TOAPPEARINTheAstrophysicalJournalLetters. PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 THEFUNDAMENTALPLANEOFTHEBROAD-LINEREGIONINACTIVEGALACTICNUCLEI PUDU1,JIAN-MINWANG1,2,*,CHENHU1,LUISC.HO3,4,YAN-RONGLI1 ANDJIN-MINGBAI5 Received2015November21;accepted2015December30 ABSTRACT Broad emission lines in active galactic nuclei (AGNs) mainly arise from gas photoionized by continuum radiation from an accretion disk around a central black hole. The shape of the broad-line profile, described 6 by D =FWHM/σ , the ratio of full width at half maximum to the dispersion of broad Hβ, reflects the 1 Hβ Hβ ˙ 0 dynamicsofthebroad-lineregion(BLR)andcorrelateswiththedimensionlessaccretionrate(M)orEddington ˙ 2 ratio (Lbol/LEdd). At the same time, M and Lbol/LEdd correlate with RFe, the ratio of optical Fe II to Hβ n linefluxemission. AssemblingallAGNswithreverberationmappingmeasurementsofbroadHβ, bothfrom a the literature and from new observations reported here, we find a strong bivariate correlation of the form J log(M˙,L /L )=α+βD +γR ,whereα=(2.47,0.31),β=- (1.59,0.82)andγ=(1.34,0.80).Werefer bol Edd Hβ Fe 8 tothisasthefundamentalplaneoftheBLR.Weapplytheplanetoasampleofz<0.8quasarstodemonstrate theprevalenceofsuper-EddingtonaccretingAGNsarequitecommonatlowredshifts. ] Subjectheadings:blackholes:accretion–galaxies:active–galaxies:nuclei A G . 1. INTRODUCTION plex (e.g., Baldwinetal. 2004). It may be influenced by h different hydrogen density of BLR gas (Verneretal. 2004), Broademissionlinesareahallmarkfeatureoftype1active p or diverse contributionfrom microturbulence(Baldwinetal. galactic nuclei (AGNs) and quasars (Osterbrock&Mathews o- 1986). As pervasive as they are, many basic properties 2004). Inaddition,FeII lagsaregenerallylongerbyafactor ofafewthanHβinbroad-lineSeyfert1galaxies(Barthetal. r of the broad-line region (BLR), such as its basic geom- t 2013; Cheloucheetal. 2014) and roughly equal to Hβ lags s etry, dynamics, and physical connection to the accretion a disk around the supermassive black hole (BH), remain ill- in narrow-line Seyfert 1s (Huetal. 2015), implying the po- [ defined. AGN spectra exhibit both tremendous diversity as tentialconnectionofRFe withthedistributionorstructureof well as discernable patterns of systematic regularity. Prin- line-emitting gas. The RFe- Lbol/LEdd correlation indicates 2 that Eddington ratios probably regulate all above mentioned v cipalcomponentanalysishasisolatedseveraldominantrela- properties of BLR. It should be noted that R also corre- 1 tionships among emission-line properties (Boroson&Green Fe lates with some other properties like X-ray spectral slopes 9 1992;Sulenticetal. 2000). Themain varyingtrendof those (e.g.,Wangetal.1996;Laoretal.1997;Sulenticetal.2000), 3 properties,whichisso-calledEigenvector1(EV1),hasbeen but it likely originates from relation of those properties and 1 demonstrated to be driven by Eddington ratios, L /L , bol Edd Eddingtonratios (e.g., Wangetal. 