ebook img

The first galaxies: simulating their feedback-regulated assembly PDF

2.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The first galaxies: simulating their feedback-regulated assembly

Mon.Not.R.Astron.Soc.000,1–??(xxxx) Printed21August2015 (MNLATEXstylefilev2.2) The first galaxies: simulating their feedback-regulated assembly Myoungwon Jeon1(cid:63),Volker Bromm1, Andreas H. Pawlik2 and Miloš Milosavljevic´1 1DepartmentofAstronomy,UniversityofTexas,Austin,TX78712,USA 2Max-Planck-InstitutfürAstrophysik,Karl-Schwarzschild-Strasse1,85748GarchingbeiMünchen,Germany 5 1 0 ABSTRACT 2 Weinvestigatetheformationofagalaxyreachingavirialmassof≈ 108M atz ≈ 10 g (cid:12) by carrying out a zoomed radiation-hydrodynamical cosmological simulation. This simula- u tiontracesPopulationIII(PopIII)starformation,characterizedbyamodestlytop-heavyini- A tialmassfunction(IMF),andconsidersstellarfeedbacksuchasphotoionizationheatingfrom 9 PopIIIandPopulationII(PopII)stars,mechanicalandchemicalfeedbackfromsupernovae 1 (SNe), and X-ray feedback from accreting black holes (BHs) and high-mass X-ray binaries (HMXBs). We self-consistently impose a transition in star formation mode from top-heavy ] PopIIItolow-massPopII,andfindthatthestarformationrateinthecomputationalboxis A dominated by Pop III until z ∼ 13, and by Pop II thereafter. The simulated galaxy experi- G ences bursty star formation, with a substantially reduced gas content due to photoionization . heatingfromPopIIIandPopIIstars,togetherwithSNfeedback.Allthegaswithinthesim- h ulatedgalaxyismetal-enrichedabove10−5Z ,suchthattherearenoremainingpocketsof p (cid:12) primordialgas.Thesimulatedgalaxyhasanestimatedobservedfluxof∼ 10−3nJy,which - o istoolowtobedetectedbytheJamesWebbSpaceTelescope(JWST)withoutstronglensing r amplification. We also show that our simulated galaxy is similar in terms of stellar mass to t s Segue2,theleastluminousdwarfknownintheLocalGroup. a [ Keywords: cosmology:theory–galaxies:formation–galaxies:high-redshift–HIIregions –hydrodynamics–intergalacticmedium–supernovae:physics. 2 v 2 0 0 1 INTRODUCTION ertiesofthefirstgalaxiesbypushingnumericalsimulationstonew 1 levelsofphysicalrealismanddetail.Ourgoalhereistoderiveab- 0 Animportantgoalofmoderncosmologyistounderstandthefor- initio predictions for key quantities, such as their stellar popula- 1. mation and properties of early galaxies that formed a few hun- tionmix,quantifiedbyapossiblytime-variableinitialmassfunc- 0 dred million years after the Big Bang (Bromm & Yoshida 2011; tion (IMF), star formation rates (SFRs), metallicities, and result- 5 Loeb & Furlanetto 2013; Wiklind et al. 2013). In the context ing broad-band colour and recombination-line spectra (e.g. John- 1 of hierarchical cosmology, where small structures form first and sonetal.2009;Pawliketal.2011;Zackrissonetal.2011).ASFR : evolve into bigger systems, dwarf galaxies with virial masses of v above 0.1M yr−1, corresponding to M ∼ 107M , might be i Mvir =107−109M(cid:12)atz(cid:39)6−15werethebasicbuildingblocks requiredforg(cid:12)alaxiesatz(cid:38)10tobeobserv∗edwiththe(cid:12)JamesWebb X oflargegalaxiesseentoday.Furthermore,itisthoughtthatthese SpaceTelescope(JWST)(e.g.Inoue2011;Pawliketal.2013).For r galaxiesplayedapivotalroleinreionizingtheUniverse,theglobal JWST deep fields to reach even fainter systems, a magnification a phase transition from an early neutral medium to a fully ionized boostfromgravitationallensingmayberequired(Zackrissonetal. one(forreviewssee,e.g.Barkana&Loeb2007;Furlanettoetal. 2012,2015). 2006; Robertson et al. 2010). Specifically, the first galaxies were the drivers of the initial stages of reionization (Haardt & Madau Thepropertiesofsuchearlygalaxiesweredeterminedbythe 2012;Shulletal.2012;Robertsonetal.2013). feedback from preceding generations of stars (for a review see, Over the past decade, there have been enormous efforts to e.g. Ciardi & Ferrara 2005). The first generation of stars, the so- pushthehighredshiftfrontiertoz(cid:39)7,detectinglightfromgalax- called Population III (Pop III), formed at z (cid:46) 30 in dark mat- ieswithastellarmassofM∗ (cid:38)108M(cid:12)(e.g.Bouwensetal.2011; ter(DM)minihaloeswithM = 105−106M ,predominately vir (cid:12) Oesch et al. 2012; Finkelstein 2013; Schenker et al. 2014; Stark viaro-vibrationallyexcitedmolecularhydrogen(H )cooling(e.g. 2 et al. 2015). To assessthe observability of even smaller galaxies, Haiman et al. 1996; Tegmark et al. 1997; Bromm et al. 2002; andgalaxiesatevenhigherredshifts,weneedtopredicttheprop- Yoshidaetal.2003).RadiationfromPopIIIstarsdramaticallyal- teredthegaswithintheirhostminihaloes,throughphotoionization, photoheating, and photoevaporation (e.g. Kitayama et al. 2004; (cid:63) E-mail:[email protected] Whalenetal.2004;Alvarezetal.2006;Yoshidaetal.2007;Wise (cid:13)c xxxxRAS 2 Jeonetal. &Abel2008).OnceaPopIIIstardiedasasupernova(SN),heavy Prietoetal.2011;Smithetal.2011;Greifetal.2011,2012;Stacy elements were dispersed, enriching the intra-host and intergalac- etal.2012;Dopckeetal.2013).Radiation-hydrodynamicalsimu- ticmedium(IGM),thusinitiatingtheprolongedprocessofchemi- lationsthattakeintoaccountthefeedbackfromtheprotostellarra- calevolution(reviewedinKarlssonetal.2013).TheresultingSN diationsuggestthatthefirststarstypicallyreachedmassesofafew feedbackfromthefirststarsgreatlyaffectedthegasintheshallow ∼ 10M (e.g. Hosokawa et al. 2011; Stacy et al. 2012; Hirano (cid:12) potential wells of the host systems (e.g. Greif et al. 2007, 2010; etal.2014;Susaetal.2014).Ifthisisindeedthecase,thefeed- Whalenetal.2008).Themoredistant,diffuseIGMwasheatedas back from primordial stars would have been less disruptive than well by X-rays emitted by accreting single black holes (BHs), or previouslythought(Kitayama&Yoshida2005;Whalenetal.2008; high-massX-raybinaries(HMXBs),bothremnantsofPopIIIstars Chiakietal.2013).Specifically,PISNeventswouldhavebeenless (e.g.Glover&Brand2003;Kuhlen&Madau2005;Milosavljevic´ frequent,withthemajorityofPopIIIstarsnowexpectedtodieas et al. 