The Flow of Information in Interactive Quantum Protocols : the Cost of Forgetting ∗ Mathieu LAURIE`RE1 andDave TOUCHETTE2,3 1NYU-ECNUInstituteofMathematicalSciencesatNYUShanghai, email:[email protected] 7 1 2InstituteforQuantumComputing,andDepartmentofCombinatoricsandOptimization, 0 UniversityofWaterloo,email: [email protected] 2 3PerimeterInstituteforTheoreticalPhysics n a J 9 ] h p Abstract - t n In the context of two-party interactive quantum communication protocols, we study a recently de- a fined notion of quantum information cost (QIC), which possesses most of the important properties of u itsclassicalanalogue,seeRef.[Tou15]. Notably,itslinkwithamortizedquantumcommunicationcom- q [ plexityhasbeenusedinRef.[BGKK+15]toprovean(almost)tightlowerboundontheboundedround quantumcomplexityofDisjointness. However,theonlyknowncharacterizationofQICwasthrougha 1 notionofpurificationoftheinputstate. Althoughthisdefinitionhastheadvantagetobevalidforfully v quantum inputs and tasks, its interpretation for classical tasks remained rather obscure. Also, the link 2 6 betweenthisnewnotionandothernotionsofinformationcostforquantumprotocolsthathadpreviously 0 appearedintheliterature(e.g. inRefs.[JRS03,JN14,KLLGR15])wasnotclear,ifexistentatall. 2 Wesettleboththeseissues: forquantumcommunicationwithclassicalinputs,weprovideanalter- 0 natecharacterizationofQICintermsofinformationabouttheinputregisters,avoidinganyreferenceto . 1 the notion of a purification of the classical input state. We provide an exact operational interpretation 0 ofthisalternativecharacterizationasthesumofthecostoftransmittinginformationabouttheclassical 7 inputsandthecostofforgettinginformationabouttheseinputs.Toobtainthischaracterization,weprove 1 : agenerallemma,theInformationFlowLemma,assessingexactlythetransferofinformationingeneral v interactivequantumprocesses. Specializingthislemmatointeractivequantumprotocolsaccomplishing i X classicaltasks,wearealsoabletodemystifythelinkbetweenQICandtheseotherpreviousnotionsof r informationcostinquantumprotocols.Furthermore,weclarifythelinkbetweenQICandICofclassical a protocolsbysimulatingquantumlyclassicalprotocols. Finally, we apply these concepts to argue that any quantum protocol that does not forget informa- tion solves Disjointness on n-bits in Ω(n) communication, completely losing the quadratic quantum speedup. Thisprovidesaspecificsenseinwhichforgettinginformationisanecessaryfeatureofinter- active quantum protocols in order to obtain any significant improvement over classical protocols. We alsoapplytheseconceptstoprovethatQICatzero-errorisexactlynfortheInnerProductfunction,and n(1−o(1))forarandomBooleanfunctiononn+nbits. ∗A one-page abstract of this work will appear in the Proceedings of the 8th Innovations in Theoretical Computer Science conference(ITCS2017). 1 Contents 1 Introduction 1 2 Preliminaries: QuantumCommunicationandInformation 3 3 InformationFlowLemma 6 4 MakingSafeCopiesoftheInputs 8 5 TheCostofForgetting: aNewCharacterizationofQIC 11 5.1 AlternateDefinitionsofInformationCostsforProtocolswithClassicalInputs . . . . . . 12 5.2 OperationalInterpretationofHICinTermsofCICandCRIC . . . . . . . . . . . . . . . 13 5.3 OperationalInterpretationofQICinTermsofCICandCRIC . . . . . . . . . . . . . . . 14 5.4 QICandCICareAlmostEquivalent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.5 RunningProtocolsonSuperpositionofInputs . . . . . . . . . . . . . . . . . . . . . . . 