2004; Risalitietal. 2009; 0 whereL isthebolometricluminosityandtheEddingtonlu- bol Shemmeretal.2006;Brightmanetal.2013). 1. minosityLEdd=1.5×1038(M•/M⊙)(Boroson&Green1992; The overall breadth of the broad emission lines, notably Sulenticetal. 2000; Shen&Ho 2014). As one of the most 0 Hβ, reflects both the virial velocity and inclination of the 6 prominentvariablesinEV1,therelativestrengthofbroadop- BLR (Kollatschny&Zetzl 2011; Shen&Ho 2014). The 1 ticalFeIIemission,expressedas shape of the line profile may encode more information on : v F the detailed dynamics of the BLR (e.g., Collinetal. 2006; i RFe= FeII, (1) Kollatschny&Zetzl2011), whichitself maydependonfun- X FHβ damental properties such as the accretion or outflow rate. r may correlate with L /L . Sources with high Edding- The broad Hβ lines of NLS1s tend to have more sharply a bol Edd tonratios(accretionrates),forinstanceso-callednarrow-line peaked (∼Lorentzian) profiles compared to type 1 AGNs Seyfert 1 galaxies (Osterbrock&Pogge 1985), emit excep- withmorenormalEddingtonratios(Véron-Cettyetal.2001; tionally strong Fe II lines compared with the normal ones Zamfiretal. 2010). As a non-parametric description of the (Boroson&Green 1992; Huetal. 2008; Dongetal. 2011). lineprofile,onecandefine However, the underlying physical mechanism that controls RFe remains unclear, as the formation of Fe II is very com- D = FWHM, (2) Hβ σ 1Key Laboratory for Particle Astrophysics, Institute of High Energy Hβ Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing where σ is the dispersion (second moment) of the Hβ 100049,China Hβ 2NationalAstronomicalObservatoriesofChina,ChineseAcademyof line. The value of D is 2.35, 3.46, 2.45, 2.83 and 0 for Hβ Sciences,20ADatunRoad,Beijing100020,China a Gaussian, a rectangular, a triangular, an edge-on rotating 3Kavli Institute for Astronomy and Astrophysics, Peking University, ring, anda Lorentzianprofiles(fora pureLorentzianprofile Beijing100871,China σ →∞ and thus D =0), respectively (e.g., Collinetal. 4DepartmentofAstronomy,SchoolofPhysics,PekingUniversity,Bei- Hβ Hβ 2006). The quantity D correlates loosely with Edding- jing100871,China Hβ 5Yunnan Observatories, Chinese Academy of Sciences, Kunming ton ratio (Collinetal. 2006) and, as the ratio of the rota- 650011,China tional and turbulent components of the line-emitting clouds *Correspondingauthor,[email protected] (Kollatschny&Zetzl 2011), gives a simple, convenient pa- 2 rameterthatmayberelatedtothedynamicsoftheBLR. 1 galaxies (Czerny&Elvis 1987; Sun&Malkan 1989; WhileR andD eachcorrelatesseparatelywithEdding- Laor&Netzer 1989; Collinetal. 2002; Brocksoppetal. Fe Hβ ton ratio, we demonstrate that both R and D combined 2006; Kishimotoetal. 2008; Davis&Laor 2011; Fe Hβ correlateevenmoretightlywithEddingtonratio(anddimen- Capellupoetal. 