2009a,b; Alvarez et al. 2009; Mirabel et al. 2011; Wheeler CCSNe.Itisthereforeimportanttorevisittheassemblyprocessof &Johnson2011;Hummeletal.2014;Jeonetal.2012,2014a;Xu thefirstgalaxies,takingthischangeincharacteristicPopIIImass etal.2014). scaleintoaccount. The critical role of feedback from stars in massive galaxies Most previous studies have been focusing on the feedback withM ∼109−1013M isalsoemphasizedbymanyauthors frommassivePopIIIstars((cid:38) 100M )onfirstgalaxyformation vir (cid:12) (cid:12) (e.g.Schayeetal.2010;Stinsonetal.2013;Kimetal.2013;Wise (e.g.Wise&Abel2008;Greifetal.2010;Wiseetal.2012;Paw- etal.2014).Photoionization,radiationpressure,andSNfeedback lik et al. 2013; Muratov et al. 2013; Xu et al. 2013; Wise et al. operateinanon-linear,coupledfashion,suchthatconsideringafull 2014).OneprominentresultisthatevenasinglePISNwithanex- treatmentoftheradiation-hydrodynamicsandtimedependenceof plosionenergyofE ∼ 1052 erg,andametalyieldofy ∼ 0.5, SN thesefeedbackmechanismsisnecessarytoreproducetheobserved hasadramaticimpactonsubsequentevolution,evacuatingthegas histories of star formation, including their stochastic nature, par- withinthehosthalo,andpreventingfurtherstarformationforabout ticularlyindwarfgalaxies(e.g.Pawliketal.2009;Hopkinsetal. a Hubble time, ∼300Myr at z ∼ 10. As the ejected metals fall 2014).However,duetotheprohibitivecomputationalcostrelated back into the emerging galaxy, the central gas is enriched up to tothebaryonicphysics,simulatingtheassemblyofmassivegalax- Z (cid:38) 10−3.5Z (e.g. Wise & Abel 2008; Greif et al. 2010). On (cid:12) iesfromfirstprinciplesisnotfeasible.Thefirstdwarfgalaxieswith the other hand, the recovery from the feedback of less massive virialmassesM (cid:46) 109,wheresuchab-initiomodelingiscom- PopIIIstars((cid:46) 40M ),followedbyCCSNewithE ∼ 1051 vir (cid:12) SN ingwithinreach,thusprovideuswithideallaboratoriestodevelop andy=0.05,wasratherprompt,withrecoverytimescalesofonly adetailedtheoryoffeedback-regulatedgalaxyformation. afew∼10Myr(Jeonetal.2014b).Suchpromptrecoveryallowed The birth of the first galaxies is often defined by theorists thefirstgalaxiestoexperiencemultipleepisodesofstarformation astheemergenceofatomiccoolinghaloes,systemsassembledat prior to their assembly (Ritter et al. 2012, 2014). Related to this z (cid:46) 15 with masses of M (cid:38) 5×107M , within which the weakened feedback, the star-forming gas inside the first galaxies vir (cid:12) primordialgaswasabletocoolviaatomichydrogenlinesinstead waspossiblyenrichedbymultipleSNe.Theresultingmetalenrich- ofmolecularhydrogen(e.g.Oh&Haiman2002;Bromm&Loeb mentwassufficienttoaffectatransitionofthestarformationmode 2003a). The deeper potential wells of these haloes allowed them fromPopIIItonormal,PopulationII(PopII)stars.Thus,regions tosustainself-regulatedstarformationinamulti-phasemediumby thathostedmoderatemassPopIIIstarswouldlocallyundergothe holdingontothegasdrivenoutbystellarfeedback.Anotherfeature transitionto(low-massdominated)PopIIstarformationearlieron. thatrenderstheatomiccoolinghaloesviablefirstgalaxycandidates The minimum (“critical”) metallicity for the Pop III/Pop II isthepresenceofsupersonicturbulence,whichisbelievedtoplay transitiondependsonwhichcoolingisresponsibleforthegasfrag- animportantroleinpresent-daystarformation(McKee&Ostriker mentation(e.g.Omukai2000;Brommetal.2001;Schneideretal. 2007).Suchturbulenceisexpectedtodevelopduringthebuild-up 2002; Bromm & Loeb 2003b; Omukai et al. 2005; Schneider & ofthefirstgalaxiesduetotheinflowofcoldgasalongcosmicfila- Omukai 2010; Schneider et al. 2012; Chiaki et al. 2014; Ji et al. ments(e.g.Wise&Abel2007;Greifetal.2008;Safranek-Shrader 2014).Fine-structurelinecooling,mainlyviaCIIandOI,above etal.2012). Z ∼10−3.5Z ,leadstovigorousfragmentationofthegascloud, (cid:12) The relative importance of Pop III stellar feedback on first giving rise to the formation of stellar clusters. Further fragmen- galaxy formation is determined by the mass range of Pop III tation can be achieved at very high densities, n (cid:38) 1016cm−3, H stars (e.g. Bromm 2013). Stars with initial masses in the range viadustcontinuumcoolingiftheinitialgas-to-dustratioexceeds of 40M − 140M , or larger than 260M , are expected to D = [2.6−6.3]×10−9 (Schneideretal.2012;Chiakietal. (cid:12) (cid:12) (cid:12) crit directly collapse into BHs, whereas they undergo pair-instability 2014).Globally,thePopIII/PopIItransitionisagradualprocess, supernovae (PISNe) in the range of 140M − 260M (Heger astheejectedmetalsarebroughtbackintovirializedhosthaloes, (cid:12) (cid:12) & Woosley 2002). The PISN range can be extended down to keepingalargefractionoftheIGMstillpristine.Therefore,those ∼ 85M if the progenitor is rapidly rotating (Chatzopoulos & two populations co-existed, such that Pop III star formation was (cid:12) Wheeler 2012; Yoon et al. 2012). Finally, stars with masses be- still possible even at z ∼ 6 (e.g. Trenti et al. 2009; Maio et al. tween8M and40M likelydiedasconventionalcore-collapse 2010, 2011; Scannapieco et al. 2003; Wise et al. 2012; Johnson (cid:12) (cid:12) SNe (CCSNe), or energetic hypernovae in case of high rotation etal.2013). rates(e.g.Umeda&Nomoto2005). Here,wepresenttheresultsofacosmologicalzoom-in,high- Earlierstudieshadpredictedthatthefirststarsformediniso- resolutionradiation-hydrodynamicssimulation,followingthefirst lation, with a characteristic mass of ∼ 100M (e.g. Abel et al. galaxy assembly process from first principles. We consider real- (cid:12) 2002; Bromm et al. 2002; Yoshida et al. 2006). However, recent isticdescriptionsofPopIII/PopIIstarformation,photoionization high-resolution simulations, exploring the high densities encoun- andphotoheatingfromstars,themechanicalandchemicalfeedback teredinprotostellardisks,havesuggestedthattheprimordialcloud from PISNe and CCSNe, and the X-ray feedback from accreting canfurtherfragment,givingrisetothepossibilityofbinaryormul- BHsandHMXBs.Guidedbytheresultsfromrecentinvestigations