ebook img

The first Fermi multifrequency campaign on BL Lacertae: characterizing the low-activity state of the eponymous blazar PDF

0.72 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The first Fermi multifrequency campaign on BL Lacertae: characterizing the low-activity state of the eponymous blazar

ACCEPTEDBYTHEASTROPHYSICALJOURNAL PreprinttypesetusingLATEXstyleemulateapjv.11/10/09 THEFIRSTFERMIMULTIFREQUENCYCAMPAIGNONBLLACERTAE: CHARACTERIZINGTHELOW-ACTIVITYSTATEOFTHEEPONYMOUSBLAZAR A.A.ABDO1,2,M.ACKERMANN3,M.AJELLO3,E.ANTOLINI4,5*,L.BALDINI7,J.BALLET8,G.BARBIELLINI9,10,D.BASTIERI11,12,K.BECHTOL3, R.BELLAZZINI7,B.BERENJI3,R.D.BLANDFORD3,E.BONAMENTE4,5,A.W.BORGLAND3,J.BREGEON7,A.BREZ7,M.BRIGIDA13,14,P.BRUEL15, R.BUEHLER3,S.BUSON11,12,G.A.CALIANDRO16,R.A.CAMERON3,A.CANNON17,18,P.A.CARAVEO19,S.CARRIGAN12,J.M.CASANDJIAN8, C.CECCHI4,5,O¨.C¸ELIK17,20,21,E.CHARLES3,A.CHEKHTMAN1,22,C.C.CHEUNG1,2,J.CHIANG3,S.CIPRINI5*,R.CLAUS3,J.COHEN-TANUGI23, J.CONRAD24,25,26,L.COSTAMANTE3,S.CUTINI27,C.D.DERMER1,F.DEPALMA13,14,D.DONATO20,28*,E.DOCOUTOESILVA3,P.S.DRELL3, R.DUBOIS3,L.ESCANDE29,C.FAVUZZI13,14,S.J.FEGAN15,J.FINKE1,2,W.B.FOCKE3,P.FORTIN15,M.FRAILIS30,31,Y.FUKAZAWA32,S.FUNK3, 1 P.FUSCO13,14,F.GARGANO14,D.GASPARRINI27,N.GEHRELS17,S.GERMANI4,5,N.GIGLIETTO13,14,F.GIORDANO13,14,M.GIROLETTI33, 1 T.GLANZMAN3,G.GODFREY3,I.A.GRENIER8,S.GUIRIEC34,D.HADASCH16,M.HAYASHIDA3,E.HAYS17,R.E.HUGHES35,R.ITOH32, 0 G.JO´HANNESSON36,A.S.JOHNSON3,W.N.JOHNSON1,T.KAMAE3,H.KATAGIRI32,J.KATAOKA37,J.KNO¨DLSEDER38,M.KUSS7,J.LANDE3, 2 S.LARSSON24,25,39,L.LATRONICO7,S.-H.LEE3,M.LLENAGARDE24,25,F.LONGO9,10,F.LOPARCO13,14,B.LOTT29,M.N.LOVELLETTE1, P.LUBRANO4,5,A.MAKEEV1,22,M.N.MAZZIOTTA14,J.E.MCENERY17,28,J.MEHAULT23,P.F.MICHELSON3,T.MIZUNO32,C.MONTE13,14, n M.E.MONZANI3,A.MORSELLI40,I.V.MOSKALENKO3,S.MURGIA3,T.NAKAMORI37,M.NAUMANN-GODO8,S.NISHINO32,P.L.NOLAN3, a J.P.NORRIS41,E.NUSS23,T.OHSUGI42,A.OKUMURA43,N.OMODEI3,E.ORLANDO44,J.F.ORMES41,M.OZAKI43,D.PANEQUE3,J.H.PANETTA3, J D.PARENT1,22,V.PELASSA23,M.PEPE4,5,M.PESCE-ROLLINS7,F.PIRON23,T.A.PORTER3,S.RAINO`13,14,R.RANDO11,12,M.RAZZANO7, 1 A.REIMER45,3,O.REIMER45,3,S.RITZ46,M.ROTH47,H.F.-W.SADROZINSKI46,D.SANCHEZ15,A.SANDER35,F.K.SCHINZEL48,C.SGRO`7, 3 E.J.SISKIND49,P.D.SMITH35,K.V.SOKOLOVSKY48,50*,G.SPANDRE7,P.SPINELLI13,14,M.S.STRICKMAN1,D.J.SUSON51,H.TAKAHASHI42, T.TANAKA3,J.B.THAYER3,J.G.THAYER3,D.J.THOMPSON17,L.TIBALDO11,12,8,52,D.F.TORRES16,53,G.TOSTI4,5*,A.TRAMACERE3,54,55, ] T.UEHARA32,T.L.USHER3,J.VANDENBROUCKE3,V.VASILEIOU20,21,N.VILCHEZ38,V.VITALE40,56,A.P.WAITE3,E.WALLACE47,P.WANG3, E B.L.WINER35,K.S.WOOD1,Z.YANG24,25,T.YLINEN57,58,25,M.ZIEGLER46,A.BERDYUGIN59,M.BOETTCHER60,A.CARRAMIN˜ANA61, H L.CARRASCO61,E.DELAFUENTE62,C.DILTZ60,T.HOVATTA63,V.KADENIUS59,Y.Y.KOVALEV50,48,A.LA¨HTEENMA¨KI63,E.LINDFORS59, A.P.MARSCHER64,K.NILSSON65,D.PEREIRA17,R.REINTHAL59,P.ROUSTAZADEH60,T.SAVOLAINEN48,A.SILLANPA¨A¨59,L.O.TAKALO59, h. M.TORNIKOSKI63 p AcceptedbyTheAstrophysicalJournal - o ABSTRACT r Wereportonobservations ofBLLacertaeduringthefirst18monthsofFermiLATscienceoperations andpresentresultsfroma48-daymultifrequency