2015). The effective temperature dis- sionlessaccretionrate).Thisbivariaterelation,whichwecall tribution is given by T = 6.2 × 104m˙1/4 m1/4R- 3/4K, athbele“sf,upnldaaumsiebnlytarlepllaatnede”t7ootfhtehestBruLcRturlienkansdtwdoyndairmecictsobosfetrhve- where m˙•,0.1 = M˙•/0.1M⊙eyffr- 1, M˙• is mass•a,0c.1cre7tion14rates, BLR, with the dimensionless accretion rate. Applying the m7 = M•/107M⊙, and R14 = R/1014cm (Franketal. 2002). BLR fundamental plane to a large sample of Sloan Digital Here the effect of the inner boundary is neglected because Sky Survey (SDSS) quasars, we find that a large fraction of theregionemittingopticalradiationisfarfromtheboundary. quasarsatz<0.8havesuper-Eddingtonaccretionrates. Introducingx=hν/kTeff, we havethe spectralluminosityby integratingovertheentiredisk, 2. MEASUREMENTS ∞ x5/3 2.1. TheReverberation-mappedAGNsample Lν=1.58×1028m˙2•/,03.1m27/3ν114/3cosiZ ex- 1dx ergs- 1Hz- 1, WeselectallAGNswithreverberationmapping(RM)data xin (3) (hereonlybroadHβ line), whichyieldrobustBH massesti- where i is the disk inclination relative to the observer and mates needed for our analysis. All RM AGNs before 2013 ν =ν/1014Hz. Sincelong-wavelengthphotonsareradiated 14 are summarized by Bentzetal. (2013). We took all of 41 fromlargediskradii,theintegralterminEquation(3)canbe AGNs from Bentzetal. (2013). Three additional sources well approximated by 1.93 for x =0 (Davis&Laor 2011). in (pMubrlkis1h5ed1.1,ONurGpCro5je2c7t3t,oKseAa1rc8h58f+or48su5p0e)rw-Eedrdeinsugbtosneqaucecnretlty- We thus have M˙• =0.53 ℓ44/cosi 3/2m-71 M⊙ yr- 1, and the ing massive black holes (SEAMBHs) has monitored about dimensionlessaccretionr(cid:0)ate8 (cid:1) A25GcNasndtoidadtaetsea(nDdusuetccael.ss2f0u1ll5y)manedasoutrheedrHfiβvelaogbsje(τcHtβs)minon1i4- M˙ =20.1 ℓ44 3/2m- 2, (4) toredbetween2014-2015(tobe submitted). We measureFe (cid:18)cosi(cid:19) 7 (II20u1s5in).gFthoersraemveerbaeprpartiooanc-hmaaspHpeudeAtGalN. (s20w0i8th)oauntdpHubuliesthaeld. where ℓ44 is the 5100 Å luminosity in units of 1044ergs- 1. Thisconvenientexpressioncaneasilyconvertluminosityand measurements of Fe II and Hβ flux, we fit the mean spec- BHmassintodimensionlessaccretionrates. Inthispaper,we tra from the monitoringcampaigns, using the fitting scheme describedin Huetal.(2015). Inshort, the spectrumisfitted take an average value of cosi=0.75, which corresponds to theopeningangleofthedustytorus(e.g.,Davis&Laor2011; withseveralcomponentssimultaneously:(1)apowerlawfor continuum,(2)FeIItemplatefromBoroson&Green(1992), Duetal.2015). TheuncertaintiesofM˙ duetoi(∈[0,45◦]) (3)hostgalaxytemplateifnecessary,(4)broadHβ,(5)broad are∆logM˙=1.5∆logcosi.0.15fromEquation(4),where HeIIλ4686emissionline,and(6)severalGaussiansfornar- we took ∆logcosi .0.1. This uncertainty is significantly row lines such as [O III] λλ4959, 5007. The flux of broad