tiplesystems(Turketal.2009;Stacyetal.2010;Clarketal.2011; ofprimordialstarformation,weinparticularexploretheimplica- (cid:13)c xxxxRAS,MNRAS000,1–?? Feedback-regulatedfirstgalaxyassembly 3 tionsofasomewhatlesstop-heavyPopIIIIMF,withacharacter- whereM = 20M isthecharacteristicmass.AboveM , char (cid:12) char istic mass of a few ∼ 10M , giving rise to a large fraction of itbehavesasaSalpeter-likeIMF,butisexponentiallycutoffbelow (cid:12) CCSNeratherthanPISNe. thatmass(e.g.Chabrier2003;Wiseetal.2012).Onceasinkpar- Theoutlineofthepaperisasfollows.Ournumericalmethod- ticle forms, we prevent the subsequent star formation in a sphere ologyisdescribedinSection2,andthesimulationresultsarepre- withradius30pccenteredonthesinkparticlefor∼1Myr.Thisis sentedinSection3.Finally,ourmainfindingsaresummarizedin becauseittakestimeforthehydrodynamicalshockswithavelocity Section4.Forconsistency,alldistancesareexpressedinphysical ∼30km/s,generatedbyphotoheatingtosweepupandevacuatethe (proper)unitsunlessnotedotherwise. centralgas,reducingthecentralgasdensities.Withoutsuchtempo- rarysuppressioninstarformation,multiplestarsmightformatthe same location at the same time. This would correspond to frag- mentationwithintheSPHsmoothingkernel,whichisnotresolved, 2 NUMERICALMETHODOLOGY andwouldthusbephysicallyunreliably.Weallowsinkparticlesto 2.1 Gravity,hydrodynamics,andchemistry mergeoncetheirdistancefallsbelow1pc,similartothebaryonic resolutionscalel ≡[(3XM )/(4πn m )]1/3 ≈0.5pc, Wehaveperformedoursimulationsusingamodifiedversionofthe res res H,max H where X = 0.76 is the hydrogen mass fraction. Here, the bary- N-body/TreePM Smoothed Particle Hydrodynamics (SPH) code onic mass resolution is M ≡ N m ≈ 240M , where GADGET (Springel et al. 2001; Springel 2005). The initial con- res ngb SPH (cid:12) N = 48isthenumberofparticlesintheSPHsmoothingker- ditionswithinacubicvolume1comovingMpconasidearegen- ngb nel(Bate&Burkert1997).Thenewpositionsandvelocitiesofthe eratedbyassumingaΛCDMcosmologywithamatterdensitypa- mergedsinksarecomputedbymass-weightedaveraging. rameter of Ω = 1−Ω = 0.3, baryon density Ω = 0.04, m Λ b present-dayHubbleexpansionrateH =70kms−1Mpc−1,spec- 0 tralindexn = 1.0,andnormalizationσ = 0.9.Theinitialcon- s 8 ditions are hierarchically refined by a consecutive zoom-in tech- 2.2.2 PopulationII nique,renderingthemassesofdarkmatter(DM)andSPHparticles PopIIstarsareformedoutofthegascloudwhichismetal-enriched inthehighestresolutionregionwithanapproximatelinearsizeof by the previous generation of stars. The star formation recipe is 300comovingkpcm ≈ 33M andm ≈ 5M ,respec- DM (cid:12) SPH (cid:12) similartothatofPopIIIstarformationexceptforonemorecon- tively.Weadoptthegravitationalsofteninglength(cid:15) = 70co- soft dition: if the metallicity of a gas particle, eligible for star forma- movingpcforbothDMandbaryonicparticles.Westartoursimu- tion, exceeds the characteristic metallicity, Z = 10−3.5Z , crit (cid:12) lationsatz ≈100andfollowthecosmicevolutionoftheDMand forthetransitionfromPopIIItoPopII,weassumethatanewly gas until the assembly process of the first galaxy has been com- formedsinkparticlerepresentsaPopIIstarcluster.Therefore,once pletedatz≈10. aSPHparticlesatisfiesthosetwocriteria,n =104cm−3and H,max We consider all relevant primordial chemistry and cooling Z =10−3.5Z ,weimmediatelycreateaneffectivesinkparti- crit (cid:12) processes. Specifically, we include H and He collisional ioniza- clewithamassofM = 500M ,byaccretingsurrounding PopII (cid:12) tion,excitationandrecombinationcooling,bremsstrahlung,inverse gas particles. The mass of a Pop II cluster M = 500M PopII (cid:12) Compton cooling, and collisional excitation cooling of H and 2 is chosen to host one massive star ∼ 20M , given a Salpeter (cid:12) HD.Thecodeself-consistentlysolvesthenon-equilibriumchem- IMF,dN/dlogm ≈ m−α,withaslopeα = 1.35,whichisfrom istryfor9abundances(H,H+,H−,H ,H+,He,He+,He++,and 2 2 Schaerer(2003)wheretheyprovidephotoionizationratesderived e−), as well as for the three deuterium species D,D+, and HD. from an assumed IMF for a Pop II cluster. In the presence of a Additionally, metal-enriched gas can also be cooled by metal 20M star, further star formation inside of the cluster after the (cid:12) species,specificallyC,O,andSi,withsolarrelativeabundances. initialburstistruncatedbythephotoheatingofthestar(Safranek- For the metal cooling rates, we adopt the results of Glover & Shraderetal.2014b). Jappsen(2007).Thechemicalnetworkcomprisesthekeyspecies, C,C+,O,O+,Si,Si+ and Si++. We assume that all the metals areingasphaseatomsorions,andthuswedonotconsiderdust 2.3 Feedbackphysics coolingasthegasdensitiesexploredinthisworkarefarbelowthe thresholdvalueabovewhichitstartstobecomeimportant. 2.3.1 Photoionizationfeedback Once a star forms, the star particle emits ionizing radiation over 2.2 Starformationphysics itslifetimewithablack-bodyspectrum.Weusetheradiativetrans- fer(RT)codeTRAPHICtotransportionizingphotons(Pawlik& 2.2.1 PopulationIII Schaye2008,2011).InsimulationswithTRAPHIC,photonpack- Forthestarformation,wedonotformstarsbyfollowingtheevo- etsfromradiationsourcesaretransferredalongtheirregular,spa- lutionfromtheinitialprotostarstothefinalmass(e.g.Hiranoetal. tially adaptive grid set by SPH particles in a photon-conserving 2014),ratherweadoptasinkalgorithm(Johnson&Bromm2006), manner through the simulation box. Thanks to a photon packet where stars are represented by sink particles. Once a gas particle merging technique in TRAPHIC, the computational cost is inde- exceedsthethresholddensity,n = 104 cm−3,thehighest- pendentofthenumberofionizingradiationsources,whichenables H,max densitySPHparticleisconvertedintoacollisionlesssinkparticle, largesimulationsconsideringmanysources,andaspresentedhere. subsequentlyaccretingneighboringgasparticlesuntilthemassof TheRTiscontrolledbyasetofparameters,whichwechooseiden- thePopIIIstarisreached.ThemassesofPopIIIstarsarerandomly ticaltothoseemployedinJeonetal.