t s coordinatedcampaignfrom2008August19to2008October7.Theradiotogamma-raybehaviorofBLLacisunveiledduringalowactivitystatethankstothe a coordinatedobservationsofradio-band(Metsa¨hoviandVLBA),near-IR/optical(Tuorla,Steward,OAGHandMDM)andX-ray(RXTE andSwift)observatories. [ Novariabilitywasresolvedingamma-raysduringthecampaign,andthebrightnesslevelwas15timeslowerthanthelevelofthe1997EGREToutburst.Moderate anduncorrelatedvariabilityhasbeendetectedinUVandX-rays.TheX-rayspectrumisfoundtobeconcaveindicatingthetransitionregionbetweenthelowand 1 highenergycomponentofthespectralenergydistribution(SED).VLBAobservationdetectedasynchrotronspectrumself-absorptionturnoverintheinnermost v partoftheradiojetappearingtobeelongatedandinhomogeneous, andconstrainedtheaveragemagneticfieldtheretobelessthan3G.Overthefollowing monthsBLLacappearedvariableingamma-rays,showingflares(in2009Apriland2010January).Thereisnoevidenceforcorrelationofthegamma-rayswith 5 theopticalfluxmonitoredfromthegroundin18months. TheSEDmaybedescribedbyasinglezoneortwozonesynchrotronself-Compton(SSC)model, 0 butahybridSSCplusexternalradiationCompton(ERC)modelseemspreferredbasedontheobservedvariabilityandthefactthatitprovidesafitclosestto 9 equipartition. 5 Subjectheadings:Gamma rays: galaxies– BL Lacertae objects: individual: BL Lac – BL Lacertae objects: . 1 general–X-rays:galaxies–galaxies:jets–radiationmechanisms:non-thermal 0 1 1 v: *Correspondingauthors: S.Ciprini,[email protected]; E.An- Padova,Italy i tolini, [email protected]; D. Donato, [email protected]; 13DipartimentodiFisica“M.Merlin”dell’Universita` edelPolitecnico X K.V.Sokolovsky,[email protected];G.Tosti,[email protected]. diBari,I-70126Bari,Italy 1SpaceScienceDivision,NavalResearchLaboratory,Washington,DC 14Istituto Nazionale diFisicaNucleare, Sezione diBari, 70126Bari, r a 20375,USA Italy 2NationalResearchCouncilResearchAssociate,NationalAcademyof 15Laboratoire Leprince-Ringuet, E´cole polytechnique, CNRS/IN2P3, Sciences,Washington,DC20001,USA Palaiseau,France 3W. W. Hansen Experimental Physics Laboratory, Kavli Institute 16InstitutdeCiencies del’Espai(IEEC-CSIC),CampusUAB,08193 for Particle Astrophysics and Cosmology, Department of Physics and Barcelona,Spain SLACNationalAcceleratorLaboratory,StanfordUniversity,Stanford,CA 17NASAGoddardSpaceFlightCenter,Greenbelt,MD20771,USA 94305,USA 18UniversityCollegeDublin,Belfield,Dublin4,Ireland 4IstitutoNazionalediFisicaNucleare,SezionediPerugia,I-06123Pe- 19INAF-IstitutodiAstrofisicaSpazialeeFisicaCosmica,I-20133Mi- rugia,Italy lano,Italy 5DipartimentodiFisica,Universita`degliStudidiPerugia,I-06123Pe- 20CenterforResearchandExplorationinSpaceScienceandTechnol- rugia,Italy ogy(CRESST)andNASAGoddardSpaceFlightCenter,Greenbelt,MD 7IstitutoNazionale diFisicaNucleare, SezionediPisa,I-56127Pisa, 20771,USA Italy 21DepartmentofPhysicsandCenterforSpaceSciencesandTechnol- 8Laboratoire AIM, CEA-IRFU/CNRS/Universite´ Paris Diderot, Ser- ogy, University of Maryland Baltimore County, Baltimore, MD 21250, viced’Astrophysique,CEASaclay,91191GifsurYvette,France USA 