16 5.5.1 ProductDistributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.5.2 GeneralDistributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6 ForgettingInformationinClassicalProtocols 19 6.1 ExtendingtheClassicalSetting: aNewCharacterizationofIC . . . . . . . . . . . . . . 19 6.2 ReversibleClassicalProtocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7 Disjointness: Speed-upforQuantumProtocolsneedsForgettingInformation 22 8 QuantumSimulationofClassicalProtocols 25 9 CleanProtocols,IP,andRandomFunctions 28 9.1 CleanProtocolsandPhaseEncodingoftheOutput . . . . . . . . . . . . . . . . . . . . 28 9.2 RelatingtoQIC(Π,µ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 9.3 InformationLowerBound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 9.4 InnerProductfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 9.5 RandomFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 9.6 Non-ZeroErrorandClassicalProtocols . . . . . . . . . . . . . . . . . . . . . . . . . . 33 References 33 A ProofsforSection7 35 A.1 ProofofLemma38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 A.2 ProofofLemma39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 B TheVariousNotionsofInformationCost 36 1 1 Introduction Background. Intwo-partycommunicationcomplexity[Yao79],AliceandBobreceiveinputsxand y andrunaninteractivecommunicationprotocolbyexchangingmessagesinordertocomputef(x,y) for some function f that depends on both these inputs. Their goal is to minimize the communication cost(denotedCCandQCCrespectivelyintheclassicalandthequantumsettings),thatis,theamountof communication(bitsorqubits). Thismodelhasfoundnumerousapplicationsinmanyareasofcomputer science. Forexcellentintroductionstoclassicalandquantumcommunicationcomplexities,wereferthe readerto[KN97]and[dW02]respectively. One question that has received a lot of attention recently is whether it is possible to perform such protocols without leaking much information. In classical communication protocols, the information cost (IC) is defined as the information that the transcript reveals to each player about the input of the otherone. Inquantumcommunicationprotocols[Yao93],theregistersareinaquantumstate,which,in general,preventstheplayerfromkeepingtrackofthepreviousmessagesduetotheno-cloningtheorem. Nevertheless, the parties have quantum workspaces, where they may keep information about previous messages. Thequestionisthentocalculatehowmuchinformationeverynewmessagerevealstothem, giventhattheyalreadyknowtheirowninputandhavekeptsomeinformationintheirquantumworkspace accordingtotheprotocol. Severalnotionsofinformationcostforquantumprotocolshavealreadybeenusedintheliterature,see e.g.Refs[KNTSZ07,Kla02,JRS03,JRS09,JN14].Eachnotionwassomehowtailor-madeforaspecific purposeandveryusefulinthatparticularcase. Nevertheless,thesedefinitionsdidnotseemtoprovide a general understanding of how information behaves in quantum communication. In Ref. [Tou15] has beenintroducedageneralnotionofQuantumInformationCost(QIC),whichmeasuresthetotalamount of quantum information about the inputs that is transmitted during the protocol. The corresponding notion of quantum information complexity of a function (the minimal QIC of a protocol computing the function) has been shown to exactly characterize the amortized communication complexity of that function, which is a fundamental property of the information complexity in the classical setting, see Ref.