(2014a),exceptthatwehere sampledfromanIMFwithafunctionalformof usetwofrequencybins,Nν =2insteadofNν =4,withbounding dN ∝M−1.3exp(cid:34)−(cid:18)Mchar(cid:19)1.6(cid:35), (1) ecnuesrogfieJseoloncaetteadl.a(t2[01134.6a)eiVs,to40i0nveeVst,ig1a0tekethVe].imWphaicletothfeXm-raaiynsfoon- dlnM M thegasinhaloesandIGM,requiringtotrackhighenergyphotons (cid:13)c xxxxRAS,MNRAS000,1–?? 4 Jeonetal. denotedbythehighcharacteristicfrequencies,inthisworkwefo- cusonthestellarfeedbackimpact.Todoso,twofrequencybins, N = 2,aresufficienttorepresentthestellarspectrum.Werefer ν thereadertotheoriginalpapers(Pawlik&Schaye2008,2011)for further details concerning RT methods and to Jeon et al. (2014a) fortheRTparametersweuseinthiswork.TheRTcomputationis coupledtothehydrodynamicalevolutionbypassingthephotoion- ization,photoheating,andphotodissociationratescomputedbythe RTtothenon-equilibriumsolverforthechemicalandthermalevo- lutionofthegas. For the ionizing photon rates of Pop III stars and their life- times, we employ polynomial fits (Schaerer 2003) as a function of initial mass of a star, log N˙ = 43.61+4.90x−0.83x2 10 ion and log t = 9.785−3.759x+1.413x2 −0.186x3, respec- 10 ∗ tively,wherex = log (M /M ).ForPopIIclusters,we 10 PopIII (cid:12) use the value from Schaerer (2003) that provides the properties ofintegratedstellarpopulationsatvariousmetallicities.Inpartic- ular, we fixed the ionizing photon rate for the initial ∼ 3 Myr at N˙ = 1047s−1M −1, which is derived by averaging over ion (cid:12) a Salpeter IMF with a slope of α = 1.35 and a metallicity of Z =5×10−3Z inthemassrangeof[1M ,150M ].Forthe Figure1.Thehistoryofcomovingstarformationratedensity(SFRD)in (cid:12) (cid:12) (cid:12) thesimulatedregionforPopIII(blacksolidline)andPopII(reddottedline) followingevolutionoftherates,weuseapolynomialfit(Schaerer 2003),log N˙ =48.13−0.42t+0.01t2s−1M −1,wheret stars.Forcomparison,wealsoshowtheanalyticfittingformula,derivedby 10 ion (cid:12) Hernquist&Springel(2003),forhigher-masssystemswhereatomiccool- istheelapsedtimeinMyrafterPopIIclusterformation.Theemis- ingisactive(lightblue-dashedline).Earlieron,atz > 13,PopIIIstar sionfromPopIIstarslastsfor20Myr,correspondingtothetypical formationdominates,butasthegasismetal-enriched,thePopIImodebe- lifetimeofOBstarsinthecluster. comesdominantbelowz≈13. In addition to the ionizing radiation from individual Pop III starsandPopIIclusters,wealsotracktheLyman-Werner(LW)ra- diationfrombothpopulationsthatdissociatesmolecularhydrogen duetotheuncertaintyinthedegreeofspinofPopIIIstars,whichis (H2) and deuterated hydrogen (HD). This is treated in the opti- subjecttostellarwinds,gravitationalandhydromagneticinstabili- calthinlimitwithaself-shieldingcorrection(Wolcott-Greenetal. ties(e.g.Stacyetal.2011),weonlyconsiderconventionalCCSNe 2011).TherateatwhichLWphotonsareemittedbyPopIIIstarsis byfixingtheexplosionenergyandmetalyield. fitusinglog10N˙LW =44.03+4.59x−0.77x2(Schaerer2002). ForthehighlyenergeticPISNefromPopIIIstarswithmasses Weonlyallowstarstoformwithinthehighlyresolvedregioncorre- in the range of 140M (cid:46) M (cid:46) 260M (Heger & Woosley (cid:12) ∗ (cid:12) spondingtoalinearsizeof≈300comovingkpcanddonotfollow 2002),weadopttheSNenergyof1052 ergsandy = 0.5.Outof the propagation of photons outside the region. For simplicity, we a Pop II cluster with a mass of 500M , a total of 9 stars more (cid:12) donotconsideraglobalUVbackgroundhere. massivethan8M ,abovewhichthestarsareeligibletoexplode (cid:12) asCCSNe,areexpectedtoform.Wesimultaneouslytrigger9SNe explosionsattheendofthelifetimeofaPopIIcluster,injectingan 2.3.2 Supernovafeedback energyof9×1051ergswithanIMF-averagedeffectivemetalyield The SN explosion energy is inserted as thermal energy into the y =0.005ontotheneighboringparticlesaroundthePopIIsink eff neighboring SPH particles, N¯neigh = 32, a subset of the parti- particle. cleswithintheSPHsmoothingkernel,Nneigh,aroundasinkpar- Initially,themetalsfromSNexplosionsareevenlydistributed ticle.Toensurehighaccuracyandenergyconservation,weusea amongtheneighboringSPHparticles,implyinginitialmetallicities, timestep-limiter,withwhichtheratiooftimestepsofneighboring m SPH particles cannot be larger than 4 (Saitoh & Makino 2009, Zi = m +memtal,i , (2) SPH metal,i Durier & Dalla Vecchia 2012). Additionally, using a timestep- updater,implementedbyDurier&DallaVecchia(2012),allneigh- wherem = M y/N¯ forPopIIIstarsandm = metal,i ∗ neigh metal,i boringparticles,N¯ ,aroundanexplodingsinkparticlebecome M y /N¯ forPopIIclusters.Thelackofmassfluxbe- neigh PopII eff neigh activeparticlesatthetimeofSNenergyinjection,enablinganim- tweenSPHparticlesmeansthatmetalsaretransportedballistically mediatehydrodynamicalresponse. inanSPHscheme(e.g.Wiersmaetal.2009).Physically,themix- AttheendofaPopIIIstar’slifetime,thefateofthePopIII ingofmetalsisachievedthroughanunresolvedturbulentcascade starisdeterminedbyitsinitialmass.Forinstance,PopIIIstarswith fromlargescalestosmallscales,whichisunresolved.Therefore, massesbetween9M and40M areexpectedtoendtheirlives often,ametalmixingisimplementedbysubgridmodelsinwhich (cid:12) (cid:12) asconventionalcorecollapseSNe.Here,weusethefixedCCSN physical processes below the smallest resolved scale are deter- energyofE =1051ergsandmetalyield,y =0.05,forPopIII mined by physical quantities at resolved scales (e.g. Schmidt & SN progenitors.WeshouldmentionthattheCCSNexplosionenergies Federrath2011).Weadoptadiffusion-basedmethodimplemented andthemetalyieldscanvarydependingontheprogenitor’smass byGreifetal.(2009)whichassumethatthemixingefficiencyon (e.g.Heger&Woosley2010).Inparticular,undertheexistenceof unresolvedscalesisdeterminedbythephysicalpropertiesonthe rotation of Pop III progenitor in a mass range of 25−40M , a scaleoftheSPHsmoothingkernel(Klessen&Lin2003).Conse- (cid:12) muchstrongerexplosionmaybeexpected,likelyresultinginahy- quently,themetaldiffusionrateissetbythelocaldiffusioncoeffi- pernova(e.g.Fryer&Heger2000;Nomotoetal.2006).However, cient,D = 2ρv˜˜l,wherethelengthscale,˜l,iscomparabletothe (cid:13)c xxxxRAS,MNRAS000,1–?? Feedback-regulatedfirstgalaxyassembly 5 smoothinglengthoftheSPHkernel,˜l=h,andρisthegasdensity. thefirstionizationsofhydrogensbyhardenergyphotonsemitted Thevelocitydispersionwithinthekernel,v˜,isgivenby fromanaccretingBHoraHMXB.Weusetheenergydependent fitstothesecondaryionizationandheatingfractionsprovidedby v˜i2 = N1 (cid:88)|vi−vj|2. (3) Ricottietal.