J.2014,ApJ,783, Peterson,B.M.,Grier,C.J.,Horne,K.,etal.2014,ApJ,795,149 L34 Peterson,B.M.,Wanders,I.,Bertram,R.,etal.1998,ApJ,501,82 Collier,S.J.,Horne,K.,Kapsi,S.,etal.1998,ApJ,500,162 Risaliti,G.,Young,M.,&Elvis,M.2009,ApJL,700,L6 Collin,S.,Boisson,C.,Mouchet,M.,etal.2002,A&A,388,771 Shakura,N.I.,&Sunyaev,R.A.1973,A&A,24,337 Collin,S.,Kawaguchi,T.,Peterson,B.M.,&Vestergaard,M.2006,A&A, Shemmer,O.,Brandt,W.N.,Netzer,H.,Maiolino,R.,&Kaspi,S.2006, 456,75 ApJL,646,L29 Czerny,B.,&Elvis,M.1987,ApJ,321,305 Shen,Y.&Ho,L.C.2014,Nature,513,210 Davis,S.W.&Laor,A.2011,ApJ,728,98 Sulentic,J.W.,Marziani,P.,&Dultzin-Hacyan,D.2000,ARA&A,38,521 Djorgovski,S.,&Davis,M.1987,ApJ,313,59 Sun,W.-H.,&Malkan,M.A.1989,ApJ,346,68 Dong,X.-B.,Wang,J.-G.,Ho,L.C.,etal.2011,ApJ,736,86 Verner,E.,Bruhweiler,F.,Verner,D.,etal.2004,ApJ,611,780 Du,P.,Hu,C.,Lu,K.-X.,etal.2014,ApJ,782,45 Véron-Cetty,M.-P.,Véron,P.,&Gonçalves,A.C.2001,A&A,372,730 Du,P.,Hu,C.,Lu,K.-X.,etal.2015,ApJ,806,22 Wang,J.-M.,Watarai,K.&Mineshige,S.2004,ApJL,607,L107 Frank,J.,King,A.R.,&Raine,D.J.2002,AccretionPowerin Wang,J.-M.,Du,P.,Hu,C.,etal.2014a,ApJ,793,108 Astrophysics:ThirdEdition(Cambridge:CambridgeUniv.Press) Wang,J.-M.,Szuszkiewicz,E.,Lu,F.-J.,&Zhou,Y.-Y.1999,ApJ,522,839 Grier,C.J.,Peterson,B.M.,Pogge,R.W.,etal.2012,ApJ,755,60 Wang,J.-M.,&Zhou,Y.-Y.1999,ApJ,516,420 Ho,L.C.&Kim,M.2014,ApJ,789,17 Wang,T.,Brinkmann,W.,&Bergeron,J.1996,A&A,309,81 Hu,C.,Du,P.,Lu,K.-X.,etal.2015,ApJ,804,138 Zamfir,S.,Sulentic,J.W.,Marziani,P.,&Dultzin,D.2010,MNRAS,403, Hu,C.,Wang,J.-M.,&Ho,L.C.etal.2008,ApJ,687,78 1759

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.