[BR11]. Moreover,thisnotionofQIChasalreadyfoundmultipleapplications[Tou15,BGKK+15, NT16]. However,sofartheonlyknowncharacterizationofQICwasthroughanotionofpurificationofthe input state. Although this definition has the advantage to be valid for fully quantum inputs and tasks, itsinterpretationforclassicaltasksremainedratherobscure. Also,thelinkbetweenthisnewnotionand other notions of information cost for quantum protocols that had previously appeared in the literature wasnotclear,ifexistentatall. Ourcontributions. InthispaperweshedanewlightontheQuantumInformationCost(QIC),and settlebothissuesdescribedabovebyrelatingthisquantitytoseveralothernaturalnotionsofinformation cost,includingtheclassicalIC,andbyproviding,whentheinputsareclassical,anewcharacterizationof QICwhichhasanoperationalinterpretationanddoesnotrequireanyreferencetoapurificationregister. The cornerstone of our work is a general lemma, that we call the Information Flow Lemma (see Lemma3),whichpreciselycharacterizesthetransferofinformationinquantumprocesses,runonarbi- trary quantum inputs. This result then specializes to the setting we are interested in, namely quantum communication protocols. We stress that this lemma has already found other applications besides this work,inparticulartoprovealowerboundonquantuminformationcomplexityoftheAugmentedIndex functiononauniformdistributionoverthezerosofthefunction[NT16], withcorollariesonthespace complexity of quantum streaming algorithm for the DYCK(2) problem of well-formed parentheses overtwopairsofsymbols. Wethenturnourattentiontoquantumprotocolswithclassicalinputs.Inthisframework,eventhough some protocols might modify the input register, it is always possible, since the inputs are classical, to requirethattheplayersstarttheprotocolbymakingacopyoftheirinputsandworkwiththatcopy. We callprotocolssuchasthese,wheretheinputregistersareleftuntouched,safeprotocols. Thisseemingly 1 insignificantmodificationoftheoriginalprotocolmightdrasticallychangetheinformationcost. How- ever,weprovethatitcanonlydecreaseit(seeProposition9). Soitisenoughtostudytheinformation costofsafeprotocolswhenweareinterestedinminimizingtheQICforcomputingataskwithclassical inputs. When studying such quantum protocols with classical inputs, a notion of information cost (called Classical input Information Cost, or CIC) has been introduced in Ref. [KLLGR15], where a first step was made to understand its relationship with QIC: the former is a lower bound on the latter – that is, CIC ≤ QIC. Inordertocompletethepicture,weintroducetwonewnotions: theHolevoInformation Cost(HIC),whichmeasureshowmuchinformationtheplayershaveabouteachother’sinputattheend oftheprotocol(around-by-roundvariantwasconsideredinRef.[JRS03,JN14]),andtheClassicalinput ReverseInformationCost(CRIC),whichcountshowmuchinformationabouttheinputsisforgottenat each round by the player sending the message (this is somehow the dual under time reversal of CIC). BasedonourInformationFlowLemma,wegivenewoperationalinterpretationstothesequantitiesand, informallyspeaking,weshowthattheysatisfythetwofollowingverynaturalrelationships: theHolevo information cost corresponds to the amount of classical information that was learnt and not forgotten during the protocol, while the quantum information cost captures all of the information transmitted during the protocol (what was learnt plus what was forgotten). This yields a new characterization of QICbyCIC,uptoafactorof2. Sothevariousnotionsofinformationcostintroducedinthispaperare tightlyrelated,namely(seePropositions16,17and19): MainResult1:Wehave:HIC=CIC−CRIC,QIC=CIC+CRIC.Moreover,CIC≤QIC≤2·CIC. TheserelationshipsemphasizetheimportanceofCRIC,thecostofforgettinginformation. Thislast