(2002). ngb j Here, v and v are the velocities of particles i and j within the i j kernel. 3 SIMULATIONRESULTS In the following, we present our results. First, in Section 3.1, we 2.3.3 Blackholefeedback discusstheglobalpropertiesoftheIGMandofhaloeswithinthe PopIIIstarswithmassesbetween40M and140M ,orlarger highly resolved region and their evolution to z ≈ 10. In Section (cid:12) (cid:12) than260M willdirectlycollapseintoBHs(Hegeretal.2003). 3.2,wefocusontheassemblyprocessofthecentralhalohosting (cid:12) The BHs then grow by Bondi-Hoyle accretion (Bondi & Hoyle theemerginggalaxy.Then,basedonthephysicalquantitiesderived 1944), assuming that a fraction (cid:15) = 0.1 of the accreted mass is fromthisgalaxy,wecomparethepropertiesofthefirstgalaxywith convertedintoionizingradiation.SuchstellarmassBHsaccreting those of the local counterparts in Section 3.3. Finally, in Section diffuse gas are called miniquasars (Kuhlen & Madau 2005). The 3.4,wediscussthedetectabilityofthesimulatedfirstgalaxy. ionizingluminositiesofminiquasarsaredeterminedbynormaliz- ingthetotalaccretionluminosity L ≡ (cid:90) 10keV/hPL dν = (cid:15) M˙ c2, (4) 3.1 Globalevolution BH 0 ν 1−(cid:15) BH 3.1.1 Starformationhistory whereh isPlanck’sconstantandcisthespeedoflight.TheBH P Inthesimulation,thefirstPopIIIstar,witharandomlyassigned (sink)particlesgrowinmassbyaccretingsurroundinggasaccord- massof100M ,formsatz ≈ 28outoftheprimordialgasina ingtotheaccretionrate,M˙BH =(1−(cid:15))M˙acc,whichiscomputed minihalowithm(cid:12)assM ∼ 5×105M .Afteritsshortlifetime vir (cid:12) as of2.7Myr,thestarendsupasaBHinabinarysystem,forminga 4πG2M2 ρ HMXB.Overabriefintervalof∆t = 2Myr,X-raysemit- M˙ = BH . (5) HMXB acc (c2+v2 )3/2 tedfromtheHMXBfurtherheatthesurroundinggas,whichwas s vel alreadyheatedto∼104KbythePopIIIprogenitor,andtheyheat Here,c isthesoundspeed,ρthegasdensity,M theBHmass, s BH thedistantIGMtoafew∼103K.Atz ≈23,thefirstPopIIstar andv therelativevelocityoftheBHtothesurroundinggas.Note rel formationeventtakesplaceinmetal-enrichedgas,whichwaspre- thatBondi-Hoyleaccretionisthusanumericalinput,orrecipe,and viouslypollutedbyaPopIIIstar,whosemassof20M wasagain (cid:12) notanindependentsimulationresult.Theestimatedrateisanup- randomlydrawnfromtheunderlyingIMFPopIIIstar.Thetimede- perlimit.Inreality,thetrueaccretionratesarelikelysmallerthan laybetweentheonsetofsecond-generation,PopII,starformation the nominal Bondi-Hoyle value, if feedback from radiation pres- and the death ofthe 20M Pop III staris ∼ 16 Myr, consistent (cid:12) sureisconsidered(e.g.Milosavljevic´etal.2009a,b;Park&Ricotti withourearlierstudy(Jeonetal.2014b).Bytheendofthesim- 2012). In addition, at later time as the gas in an atomic cooling ulationatz ≈ 10.5,atotalofN = 65PopIIclustersand PopII halo becomes turbulent, the vorticity of the turbulent gas can re- N = 183individualPopIIIstarshasformed,with128,2, PopIII ducetheaccretionontotheBH(Krumholzetal.2005).Motivated 44,and11PopIIIstarsendingtheirlivesasCCSNe,PISNe,BHs, byobservationsatlowredshifts,wetakethesameformofaspec- andHMXBs,respectively. tralenergydistributionoftheemergingradiationfromanaccreting Fig.1showsthecomovingstarformationratedensity(SFRD) singleblackhole,whichischaracterizedbyathermalmulti-color forthePopIIIindividualstarsandthePopIIclusters.Duringthe disk(e.g.Pringle1981;Mitsudaetal.1984)atfrequencieslower initial50Myr,onlyPopIIIstarsexist.However,oncemetalpollu- than0.2keV/h andanon-thermalpowerlawcomponentathigher P tioncommencesbyPopIIISNe,themetallicityofthegasincreases frequencies(e.g.Kuhlen&Madau2005).Forthedetails,werefer totriggerthetransitionofthestarformationmodefromPopIIIto thereadertoJeonetal.(2014a). PopII.Therefore,atz(cid:46)23,twostarformationmodescoexistover Further,weassumethathalfoftheblackholesareformedin thenext∼ 350Myr.Asthedensegasavailableforstarformation abinarysystemandtheneverythirdofthoseevolveintoaHMXB gets metal-enriched, the dominant star formation mode changes after the primary turned into a BH (Power et al. 2009). For the from Pop III to Pop II. Accordingly, the SFRD for Pop II stars HMXBphaseofduration∆t =2Myr,correspondingtothe HMXB begins to increase and reaches a few ∼ 10−2 M yr−1Mpc−3 (cid:12) typicalmain-sequencelifetimeofthedonorstellarcompanion(e.g. at z ≈ 14. On the contrary, Pop III star formation starts to de- Belczynskietal.2012),weassumeanHMXBluminosityequalto cline from ∼ 7 × 10−3 M yr−1Mpc−3 at z ≈ 14 to a few (cid:12) theEddingtonluminosity, ∼10−3 M yr−1Mpc−3atz≈10.5astheamountofdensepris- (cid:12) (cid:90) 10keV/hP tinegasdecreases. L ≡ L dν =L (6) HMXB ν Edd It is noteworthy that the SFRDs measured in the simulation 0 (cid:18) (cid:19) areveryepisodicratherthancontinuous.Thisepisodic,burstystar M = 1.4×1040ergs−1 BH , (7) formationismainlycausedbyastellarfeedbackcycle:densegas 100M (cid:12) inside a halo is evacuated by photoheating from stars, the subse- corresponding to accretion of gas from the companion at a rate quentSNblastwave,orboth,renderingitgas-starvedforacertain 2.2×10−6M yr−1(M /100M ).TheX-rayradiationisfol- time,untilfreshgasisprovidedthroughsmoothaccretionormerg- (cid:12) BH (cid:12) lowed using RT. We also take into account the secondary ioniza- erswithotherhaloes.Suchself-regulatedstarformationonshort tions,whicharemainlydonebyhighenergyelectronsleftbehind timescalesisalsoexhibitedbysimulationsofmoremassivegalaxy (cid:13)c xxxxRAS,MNRAS000,1–?? 6 Jeonetal. Figure2.Morphologyinthehighlyresolvedregionatz ≈10.5.Clockwisefromupperleft:Darkmatteroverdensity,HIIfraction,gasmetallicity,andgas temperature,averagedalongthelineofsightwithinthecentral(cid:39)350kpc(comoving).Thecentralwhitecirclesdenotethesizeofthevirialradius,rvir≈1.1 kpc,oftheemergingtargetgalaxy.Thetargethalogrowsinmassthroughmergerswithneighboringhaloesandaccretionalongthefilamentsofthecosmic web.Thegasinhaloesthatareundergoingstarformationisevacuatedandheated,andmetal-enrichedbystellarfeedback.Themainmetalcontributorstothe diffuseIGMaretwoenergeticPISNe,formedatz≈16andz≈15.5,andejectingatotalof∼160M(cid:12)inheavyelementsintotheIGM. formation(Hopkinsetal.2014),wherestellarfeedback,i.e.photo- z = 28tor ≈ 1.1kpcatz = 10.5.Correspondingly,thehalo vir heating,SNe,winds,andradiationpressure,istakenintoaccount growsinmassfrom5×105M to8×107M .Boththegasin- (cid:12) (cid:12) withapproximatesub-gridprescriptions.Forcomparison,weover- sidehaloesandinthediffuseIGMaresubjecttoavarietyofheating plottheanalyticfittingformula,derivedbyHernquist&Springel sources,suchasUVradiationfromPopIIIandPopIIstars,X-rays (2003), for higher-mass systems, where atomic cooling is active, from accreting BHs and HMXBs, and thermalized SN explosion which agrees well with the SFRD for Pop II stars predicted by energy.ThetemperatureinsideHIIregionsreachesT(cid:39)104Kby oursimulation.We,however,shouldnotethattheSFRDsbothfor stellarphotoionizationheating,andfurtherincreasesto107−108 PopIIIandPopIIstarsarehigherthanthosecomputedintheadap- KduetoSNshockheating.Suchhigh-temperaturegasisprimar- tivemeshrefinementsimulationofWiseetal.(2012)byafactor ilycooledviainverseComptoncoolingoffthecosmicmicrowave of ∼ 5. The reason for this is the biased nature of our zoomed, background (CMB) and free-free emission to 106 K, and then H high-resolution region, focusing on a small volume and omitting andHerecombinationcoolingbeginstodominateatthelowertem- under-densevoidregions,whichresultsinenhancedstarformation peratureof104−106K(Greifetal.2007). activitycomparedtothecosmicmean. Inordertodisentanglethecontributionofradiationsourcesto ionizationandheating,inFig.3wecomparetheionizingphoton ratesfromPopIIIstars,PopIIstars,andHMXBs.Whiletheioniz- 3.1.2 Globalimpactofstellarfeedback ingphotonsfromPopIIIstarsareresponsibleforionizingthegasat Fig.2showsimagesofthedarkmatteroverdensity,ionizedhydro- highredshiftsz (cid:38) 13,thecontributionfromPopIIstarsbecomes genfraction,gastemperature,andgasmetallicityatz ≈ 10.5in competitiveatlatertimes.Ontheotherhand,thecontributionfrom thehigh-resolutionregion,correspondingto∼ 350comovingkpc a handful of HMXBs is negligible owing to their rarity and their across,centeredonthesiteoftheemergingtargetgalaxy.Thevirial shortlifetime,∆t = 2Myr,although thelatterquantityis HMXB radiusofthehalohostingthetargetgalaxy,depictedasthewhite veryuncertainandmaybelarger.InJeonetal.(2014a),theimpact dashed circle in Fig. 2, grows over time from r ≈ 100 pc at ofX-raysfromHMXBsonstarformationwassimilarlynegligible, vir (cid:13)c xxxxRAS,MNRAS000,1–?? Feedback-regulatedfirstgalaxyassembly 7 Figure 3. The evolution of ionizing photon rates (left) and total accumulated photons (right) from the Pop III stars, Pop II clusters, and HMXBs. The contributionfromPopIIIstarsdominatesthetotalionizingphotonbudgetuptoz ≈ 10.5,butPopIIclustersareabouttoovertakeit,astheglobalstar formationmodechangestoPopIIstarformation.Thetotalphotonproductionfromthe11HMXBsformedduringtherunisnegligible,mainlyduetoour assumptionhereofaverybriefintervalof2Myr,overwhichtheX-raysourceisactive.Thisinterval,however,isuncertain,andcouldbelarger.Ifso,the relativeHMXBcontributiontotheionizingphotonbudgetcouldbemoresignificant. while the effect of X-ray heating in the diffuse IGM was signifi- losetheirgasoncetheyundergostarformation,andittakeslonger cant, smoothing out small-scale structures. This smoothing effect fortheejectedgastobere-incorporated. islessprominentinthecurrentsimulation,whichhostsonlyasin- About 35% of the haloes larger than M (cid:38) 106M , de- vir (cid:12) gleHMXBbyz(cid:39)18,insteadofthe8sourcespresentatthattime noted as red circles, only host Pop III stars. Most of them expe- inourpreviousstudy. riencesubsequentCCSNexplosions,whereas2haloeshostarare We assess the impact of the stellar feedback on individual PISN. The effect of a PISN is much more disruptive than that of haloesbyusingtheSUBFINDhalofinder(Springeletal.2001)to a CCSN. As an example, the third heaviest halo hosts a 160M(cid:12) identifyhaloesfromthehighly-refinedregioninthesimulatedvol- PISN at z = 16, when its mass reaches Mvir ∼ 107M(cid:12). This ume, allowing us to investigate their gas, stellar, and metal prop- hyper-energeticexplosioneffectivelyevacuatesthegaswithinthe erties. Each circle in Fig. 4 marks the mass-weighted average of halo,loweringthebaryonfractionbyanorderofmagnitude,from thecorrespondingstellarorgaspropertiesinsidethevirialsphere, fbar = 0.088atz = 16tofbar = 0.0046atz = 13.7.Subse- whichiscenteredonthemostboundDMparticleofthehalo,and quently, the halo gas begins to be replenished through accretion boundedbyradiiwheretheDMdensityis200timeshigherthan of both the ejected metal-enriched gas and fresh primordial gas themeandensityoftheUniverse.Starformationtakesplaceonly alongthecosmicfilaments,suchthatattheendofthesimulation inhaloesmoremassivethanMvir =5×105M(cid:12),belowwhichthe thebaryonfractionagainreachesfbar =0.03.Despitethegasre- haloesarenotmassiveenoughtosatisfytheconditiont < t , covery,however,anyfurtherstarformationinsidethehalohasbeen cool ff wheret andt arethecoolingtimeandthefree-falltime,re- completelysuppressedsincez=16. cool ff spectively, for the gas to cool and form stars (e.g. Tegmark et al. Haloes with M (cid:46) 108M , corresponding to the mass vir (cid:12) 1997;Brommetal.2002). range considered in this work, are susceptible not only to the lo- Fig. 4 shows the gas properties of the extracted haloes at cal stellar feedback inside the host itself, but also to the external z ≈ 10.5,includingthebaryonfraction,thetotalmassofPopIII global UV background that also photoheats the gas in their shal- BH remnants and Pop II low-mass (long-lived) stars, the highest lowpotentialwells,reducingthebaryonfraction.Forcomparison, gasdensityachieved,andtheaveragemetallicityofthegasinthe we overplot a fit (dotted line the upper-left panel of Fig. 4) that