smallerthantheaverageerrorbarsoflogM˙ (∼0.35),andis opticalFeIIismeasuredbyintegrationfrom4434Åto4684 thusneglected. Å.Table1liststhe63RMAGNsweconsider,alongwiththe The dimensionless accretion rate is related to the more ˙ BH mass, 5100 Å luminosity, dimensionless accretion rate, widelyusedEddingtonratioviaLbol/LEdd=ηM,whereη is FWTHheMs,aσmHpβl,eRcFoevearnsdadawtaidseourarcnegse.of accretion rates, M˙ ≈ tThheeraudnicaetirvtaeineftifiecsieonfcEyd,danindgLtobonlr≈at1io0sLr5e1s00ul(tKfarospmiethtealf.a2c0t0th0a)t. thebolometriccorrectiondependsonbothaccretionratesand 10- 3- 103, from the regime of a Shakura&Sunyaev (1973) BH mass (Jinetal. 2012). In our following discussion, we standard disk to a slim disk (Abramowiczetal. 1988). We ˙ takeR fromthepublishedliteratureifavailable;otherwise, willusebothM andLbol/LEdd. Fe we measureitfromtheaveragedspectrafollowingthespec- 3. FUNDAMENTALPLANEOFTHEBLR tralfittingschemeofHuetal.(2008,2015). Asthevariabil- ity of Hβ is unusuallymuchlargerthan thatof Fe II in sub- 3.1. Correlations Eddington AGNs, the uncertainties of RFe are mainly gov- Figure1aand1c showthe R - (M˙,L /L ) plotsand ernedbyHβ variability,whichonaverageis∼20%. yieldthefollowingcorrelations:Fe bol Edd fBLWR eisesthtiemvaitreiathlefaBcHtomr,aVsFsWaHsMMi•s=HfβBLRFVWF2WHHMMc,τaHnβd/GG,wishethree (0.66±0.04)+(0.30±0.03)logM˙, aggraavinitsattitohneaMlc•o-nsσtarnetl.aItniopnraocftiicnea,ctthiveefagcatloarxifeBsLR(Oisnckaelinbreattaeld. RFe= (1.20±0.07)+(0.55±0.06)log Lbol/LEdd . (5) 2004;Ho&Kim2014). Forconsistencywithourearlierse- (cid:0) (cid:1) riesofpapers,weadopt f =1. We define the scatter of a correlation as ∆X = BLR N (X- X)2/N, where N is the number of objects, 2.2. AccretionratesandEddingtonratios q i=1 i P We derived accretion rates from the disk model of 8 Theapplicability ofEq. (4)toSEAMBHscanbejustifiedbytheself- Shakura&Sunyaev (1973), which has been exten- similarsolutionofslimdisks(Wangetal.1999;Wang&Zhou1999). The sively applied to fit the spectra of quasars and Seyfert solutionshowsthatthe5100Å photonsareemittedfromR5100/RSch≈4.3× 103m-71/2,andthephotontrappingradiusRtrap/RSch≈144M˙100,whereRSch 7 Borrowing the terminology from galaxy formation (e.g., istheSchwartzschild radius. Eq. (4)holdsprovidedthatR5100&Rtrap,or Djorgovski&Davis1987)andaccretingBHs(e.g.,Merlonietal.2003) M˙.3×103m- 1/2.NoSEAMBHsofarhasexceededthislimit. 7 3 TABLE1 THESAMPLEOFREVERBERATION-MAPPEDAGNS Objects logL5100 log(cid:0)M•/M⊙(cid:1) logM˙ FWHM σline DHβ RFe Ref. (ergs- 1) (kms- 1) (kms- 1) Mrk335 4444433333.....7787666449±±±±±00000.....0000066667 67666.....9089832427++-+-+-+- 000000000.........111211111128514040 11111.....2232178957++-+-+-+- 000000000.........323232331090909108 12117076299746.29±±..±±21323760 11115433478720.01.±±.