quantitywouldalwaysbezeroinclassicalprotocols: implicitly, classicalinformationisalwaysclone- able, hence players can memorize the whole history of the protocol and never forget information. To understand the link with quantum protocols forgetting information, we introduce a model of classical reversiblecomputing,endowingclassicalprotocolswiththeabilitytoforgetinformation. Weshowthat this feature can only increase their information cost, and, as such, forgetting information is somehow a wasteful phenomenon that should be avoided in the context of classical communication (see Theo- rem 33). However, in quantum protocols, cloning is not possible in general. This raises the question whetherthepropertyofforgettinginformationisonlycostlyandshouldstillbeavoidedinsomesense. We answer this in the negative: forgetting information is absolutely necessary to obtain the quantum communicationimprovementallowedforcomputingcertainfunctions. Indeed,ifnoinformationisfor- gotteninaquantumprotocol,thenQIC = HICisformallyverysimilartoIC,andthecontinuityinthe inputdistributionhasnorounddependence,asintheclassicalcase. Thus,therounddependenceinthis continuity bound for general quantum protocols that do forget information [BGKK+15] can be under- stoodasbeingduetothefactthatthesameinformationisforgottenandtransmittedmultipletimes.With thisobservation, weprovethatanyquantumprotocolforDisjointnessthatdoesnotforgetinformation haslinearquantumcommunicationcomplexity(seeTheorem36). Hence,quantumprotocolsthatdonot forgetinformationcannotobtainthequadraticquantumspeed-upfortheDisjointnessfunction[AA05], andthisabilityofquantumprotocoltoforgetinformationisanessentialfeatureofinteractivequantum communication,notjustsomeodditywecangetaround. Thiscanbesummarizedasfollows: MainResult2:Forgettinginformationisuselessinaclassicalreversiblesetting, butitisunavoidable inthequantumsetting: itisanecessaryfeatureofinteractivequantumprotocolstogetsignificantcom- municationimprovementoverclassicalprotocols. Thisimportantdistinctionshowsthattheflowofinformationbehavesquitedifferentlyintheclassical andinthequantumsetting. However,theclassicalcommunicationcomplexityisalwayslowerbounded by the quantum communication complexity: quantum messages can simulate classical ones. We can ask the same question in terms of information: is it always possible to quantumly simulate classical messages while maintaining the information cost? Our next main result provides a positive answer. We show that to any classical protocol Π corresponds a quantum simulation protocol Π satisfying C Q QCC(Π )=CC(Π ),QIC(Π ,µ)=IC(Π ,µ)foranyinputdistributionµ,andimplementingthe Q C Q C 2 sameinput-outputchannelΠ =Π . Themainissuewedealwithisthepurestatequantumsimulation Q C ofprivaterandomnesswithoutalteringtheinformationcost(seeLemma47). MainResult3: Foranyclassicalprotocol,thereexistsaquantumprotocolwiththesameinput-output behaviour,andwithcommunicationandinformationcostssmallerthantheclassicalprotocol. Thisresultletsusconcludethepaperwithonemoreapplication.FortheInnerProductfunction,QIC atzero-errorovertheuniformdistributionisexactlyn;asimilarlowerboundofn(1−o(1))holdsfor arandomBooleanfunctiononn+nbits. Furtherusingthequantumsimulationofclassicalprotocols mentionned above together with the fact that classical IC is continuous at zero-error [BGPW13a], this shows that, in the limit when the error ε goes to 0, IC of such a random Boolean function is not only Ω(n)[BW12,KLL+15],butispreciselyn(1−o(1))(suchatightboundfortheICofInnerProductwas knownfromRef.