halo.PhotoheatingandSNedrivethegasoutofthehaloes,lower- describeshowthebaryonfractionisaffectedbyreionizationasa ingthebaryonfractionbelowthecosmicmean(upper-leftpanelof functionofhalomassandredshift(Gnedin2000;Okamotoetal. Fig.4).Amongthehaloesmoremassivethan106M atz≈10.5, 2008): (cid:12) about 40%, corresponding to 7 out of 17 haloes (blue circles in Fig.4),experiencephotoheatingandSNblastwaveheatingbyboth (cid:32) (cid:20) M (cid:21)−β(cid:33)−3/β PopIIIstarsandPopIIclusters.Specifically,thethreemostmas- f (M,z)=<f > 1+(2β/3−1) ,(8) sivehaloes,(M ∼7×107M ,∼3×107M ,∼2×107M ) bar bar Mc(z) vir (cid:12) (cid:12) (cid:12) at z ≈ 10.5have experienced(32, 9,7) Pop IIISNe and(28, 2, 3) SNe from Pop II clusters. The gas fractions of these haloes at where<f >isthecosmicmeanbaryonfraction,β = 2afitting bar z ≈ 10.5are5.1%,3.3%,and3%,respectively.Forlower-mass parameter,andM (z=10)=7×106M thecharacteristicmass, c (cid:12) haloes, on the other hand, the scatter in the gas fraction is much belowwhichgalaxiesarestronglyaffectedbytheUVbackground. moresubstantial,duetotheirsusceptibilitytonegativestellarfeed- ThegasinhaloesaffectedbyinternalfeedbackfrombothPopIII backintheshallowpotentialwells.Thosehaloesaremorelikelyto andPopIIstarstendstobemorestronglyevacuated,comparedto (cid:13)c xxxxRAS,MNRAS000,1–?? 8 Jeonetal. Figure4.Thepropertiesofgas,stars,andmetalsinhaloesatz ≈10.5,extractedfromthehighresolutionregionusingtheSUBFINDhalofinder(Springel etal.2001).Clockwisefromupperleft:halobaryonfraction,totalmassinPopIIIBHremnantsandlong-lived(low-mass)PopIIstars,averagemetallicityof thetotalhalogasandofthehigh-densitygas,andthemaximumhydrogennumberdensity.Thesepropertiesarecomputedbymass-weightedaveraginginside thevirializedregioncenteredonthemostboundhaloparticle.Duetothefeedbackfromphotoheating,SNe,orboth,thegasinsidethehaloesissignificantly evacuated,givingrisetobaryonfractionsbelowthecosmicmeanvalue(dashedhorizontallineintheupper-leftpanel).Forcomparison,wealsoshowthe predictedsuppressioninbaryonfractionduetothepresenceofaglobal,externalUVbackground,asgiveninEqu.8(dottedlineintheupper-leftpanel). About46%ofstar-forminghaloes(coloredcircles)onlyhostasingleorafewPopIIIstars(redcircles),whereastheremainderhostsbothpopulations(blue circles).ThehaloesmoremassivethanMvir = 106M(cid:12) aresubstantiallymetal-enriched,givingrisetoanaveragemetallicityaboveZ = 10−5.5Z(cid:12). ThedottedanddashedhorizontallinesinthebottomrightpaneldenotethecriticalmetallicityforthePopIII/PopIItransition,Zcrit = 10−3.5Z(cid:12) and Zcrit,dust = 10−5.5Z(cid:12),correspondingtometalfine-structurelinecoolinganddustcontinuumcooling,respectively.Dependingonthechoiceofcritical metallicity,thetimingofthePopIIItoPopIItransitioninagivenhalocanvary. theexternalUVbackgroundcase,whereasf inhaloeshosting M = 105M ,only2%ofthemexperiencein-situstarforma- bar vir (cid:12) onlyPopIIIstarsislessseverelyattenuated. tion, while 25% of the haloes exhibit an average gas metallicity aboveZ = 10−6Z .Thus,someofthemwereenrichedbySNe (cid:12) The average gas metallicity in the haloes with Mvir (cid:38) innearbyhaloes. 106M lies between Z = 10−5 − 10−3Z . The metal- (cid:12) avg (cid:12) enrichmentintheindividualhaloesismainlyachievedbyCCSNe, Giventhatstarformationtakesplaceincolddensegas,specif- because the relatively low characteristic mass, M = 20M , icallyconsideringthemetallicityofthedensestgasinthehaloesis char (cid:12) for the Pop III IMF results in only two PISNe during the run. meaningful. In the most massive three haloes, the densest gas is When the 160M PISN is triggered, the surrounding gas is im- enrichedaboveZ = 10−3.5Z (seethebottom-rightpanelof (cid:12) crit (cid:12) mediatelypollutedtoanaverageofZ = 4×10−3Z .However, Fig.4),indicatingthatPopIIstarsareexpectedtoformoutofthe (cid:12) thoseheavyelementsarequicklydrivenoutbeyondthevirialra- gas. However, it does not necessarily imply that the haloes cease diusofthehosthalo.After50Myr,theejectedmetalsstarttofall formingPopIIIstars.Instead,PopIIIstarsmaycontinuetoform back as gas is accreted, and the average gas metallicity reaches untiltheendofthesimulationinthehighestdensityregions,which Z =3×10−4Z inthehalowithamassofM ≈2×107M arealreadymetal-enriched,butpossiblyinsufficientlysotoenable (cid:12) vir (cid:12) at z ≈ 10.5. This agrees with the results by Wise et al. (2012), PopIIstarformation.ThetimeatwhichthePopIII/PopIItransi- wheretheyfoundthatforhaloesM > 3×107M ,allhaloes tionoccursdependsonthechoiceofthecriticalmetallicity,which vir (cid:12) are enriched above [Z/H] > −4. However, we should point out isstillquiteuncertain.Forinstance,thedensestclouds(opencircles thatthemetalcontributorswerePopIIIPISNeintheirwork,while above 103cm−3 in the bottom-left panel of Fig. 4) in the haloes thehaloesatz = 10.5inthecurrentworkaremainlypollutedby between3×106M (cid:46)M (cid:46)107M areabouttoformstars. (cid:12) vir (cid:12) CCSNe.Atz ≈10.5,ifweconsiderallhaloeswithamassabove BasedonZ =10−3.5Z ,whichisassumedinthiswork,some crit (cid:12) (cid:13)c xxxxRAS,MNRAS000,1–?? Feedback-regulatedfirstgalaxyassembly 9 Figure5.Historyoftheglobalmetalenrichment.AsaseriesofSNeare Figure6.Top:Evolutionofthemetal-enrichedvolumefillingfractionas triggered,thetotalamountofmetalsinthesimulatedregionincreasesover afunctionofmetallicityatfourdifferenttimes.Asmoreandmoreregions time.Duetothelargeyield,y=0.05,ofPopIIICCSNe,comparedtothe arepollutedbySNe,thevolumefillingfractionincreasesovertime,but effectiveyieldofPopIISNe,yeff =0.005,theformerdominate,asitua- thepeaksremainatthesamemetallicityZ = 10−4 −10−3Z(cid:12) atall tionthatisreversedatlatertimes,z(cid:46)11.Intermsofthetotalmetalbudget, times. We normalize the volume by the total simulated volume, most of about75%oftheheavyelementsareproducedbyonlytwoPISNeowing whichisstillpristineasshowninthebottompanelofFig.5.Bottom:The totheirextremelylargeyield,y≈0.5,incombinationwiththeirlargepro- distributionofmetallicitydependingonthegasdensity.Whichrangeofgas genitormass.TheaveragemetallicityincreasesuptoZavg =10−4Z(cid:12)at