±±656860 11111.....2321470323±±±±±00000.....0011011635 00000.....7763677992 44441,,,,5572a,,,663aa,4 - 0.11 - 0.17 PPGG00002562++122591 4444..9871±±00..0023 88..1654+-+- 0000....01119314 -00..6559+-+-0000..22..328015 25504048±±5763 12713687±±13000 12..4361±±00..0095 00..3132 44,,55,,88aa NOTE. —AllthevaluesoflogL5100,log(M•/M⊙)andlogM˙arecompiledfromDuetal. (2015). Valuesinboldfacearetheweightedaveragesofallthe measurementsforthisobject. Ref.:(1)Duetal.2014;(2)Wangetal.2014;(3)Huetal.2015;(4)Duetal.2015;(5)Collinetal.2006;(6)Petersonetal.1998;(7)Grieretal.2012;(8) Kaspietal.2000. ThesuperscriptaforreferencesindicatesthatRFeismeasuredinthispaper;bindicatesthatFWHMandσHβ aremeasuredfromSDSSspectra(theHβwidth ofSEAMBHsissignificantlybroadenedbythe5′′longslitofourcampaign;seedetailsinRef. 4);cmeanstheMCMCBHmassisused(seeSection2.2);d meansthatD istakenfromthelatestmeasurementsinKollatschny&Zetzl(2011).NGC5548markedwitheismeasuredfromitsmeanannualspectrainthe Hβ AGNwatchdatabase;theaveragevalueisprovidedhere.WefirstcalculateD foreachmeasurement,andthenaverage.Inthemaintext,weusetheseaveraged Hβ numbersfortheobjectswithmultipleRMmeasurements(treatedasonepointinallfigures). ForNGC7469,whichwasmappedtwiceCollieretal.(1998) andPetersonetal.(2014),theHβlagsarenotverydifferentbuttheHβFWHMisverydifferent;takethevaluesofFWHMmeasuredbyKollatschny&Zetzl (2011).NGC4051andPG1700+518haveverysmallvaluesofD inRef.5,butKollatschny&Zetzl(2011)providesnewmeasurements,whichareusedhere. Hβ Thistableisavailableinitsentiretyinamachine-readableformintheonlinejournal.Aportionisshownhereforguidanceregardingitsformandcontent. andX representsR , D , M˙, orL /L . ThePearson’s and a standard R- L relation9. The RM AGNs overlap very correlation coefficieFnet (rH)β, null-probabbolilityEdd(p), and scatters wellwiththeSDSSsample,onboththeR - (M˙,L /L ) (aare)iannddic(act)e,dwinetfihnedpltohtast.tBheycRomp- aMrin˙gc(orr,rpe,la∆tiRonFe)isinslpiganhetllys andthe DHβ- (M˙,Lbol/LEdd) plots. We noFete thatamboolngEtdhde Fe mappedAGNsthereis asmallpopulation(.9%; Figure1a stronger than that of RFe- Lbol/LEdd. In high-M˙ AGNs, andc) of AGNswith RFe >1.4 ofwhatappearto be super- both Hβ and continuum variability are significantly smaller Eddingtonsources. Their values of M˙ are likely underesti- thanthoseinsub-EddingtonAGNs. Ontheotherhand,Fe II matedbecausetheir blackholemasseswere estimatedusing reverberatesinaverysimilarlyfashiontoHβ withrespectto thestandardR- Lrelation. thecontinuum(Huetal.2015).Indeed,itcanbeseenthatthe scatter of the correlation gets larger with decreasing M˙ or 3.2. FundamentalPlane Lidbeoal/tLhEadtd.FTehIIeRstrFeen-g(tMhi˙s,Lnbootl/gLoEvdedr)nceodrrbeylamtioentasllsiucpitpyobrtusttbhye tioTnhsebe(RtwFeee,nDtHhβe)-B(LMR˙,sLtrbuocl/tuLrEedda)ndredlaytnioanmsicresflweictthcBoHnnaecc-- theionizingfluxandhydrogendensity(Verneretal.2004). cretion. Weinvestigatewhetherthesetwounivariatecorrela- WeplottheD - (M˙,L /L )relationsinFigure1band tions can be unified