[BGPW13b]). Outlineofthepaper. Thispaperisstructuredasfollows. Aftersomepreliminaries(Section2),we stateandproveourInformationFlowLemma(Section3). InSections4and5,weproveourresultson safequantumprotocols,andthenintroduceCRIC,HICandmultipleotherquantumnotionsofinforma- tioncost(atableisprovidedinAppendixBtokeeptrackofdefinitionsandrelationships). Forthesake ofcomparison,inSection6wedefineICinaclassicalreversiblecomputationparadigmandshowthat forgettinginformationiswasteful. Incontrast,weproveinSection7thatthereisnoquantumcommu- nication speed-up for Disjointness when the quantum protocols are not allowed to forget information. Then,weshowhowtosimulatequantumlyclassicalprotocolsinSection8. Finallyweproveourresults onInnerProductandrandomBooleanfunctions(Section9). 2 Preliminaries: Quantum Communication and Information Quantum Communication Model. QuantumcommunicationcomplexitywasintroducedbyYao in Ref. [Yao93]. The model we use here is closer to the one of Cleve and Buhrman [CB97], with pre-shared entanglement, but we allow the players to communicate with quantum messages. In this model, an r-round protocol Π for a given classical task from input registers A = X, B = Y to in in output registers A , B is defined by a sequence of isometries U , ···, U along with a pure out out 1 M+1 state ψ ∈ D(TinTin) shared between Alice and Bob, for arbitrary finite dimensional registers Tin, A B A Tin: the pre-shared entanglement. Above, D(A) is the set of all unit trace, positive semi-definite lin- B ear operators mapping A into itself. See Refs [Wat15, Wil13]. We need r + 1 isometries in order to have r messages since a first isometry is applied before the first message is sent and a last one after the final message is received. In the case of even r, for appropriate finite dimensional quan- tum memory registers A , A , ···, A , A(cid:48) held by Alice, B , B , ···, B , B(cid:48) held by Bob, 1 3 r−1 2 4 r−2 and quantum communication registers C , C , C , ···, C exchanged by Alice and Bob, we have 1 2 3 r U ∈ U(A Tin,A C ), U ∈ U(B TinC ,B C ), U ∈ U(A C ,A C ), U ∈ U(B C ,B C ), 1 in A 1 1 2 in B 1 2 2 3 1 2 3 3 4 2 3 4 4 ··· , U ∈ U(B C ,B B(cid:48)C ), U ∈ U(A C ,A A(cid:48)), where U(A,B) is the set of uni- r r−2 r−1 out r r+1 r−1 r out tary channels from A to B : see Figure 1. We adopt the convention that, at the outset, A = A Tin, 0 in A B = B Tin, for odd i with 1 ≤ i < r, B = B , for even i with 1 < i ≤ r, A = A and 0 in B i i−1 i i−1 also B = B = B B(cid:48), and A = A A(cid:48). In this way, after application of U , Alice holds r r+1 out r+1 out i registerA ,BobholdsregisterB andthecommunicationregisterisC . Inthecaseofanoddnumberof i i i messagesr,theregisterscorrespondingtoU ,U arechangedaccordingly.Weslightlyabusenotation r r+1 andalsowriteΠtodenotethechannelfromregistersA B toA B implementedbytheprotocol, in in out out i.e.foranyinputdistributionµonXY andρ encodingµoninputregistersA B , µ in in Π(ρ )=Tr (U U ···U U (ρ ⊗ψ)). (2.1) µ A(cid:48)B(cid:48) M+1 M 2 1 µ NotethattheA(cid:48)andB(cid:48)registersarethefinalmemoryregistersthatarebeingdiscardedattheendof theprotocolbyAliceandBob,respectively. 