densityispreferentiallymetal-enrichedissensitivelydeterminedbythegas z≈10.5.Ontheotherhand,themajorityofthesimulatedvolumeremains conditionspriortoaSNexplosion.ForaSNwithalowmassprogenitor, almostpristine,belowZ (cid:46) 10−3.5Z(cid:12)orZ (cid:46) 10−5.5Z(cid:12),asshownin highdensitygas(nH =100cm−3)islikelytobepolluted,whilethelow thebottompanel. densitygas(nH =0.1−0.001cm−3)ispreferentiallyenrichedbyaSN triggeredbyamassiveprogenitor. PopIIIstarsareexpectedtoform,whereasPopIIstarswouldform if we adopted a critical metallicity, Zcrit = 10−5.5Z(cid:12) (dashed ityoftheregionincreasesto10−4Z(cid:12) atz ≈ 10.5.However,the horizontal line in the bottom-right panel of Fig. 4), set by dust- majority of the region is metal-enriched below the critical metal- continuumcooling(e.g.Omukai2000;Brommetal.2001;Schnei- licityZ = 10−3.5Z ,givingrisetoavolumefillingfactorof crit (cid:12) deretal.2002;Bromm&Loeb2003b;Omukaietal.2005;Schnei- f ≈ 0.95((cid:46) 10−3.5Z )andf ≈ 0.69((cid:46) 10−5.5Z ).The V (cid:12) V (cid:12) der&Omukai2010;Schneideretal.2012;Chiakietal.2014;Ji volumefillingfraction,f ,isdefinedas V etal.2014).Therefore,thelattercasewouldgiverisetoanearlier (cid:80) m /ρ tProanpsIiItIiomnoindes.tarformation,andwouldmorerapidlyextinguishthe fV = (cid:80)stuobtsaeltmii/ρii. (9) Forgasthatissufficientlymetal-enrichedtoformPopIIstars,the volume filling fraction keeps increasing and reaches f ≈ 0.05 3.1.3 Metallicityevolution V ((cid:38)10−3.5Z )andf ≈0.29((cid:38)10−5.5Z )atz≈10.5. (cid:12) V (cid:12) Bytheendofthesimulation,atotalof128outof183PopIIIstars TheupperpanelofFig.6showsthevolumefillingfractionof endupasCCSNeand2starsexplodeasPISNe.Fig.5displaysthe thegasasafunctionofmetallicityatfourdifferentcharacteristic resultingmetalenrichmenthistoryofthesimulatedregion.While times.Overall,themetal-enrichedvolumefractionincreasesover the gas confined inside the haloes is mainly enriched by Pop III time,peakingatZ ≈2−3×10−4Z anddecliningathighmetal- (cid:12) and Pop II CCSNe, the enrichment in the diffuse IGM is domi- licitiesZ > 10−3Z .Wealsoshowtheaveragemetallicityasa (cid:12) nated by the rare PISN events. Indeed, although only two PISNe functionofgasdensityatthefourselectedtimes.Themetallicity have occurred, they produce a total of ∼ 150M in metals, ac- distributionsensitivelydependsonthegasdensityatthetimewhen (cid:12) countingfor75%ofthetotalmetalbudgetatz ≈ 10.5.Intrigu- theSNisabouttoexplode.TheinitialconditionsforaSNexplosion ingly, the optimal strategy to search for PISN-enriched material aresetbythephotoheatingfromitsprogenitorstar.Ifthestellarra- maythusbetoprobethehigh-redshiftIGMwithabsorptionspec- diative feedback is strong enough to evacuate the gas around the troscopy(Wangetal.2012).Theaveragemass-weightedmetallic- star,loweringthegasdensityton =0.1−10−3cm−3,thislow H (cid:13)c xxxxRAS,MNRAS000,1–?? 10 Jeonetal. Figure7.Assemblyhistoryoftheemergingtargetgalaxy.Clockwisefromupperleft:Massgrowthofthetargetgalaxy,growthrateofvarioushalocomponents, HI/HIIfractions,andtheaveragegastemperature.StartingfromMvir ≈5×105M(cid:12)atz ≈28,thegalaxygrowsinmassandreachesthethresholdfor atomichydrogencoolingatz ≈ 11.7.Thefinalvirialmassattheendofthesimulation,z ≈ 10.5,isMvir ∼ 108M(cid:12).Thestellarcontentofthegalaxy isdominatedbyPopII,withatotalmassofM∗ ≈ 6×103M(cid:12),formedwithaneffectivestarformationrateof∼ 10−4M(cid:12)yr−1.Throughacomplex interplaybetweenmetalejectionandre-accretionalongthefilamentsofthecosmicweb,roughly∼40M(cid:12)inmetalsarepresentinsidethegalaxyattheend ofthesimulation. densitygasisfirstlikelytobepolluted.Forlowermassprogenitor 3.2 Assemblyofthefirstgalaxy stars,ontheotherhand,duetotheirweakerabilityofevacuating 3.2.1 Massevolution gas in their surroundings, such high density gas is preferentially enrichedbytheexplosion. The first star in the Lagrangian volume of the emerging target galaxyformsatz ≈ 28outoftheprimordialgaswithinthemain progenitorminihaloofmass∼ 5×105M .Afteritsshortlife- (cid:12) timeof2.7Myr,thestarcollapsesintoaBH,actingasaHMXB ThistrendisclearlydisplayedinthebottompanelofFig.6. source for the next 2 Myr. Stellar and BH feedback evacuate the TheprogenitormassofthefirstSN,triggeredattH = 133Myr, gasbyreducingthebaryonfractionofthehalofromfbar =0.12at is25M .Theoutflow,drivenbythephotoheatingofthe25M z ≈28toessentiallyzeroatz ≈25.Afterwards,thebaryonfrac- (cid:12) (cid:12) PopIIIstar,isnotstrongenoughtoevacuatethesurroundingdense tion again increases, and at z ≈ 16 gas densities have increased gas.Therefore,thesubsequentSNejectaencounterthishighden- tonH = 104 cm−3,thusenablingfurtherstarformation.Subse- sitygasfirst,givingrisetothemetallicitypeakatnH =100cm−3 quently,thebaryonfractionremainsabovefbar =0.05throughout (seesolidlineinthebottompanelofFig.6).Onthecontrary,suffi- sincez (cid:46) 16,eveninthepresenceofongoingstarformation,as cientlystrongradiativefeedbackfrommassiveprogenitorstarssets thehaloissufficientlymassive,Mvir (cid:38)5×106M(cid:12),toholdonto thestageforthefollowingSNexplosionstooccurinlow-density itsgasdespitefeedback. gas,withn =0.01−0.1cm−3.Thislowdensitygasisthenpref- ThefirstPopIIstarsinthetargethaloformatz = 13.1out H erentiallyenriched,correspondingtothecasesshownasdottedand of gas that was enriched by a 33M Pop III star that ended its (cid:12) dashedlinesinFig.6.Insummary,thederivedtrendisasfollows: liveasaCCSN,thusinitiatingtheprolongedchemicalenrichment aSNwithalowmassPopIIIprogenitortendstopollutedensegas process.Untilz=13.3,thehalogrowsinmassmainlyviasmooth whileamassiveprogenitorfollowedbyaSNismorelikelytoen- accretionalongthefilamentsofthecosmicwebandthroughminor richlowdensitygas.Thistrend,however,disappearsasbothlow mergers. At z ≈ 13.3, the halo experiences a major merger and andhighdensityregionsareequallypollutedasSNeventsbecome doubles its mass to 2×107M at z ≈ 12.6, over a time span (cid:12) morefrequent. of∼ 25Myr.TheaveragegrowthrateduringthisperiodisM˙ ≈ (cid:13)c xxxxRAS,MNRAS000,1–??

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.