into a single bivariate correlationof the Hβ bol Edd 1dandfind form log(M˙,L /L )=α +β D +γ R , (7) bol Edd k k Hβ k Fe (2.01±0.05)- (0.39±0.04)logM˙, where (α ,β ,γ ) are coefficients to be determined by data k k k D = (6) (k=1,2). Wedefine Hβ (1.28±0.09)- (0.72±0.08)log L /L . bol Edd 2 The above two correlations are similar, b(cid:0)ut the for(cid:1)mer is χ2k = N1 N (cid:16)logAσ2ik-+αβk-σ2βkD+Hiβγ- σγ2kRiFe(cid:17) , (8) slightlystrongerthanthelatter. Collinetal.(2006)alsofound Xi=1 Ai k DHiβ k RiFe lbdaiuukcteeotrtthoroeetlieharmterioeplasnhucabklstesiotzwfaerheteehignmahtDu-tcMhHhβe˙waDAneGdakNL-ebsr(oMlit/nhL˙at,EhnLdedoir(u/ssreLase.mtTph)leheiic.rsoWFirsriegemluwaratoeiionu6nll)yds, wbMahirnesrimoefiAzloikng=gAχ(,M2D,˙w,HLβeb,ooalb/ntLdaEindRd)F,eσoAfi,thσeDHiiβ- thanodbσjeRciFte, areresptehcetievrerloyr. cannot be an artifact of the iHnβclusion ofboFlWEHddM in M˙. For α =2.47±0.k34; β =- 1.59±0.14; and γ =1.34±0.20, 1 1 1 a constant σ of RM AGNs, the accretion rates span over about5dexwHβhereasluminositiesspanover4.5;however,the α2=0.31±0.30; β2=- 0.82±0.11; and γ2=0.80±0.20. D - M˙ relation has a scatter of only ∆ =0.3- 0.4. The Hβ D 9 This is an empirical relation between the BLR size and the con- correlationsareintrinsic. tinuum. From the recent work of Bentz et al. (2013), it has the form Figure 1 also shows, as background,the SDSS DR5 sam- RBLR=33.65ℓ044.53ltd. However, Duetal.(2015)foundthatitonlyapplies ple of Huetal. (2008). The sample comprises4037z.0.8 tosub-EddingtonAGNs;itdependsonM˙ forsuper-EddingtonAGNs. We quasarswithcriteriaofS/N≥10andEW(Fe II)≥25Å (this donotconsider thedependence ofthe R- L relation onM˙ forthe SDSS excludes Fe II-weak quasars). BH masses assume fBLR =1 sampleinthispaper. 4 y 0.4 t i l i b 0.2 a b o 0.0 r P 2.0 (a) (c) β H 1.5 F / I I Fe 1.0 F = Fe 0.5 R r=0.65 r=0.60 0.0 p=7.3×10−9 p=2.2×10−7 ∆RFe=0.35 ∆RFe=0.38 3.5 r=−0.79 r=−0.74 (b) p=1.1×10−14 (d) p=6.6×10−12 ∆DHβ=0.36 ∆DHβ=0.41 β 3.0 H σ / M 2.5 H W F 2.0 = β H 1.5 D SDSS SDSS 1.0 RM−AGN RM−AGN −4 −3 −2 −1 0 1 2 3 −3 −2 −1 0 1 10 10 10 10 10 10 10 10 10 10 10 10 10 0.00.20.4 Accretion rate (M˙) Eddington ratio (LBol/LEdd) Probability FIG.1.—Correlationsbetween(a)RFe- M˙and(b)DHβ- M˙.ThePearson’scoefficient,null-probability,andscatteroftheX- M˙correlationaregivenby (r,p,∆X). Inpanel(a),theSDSSquasarsoverlapwiththeRMAGNsquitewell,exceptforAGNswithRFe&1.4. Thiscouldbebecausetheseobjectsare super-Eddingtonaccretors,inwhichthenormalR- Lrelation(Bentzetal.2013)overestimatesR aswellasBHmass(Duetal.2015),andhenceM˙isgreatly Hβ underestimated(seedetailsinthetext).Inpanel(b),theSDSSsamplealsooverlapswellwiththeRMAGNs,butthelow- M˙AGNsliebeyondthelocusofthe SDSSsample.TherearesomeSDSSquasarswithextremelyhighaccretionrates,M˙&102,suggestingthatweshouldmonitortheminthefutureofSEAMBH project. ThehistogramsindicatethedistributionsofRFe,DHβ andM˙onanormalizedscale. WenotethatthereisnosignificantcorrelationbetweenRFeand DHβ,eitherintheRMAGNorSDSSsample,indicatingthatDHβ andRFeareindependentfromeachother,althoughbothcorrelatewithM˙.Panels(c)and(d) arethesameas(a)and(b),butforEddingtonratios. Theerrorbarsof(α ,β ,γ )arederivedfrombootstrapsim- We apply the M˙- plane (Equation 7) to a sample of 4037 k k k ulations. The bivariate correlations, plotted in Figure 2, are objectsHuetal.(2008),whichwereselectedfromtheSDSS muchstrongerthanindividualcorrectionsofFigure1(seethe DR5 sample composed of N ≈ 15,000 quasars with z . tot correlation coefficients and null-probability). We call these 0.8. We calculate fractions of quasars with M˙ ≥M˙, δ = c ntweTwohcseiomrirmpellpealtiimcoanetasiosaunsrsethmoefefnuEtnsqduoaafmtiaeonnstian(lg7pl)lea-anerepeoocfehxthcseiptiBencLgtr.Ru.mForofma NcrMit˙icc/aNltaoct,cwrehtieornerNaMte˙cinisqtuheestniuomn.bFeorroofbqjuecatssawrsiathndMM˙≥˙c 3is,twhee quasar—strength of Fe II and shape of broad Hβ—we can findδ3=N3/Ntot≈0.18. Similarly,wehaveδ10=N10/Ntot≈ deducethestatusofitsaccretionflow. Thiscanbeveryuse- 0.12 and δ100 =N100/Ntot ≈0.02. These numbersshow that fulwhenappliedtolargesamplesofquasarstoinvestigatethe super-Eddington accreting AGNs are quite common in the cosmologicalgrowthofBHs. Ourmethodcanbeusefullyap- Universeat z<0.8. We shouldnote that these fractionsare plied to quasars with suitable spectroscopyin the rest-frame lower limits, as a result of the selection criteria imposed by Hβregion,forwhichthestrengthofFeIIcanbemeasuredor Huetal. Detailedresultsoftheapplicationofourtechnique constrained. tothelatestsampleofSDSSquasarswillbecarriedoutina separatepaper. 3.3. ApplicationtoSDSSsample 5 1 3 2 0 ) 1 d d E ˙M L / −1 g 0 Bol o L l ( g −1 lo −2 −2 r=0.87 r=0.80 p=2.7×10−20 p=2.5×10−15 −3 ∆M˙ =0.70 −3 ∆LBol/LEdd =0.48 −3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2.47−1.59DHβ +1.34RFe 0.31−0.82DHβ +0.80RFe FIG.2.—ThefundamentalplaneofAGNBLRs,showingaphysicalconnectionbetweenaccretiondisksandBLRs. Thedependentvariableis(left)M˙and (right)Eddingtonratio.ThetwoobservablesofRFeandDHβ canbereadilymeasuredfromsingle-epochspectra,allowingustoconstraintheaccretionstatusof thecentralengine. 4. CONCLUSIONS plication of the BLR fundamental plane shows that super- EddingtonaccretingAGNsarequitecommoninamonglow- Thispaperstudiescorrelationsamongthreedimensionless redshiftquasars. AGN parameters: accretion rate (or Eddington ratio), shape ofthebroadHβ line,andfluxratioofopticalFeII toHβ. A strongcorrelationamongthemisfound,whichwedenoteas This research is supported by the Strategic Priority thefundamentalplaneofAGNBLRs(Equation7). TheBLR Research Program - The Emergence of Cosmological fundamentalplaneenablesustoconvenientlyexploretheac- Structures of the Chinese Academy of Sciences, Grant cretion status of the AGN central engine using single-epoch No. XDB09000000, by NSFC grants NSFC-11173023, - spectra, opening up many interesting avenues for exploring 11133006, -11373024, -11233003 and -11473002, and a AGNs,includingtheircosmologicalevolution. Asimpleap- NSFC-CASjointkeygrantofU1431228. REFERENCES Abramowicz,M.A.,Czerny,B.,Lasota,J.