3 Recall that for a given state, all purifications are related by isometries on the purification regis- ters. For classical input registers XY distributed according to µ, we consider a canonical purification |ρµ(cid:105)XRXYRY ofρAµinBin,with |ρ (cid:105)XRXYRY =(cid:88)(cid:112)µ(x,y)|xxyy(cid:105)XRXYRY . (2.2) µ x,y WethensaythatthepurifyingregistersR R containquantumcopiesofXY. Then,thestateatround X Y i, ρXi RXYRYAiBiCi =Ui···U1(ρXRXYRY ⊗ψTAinTBin) (2.3) ispure. Also, we requirethatthefinal marginalstate Π(ρAinBinRXRY) on RXRYAoutBout isclassi- cal. We say that a protocol Π solves a function f with error ε with respect to input distribution µ if Pr [Π(x,y)(cid:54)=f(x,y)]≤ε,andwesayΠsolvesf witherrorεifmax Pr[Π(x,y)(cid:54)=f(x,y)]≤ε. µ (x,y) Wealsomakeuseofthenotionofacontrol-isometry:itisanisometryactingonaclassical-quantum register by leaving the content of the classical register unchanged. Such a classical register is called a control-register. QuantumInformationCost. Themainquantityofinterestinthisworkisthequantuminformation cost, as introduced in [Tou15]. In quantum communication protocols, there is no clear notion of a transcript, so this definition counts how much information is exchanged in each round. In the sequel, we denote the Von Neumann entropy by H, and for a tripartite state ρABC, we denote the conditional quantummutualinformation(CQMI)betweenAandBconditionedonCbyI(A:B|C)=H(A,C)+ H(B,C)−H(C)−H(A,B,C). We will make use of many properties of CQMI, among which the following. Lemma1 Ifρ=ρABC andσ =σDEF aretwostatesondistinctregisters,then I(AD;BE|CF) =I(A;B|C) +I(D;E|F) . ρ⊗σ ρ σ Ifρ=ρABCD =(cid:80) p(c)|c(cid:105)(cid:104)c|⊗ρABD isaclassical-quantumstatewithclassicalregisterC,then c c I(A:B|CD) =E [I(A:B|D) ]. ρ c ρc Ifρ=ρABCD isapurestate,then I(A;B|C) =I(A;B|D) . ρ ρ Letusrecallthedefinitionofquantuminformationcostintroducedin[Tou15]. Definition2 ForaprotocolΠandaninputdistributionµ,wedefinethequantuminformationcostofΠ oninputµas (cid:88) (cid:88) QIC(Π,ρ)= I(C ;R R |B )+ I(C ;R R |A ). i X Y i i X Y i i≥1,odd i≥1,even Foranyfunctionf,anyinputdistributionµ,andanyε>0 QIC(f,µ,ε)=infQIC(Π,µ) (2.4) Π wheretheinfimumisovertheprotocolsΠcomputingf witherrorεw.r.tµ. Thisquantityhasmanyniceproperties(see[Tou15,BGKK+15]);inparticularitcharacterizesthe(quan- tum)amortizedcommunicationcomplexity. Westressthatthedefinitionisindependentofthechoiceof purification. 4 R Ray A A A A A A A(cid:48) in 1 2 3 r−1 r A U U U out 1 3 f C C C 1 3 r−1 Alice Tin A ··· Π(ρ) |ρ(cid:105) |φ (cid:105) 1 C Bob r Tin B C 2 B U U out 2 r Bin B2 B3 Br−1 B(cid:48) Figure1: Depictionofaquantumprotocolintheinteractivemodel,adaptedfromthelongversionof[Tou15, Figure1]. 5 Discussionaboutcompression. Somepreviousnotionsofinformationcostforquantumprotocols (e.g. inRefs.[JRS03,JN14,KLLGR15])weremoresimilarinspirittoclassicalinputinformationcost than to quantum information cost. Our results shed new light on why these previous definitions were restricted to compression results for a single round. In the first round, Alice does not yet possess any informationonBob’sinput(asidefromwhatshecaninferfromherowninput).Forone-roundprotocols, itisthenimmaterialwhetheroneusesclassicalinputinformationcostorquantuminformationcost. But theninsubsequentrounds,generallyAlicehasinherregisterssomeinformationaboutBob’sinput. Itis thenpossibleforhertoforgetinformationwhilesendingamessage. Wecanevenconstructaprotocol where, atthethirdround, BobdoesnotlearnanythingwhereasAliceforgetsalotofinformation. For such a round of communication, the previous definitions of information cost, e.g. CIC introduced in Ref.