-P.,&Szuszkiewicz,E.1988, Jin,C.,Ward,M.,&Done,C.2012,MNRAS,425,907 ApJ,332,646 Kaspi,S.,Smith,P.S.,Netzer,H.,etal.2000,ApJ,533,631 Baldwin,J.A.,Ferland,G.J.,Korista,K.T.,Hamann,F.,&LaCluyzé,A. KishimotoM.,AntonucciR.,BlaesO.,etal.2008,Nature,454,492 2004,ApJ,615,610 Kollatschny,W.,&Zetzl,M.2011,Nature,470,366 Barth,A.J.,Pancoast,A.,Bennert,V.N.etal.2013,ApJ,769,128 Laor,A.&Netzer,H.1989,MNRAS,238,897 Bentz,M.C.,Denney,K.D.,Grier,C.J.,etal.2013,ApJ,767,149 Laor,A.,Fiore,F.,Elvis,M.,Wilkes,B.J.,&McDowell,J.C.1997,ApJ, Brightman,M.,Silverman,J.D.,Mainieri,V.,etal.2013,MNRAS,433, 477,93 2485 Merloni,A.,Heinz,S.,&diMatteo,T.2003,MNRAS,345,1057 Brocksopp,C.,Starling,R.L.C.,Schady,P.,etal.2006,MNRAS,366,953 Onken,C.A.,Ferrarese,L.,Merritt,D.,etal.2004,ApJ,615,645 Boroson,T.A.,&Green,R.F.1992,ApJS,80,109 Osterbrock,D.E.,&Mathews,W.G.1986,ARA&A,24,171 Capellupo,D.M.,Netzer,H.,Lira,P.etal.,2015,MNRAS,446,3427 Osterbrock,D.E.,&Pogge,R.W.1985,ApJ,297,166 Chelouche,D.,Rafter,S.E.,Cotlier,G.I.&Barth,A.J.2014,ApJ,783, Peterson,B.M.,Grier,C.J.,Horne,K.,etal.2014,ApJ,795,149 L34 Peterson,B.M.,Wanders,I.,Bertram,R.,etal.1998,ApJ,501,82 Collier,S.J.,Horne,K.,Kapsi,S.,etal.1998,ApJ,500,162 Risaliti,G.,Young,M.,&Elvis,M.2009,ApJL,700,L6 Collin,S.,Boisson,C.,Mouchet,M.,etal.2002,A&A,388,771 Shakura,N.I.,&Sunyaev,R.A.1973,A&A,24,337 Collin,S.,Kawaguchi,T.,Peterson,B.M.,&Vestergaard,M.2006,A&A, Shemmer,O.,Brandt,W.N.,Netzer,H.,Maiolino,R.,&Kaspi,S.2006, 456,75 ApJL,646,L29 Czerny,B.,&Elvis,M.1987,ApJ,321,305 Shen,Y.&Ho,L.C.2014,Nature,513,210 Davis,S.W.&Laor,A.2011,ApJ,728,98 Sulentic,J.W.,Marziani,P.,&Dultzin-Hacyan,D.2000,ARA&A,38,521 Djorgovski,S.,&Davis,M.1987,ApJ,313,59 Sun,W.-H.,&Malkan,M.A.1989,ApJ,346,68 Dong,X.-B.,Wang,J.-G.,Ho,L.C.,etal.2011,ApJ,736,86 Verner,E.,Bruhweiler,F.,Verner,D.,etal.2004,ApJ,611,780 Du,P.,Hu,C.,Lu,K.-X.,etal.2014,ApJ,782,45 Véron-Cetty,M.-P.,Véron,P.,&Gonçalves,A.C.2001,A&A,372,730 Du,P.,Hu,C.,Lu,K.-X.,etal.2015,ApJ,806,22 Wang,J.-M.,Watarai,K.&Mineshige,S.2004,ApJL,607,L107 Frank,J.,King,A.R.,&Raine,D.J.2002,AccretionPowerin Wang,J.-M.,Du,P.,Hu,C.,etal.2014a,ApJ,793,108 Astrophysics:ThirdEdition(Cambridge:CambridgeUniv.Press) Wang,J.-M.,Szuszkiewicz,E.,Lu,F.-J.,&Zhou,Y.-Y.1999,ApJ,522,839 Grier,C.J.,Peterson,B.M.,Pogge,R.W.,etal.2012,ApJ,755,60 Wang,J.-M.,&Zhou,Y.-Y.1999,ApJ,516,420 Ho,L.C.&Kim,M.2014,ApJ,789,17 Wang,T.,Brinkmann,W.,&Bergeron,J.1996,A&A,309,81 Hu,C.,Du,P.,Lu,K.-X.,etal.2015,ApJ,804,138 Zamfir,S.,Sulentic,J.W.,Marziani,P.,&Dultzin,D.2010,MNRAS,403, Hu,C.,Wang,J.-M.,&Ho,L.C.etal.2008,ApJ,687,78 1759