[KLLGR15],wouldevaluateto0whereasQICwouldbelarge. Thus,itisimpossibletocompress suchaquantummessagedowntoitsCIC,thatis,almostatnocost,whilekeeping,inaround-by-round fashion, the overall state of the protocol almost equivalent to that in the original protocol. Indeed, we know from our developments that to forget information we must invest communication. As a conse- quence, we see that for quantum protocols, it is important to take into account the cost of forgetting information. The purification register used in the definition of QIC possibly appears artificial when considering classicalinputs. Inthisdirection, weprovebelow(seeSection5)anarguablymorenaturalcharacteri- zation(atleastfromaclassicalcorrelationpointofview)ofeachterminthequantuminformationcost asthesumofhowmuchinformationabouthisowninputapartyissendingplushowmuchinformation about the other party’s input he is forgetting. However, we argue that there is still virtue in taking the purificationoftheclassicalinputviewpoint. Firstly,itenablestokeeptrackofaglobalpurestate,which inmanysituationsisaremarquablypowerfulviewpoint. Secondlyandmorefundamentally,thepurifi- cation viewpoint has a nice operational interpretation through the task of quantum state redistribution, whichisusefulwhenaimingatcompressionresults. Indeed,atanypointoftheinteractiveprotocol,the purequantumstatecanbeseenasa4-partitestateρARASMRconsistingofthereceiver’sandthesender’s privateregisters(A andA respectively),themessageregisterM andapurificationregisterR. Then, R S eachterminQICisoftheformI(R;M|A ),thatis,themutualinformationbetweenthemessageand R theinaccessiblepurificationregister,conditionedonthereceiver’ssideinformation. Suchanexpression is known [DY08, YD09] to quantify the cost of redistributing the message register while maintaining correlationswiththereceiver’sandthesender’sprivateregistersaswellastheenvironment. TheCIC terms can also be given such an operational significance for the information about the sender’s input thatamessagecontains. However,thisviewpointbreaksdownfortheinformationthatisforgotten(see theoperationalinterpretationgivenatSection5). Indeed, tomeasuretheamountofinformationbeing forgotten, we condition on the sender’s side information for sending information about the receiver’s input. Thistermwouldbehardtoaccountforinacompressionviewpoint(unlesswethinkofmessages goingbackward). Hence,wethinkthatthepurificationviewpointremainsappropriateforcompression purposes. 3 Information Flow Lemma In this section, we state and prove the Information Flow Lemma (see Lemma 3 below), which allows tokeeptrackexactlyoftheflowofquantuminformationinaninteractiveprotocolandiskeytomuch of our further developments. Moreover, it gives a lower bound on QIC that does not depend on the numberofround(seeCorollary5),andisused,amongotherthings,togiveanexactmeaningtothecost of forgetting in interactive quantum protocols. We present here a quite general version of this result. However, we stress that a more limited version, that is still sufficient to obtain a lower bound on QIC, hasalreadyfoundsomeapplications;seeRef.[NT16]. Let us consider the more general framework of bipartite interactive quantum processes, of which the model of quantum communication complexity defined in Section 2 is a special case. This general frameworkmodelizesadiscretizedquantumprocessinwhichthereisinteractionbetweentwodistinct, 6 E¯F¯ Extension A¯ A¯ A¯ A¯ 0 1 2 r−1 U1 C¯ D¯ U2 C¯ D¯ Ur A¯ 1 1 2 r−1 r Alice ··· ρ ρ 0 r Bob V1 D¯1 C¯1 V2 D¯2 C¯r−1 Vr B¯r B¯ B¯ B¯ B¯ 0 1 2 r−1 Figure2: Depictionofaninteractivequantumprocess,adaptedfromthelongversionof[Tou15,Figure1]. localizedparties,andlocalevolutionateachtimestep. In more details, Alice and Bob start in a joint state ρA¯0B¯0, for which we consider an arbitrary ex- 0 tension ρA0¯0B¯0E¯F¯ (such that TrE¯F¯(ρA¯0B¯0E¯F¯) = ρA¯0B¯0). The process runs for r +1 rounds, with ρi the state in round i, registers A¯ , B¯ , C¯ and D¯ in each round, with C¯ , D¯ , C¯ and D¯ being i i i i 0 0 r+1 r+1 trivial registers in the 0-th and r +1-th round, initially and at the end of the process. In round i, for 1≤i≤r,afterbeinggeneratedbyAlice,registerC¯ getscommunicatedfromAlicetoBob,and,after i being generated by Bob, register D¯ gets communicated from Bob to Alice. Register A¯ is a quantum i i memoryregisterheldbyAlice,andregisterB¯ isaquantummemoryregisterheldbyBob.Theevolution i isthroughlocalisometriesU =UA¯i−1D¯i−1→A¯iC¯i onAlice’ssideandV =VB¯i−1C¯i−1→B¯iD¯i onBob’s i i i i side: ρA¯iB¯iC¯iD¯iE¯F¯ =(U ⊗V )ρA¯i−1B¯i−1C¯i−1D¯i−1E¯F¯. i i i i−1 RegistersE¯F¯ areleftuntouchedthroughout, andcanbethoughtofinthefollowingway: wewant tomeasurehowmuchinformationBobknowsaboutE¯ fromthepointofviewofsomeonewhoknows F¯. Wegetthefollowingexactcharacterizationoftheflowofinformationfromthispointofview. Lemma3 (InformationFlowLemma)Givenaninteractivequantumprocessasdefinedabove,thefol- 7 lowingholds: r I(E¯;B¯ |F¯) −I(E¯;B¯ |F¯) =(cid:88)(I(E¯;C¯ |F¯B¯ ) −I(E¯;D¯ |F¯B¯ ) ). r+1 ρr+1 0 ρ0 i i ρi i i ρi i=1 Proof. WekeeptrackoftheflowofinformationusingthechainruleandlocalisometricinvarianceofCQMI: I(E¯;B¯ |F¯)=I(E¯;B¯ C¯ |F¯) r+1 r r =I(E¯;B¯ |F¯)+I(E¯;C¯ |F¯B¯ )+(cid:0)I(E¯;D¯ |F¯B¯ )−I(E¯;D¯ |F¯B¯ )(cid:1) r r r r r r r =(cid:0)I(E¯;B¯ |F¯)+I(E¯;D¯ |F¯B¯ )(cid:1)+I(E¯;C¯ |F¯B¯ )−I(E¯;D¯ |F¯B¯ ) r r r r r r r =I(E¯;B¯ D¯ |F¯)+I(E¯;C¯ |F¯B¯ )−I(E¯;D¯ |F¯B¯ ) r r r r r r =I(E¯;B¯ C¯ |F¯)+I(E¯;C¯ |F¯B¯ )−I(E¯;D¯ |F¯B¯ ). r−1 r−1 r r r r Applyingrecursivelythesameargumentleadsto r I(E¯;B¯ |F¯)=I(E¯;B¯ C¯ |F¯)+(cid:88)(cid:0)I(E¯;C¯ |F¯B¯ )−I(E¯;D¯ |F¯B¯ )(cid:1) r+1 1 1 i i i i i=2 =I(E¯;B¯ D¯ |F¯)+I(E¯;C¯ |F¯B¯ )−I(E¯;D¯ |F¯B¯ ) 1 1 1 1 1 1 r +(cid:88)(cid:0)I(E¯;C¯ |F¯B¯ )−I(E¯;D¯ |F¯B¯ )(cid:1) i i i i i=2 r =I(E¯;B¯ |F¯)+(cid:88)(cid:0)I(E¯;C¯ |F¯B¯ )−I(E¯;D¯ |F¯B¯ )(cid:1). 0 i i i i i=1 Wegetthedesiredresultbyrearrangingterms. Intheremainderofthiswork,weareconcernedwithquantumcommunicationprotocolsasdefined inSection2,forwhichaneasycorollaryoftheInformationFlowLemmaisasfollows. Asimilarresult holdsforAlice. Corollary4 Given a protocol Π, an input distribution µ and any extension ρAinBinE1E2 satisfying : 0 TrE1E2(ρA0inBinE1E2)=ρAµinBin, (cid:88) (cid:88) I(E ;B(cid:48)B |E ) −I(E ;B |E ) = I(E ;C |E B ) − I(E ;C |E B ) . 1 out 2 ρr+1 1 in 2 ρ0 1 i 2 i ρi 1 i 2 i ρi iodd ieven CombiningtheaboveresultandasimilaroneholdingforAlice,wegetthefollowinglowerboundon quantuminformationcost,statedasasumofdifferencesbetweentheamountofcorrelationsofreference registerswiththeoutputandtheinput. Corollary5 GivenaprotocolΠ,aninputdistributionµandanytwoextensionsρAinBinE1E2,ρAinBinF1F2 0,B 0,A satisfying: TrE1E2(ρA0,iAnBinE1E2)=ρµAinBin,TrF1F2(ρA0,iBnBinF1F2)=ρAµinBin,thefollowingholds: QIC(Π,ρ)≥I(F ;A A(cid:48)|F )−I(F ;A |F ) 1 out 2 1 in 2 +I(E ;B B(cid:48)|E )−I(E ;B |E ). 1 out 2 1 in 2 4 Making Safe Copies of the Inputs Inthissection,weshowthatmakingsafecopiesofclassicalinputsattheoutsetofaquantumprotocol neverincreasesitsquantuminformationcost. So, whenstudyingthequantuminformationcomplexity ofafunction,itisalwayspossibletoassumethatprotocolsdonotchangetheinputregisters. FollowingRef.[JRS03],weintroducethenotionofsafecopiesandsafeprotocols. 8