9IstitutoNazionalediFisicaNucleare,SezionediTrieste,I-34127Tri- 22GeorgeMasonUniversity,Fairfax,VA22030,USA este,Italy 23Laboratoire de Physique The´orique et Astroparticules, Universite´ 10DipartimentodiFisica,Universita`diTrieste,I-34127Trieste,Italy Montpellier2,CNRS/IN2P3,Montpellier,France 11Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 24DepartmentofPhysics,StockholmUniversity,AlbaNova,SE-10691 Padova,Italy Stockholm,Sweden 12Dipartimento di Fisica “G. Galilei”, Universita` di Padova, I-35131 25TheOskarKleinCentreforCosmoparticlePhysics,AlbaNova,SE- 2 Abdoetal. 1. INTRODUCTION proposed by Abdoetal. (2010a) to replace the older HBL- IBL-LBL scheme (Padovani&Giommi 1995; Fossatietal. BLLacertae(BLLac,S42200+42,OY401,B32200+420, 1998). BL Lac occasionally showed peculiar behavior that 1ES 2200+420, 3EG J2202+4217, 1FGL J2202.8+4216) at hasquestionedboththisclassification andasimple interpre- redshift z = 0.0686 (e.g., Vermeulenetal. 1995) was his- tationofitsbroad-bandemissionintermsofsynchrotronand torically the prototype of the class of active galactic nuclei synchrotronself-Compton(SSC)emissionproducedbyasin- (AGN)forwhichBLLachasbecometheeponym. Itiscate- gle blob. In fact, BL Lac is a source that has shown quite gorizedasanintermediatesynchrotronpeaked(ISP)BLLac complexanddistinctX-rayspectralbehavior(Madejskietal. object.ThisisbasedonthelatestHSP/ISP/LSPclassification 1999;Ravasioetal.2002;Bo¨ttcher&Reimer2004)anddur- ing several epochs broad Hα and Hβ emission lines with 10691Stockholm,Sweden luminosity (∼ 1041ergs−1) comparable to those of type I 26RoyalSwedishAcademyofSciencesResearchFellow,fundedbya Seyfert galaxies (Vermeulenetal. 1995; Corbettetal. 1996, grantfromtheK.A.WallenbergFoundation 27AgenziaSpazialeItaliana(ASI)ScienceDataCenter,I-00044Fras- 2000). There is evidence for an increase by ∼ 50% in ten cati(Roma),Italy yearsof thebroadHα lineand anunderluminousbroadline 28DepartmentofPhysicsandDepartmentofAstronomy,Universityof region(BLR),comparedtootherAGN.Thenarrowlinesand Maryland,CollegePark,MD20742,USA radioluminositiesofBLLacmatchthoseofoflow-excitation 29Universite´Bordeaux1,CNRS/IN2p3,Centred’E´tudesNucle´airesde andminiatureradiogalaxies(Capettietal.2010). Longterm BordeauxGradignan,33175Gradignan,France 30DipartimentodiFisica,Universita`diUdineandIstitutoNazionaledi radio-opticalfluxdensitymonitoringandseveralmultiwave- FisicaNucleare, SezionediTrieste,GruppoCollegatodiUdine,I-33100 length campaignshave been carried out on BL Lac, like the Udine,Italy pastcampaignsoftheWholeEarthBlazarTelescope(WEBT, 31Osservatorio Astronomico di Trieste, Istituto Nazionale di As- Villataetal. 2002a,b) dedicated to this source, providing trofisica,I-34143Trieste,Italy very complete datasets (for example, Bloometal. 1997; 32Department of Physical Sciences, Hiroshima University, Higashi- Sambrunaetal. 1999; Madejskietal. 1999; Ravasioetal. Hiroshima,Hiroshima739-8526,Japan 33INAFIstitutodiRadioastronomia,40129Bologna,Italy 2003; Bo¨ttcheretal. 2003; Villataetal. 2002a, 2004a,b, 34CenterforSpacePlasmaandAeronomicResearch(CSPAR),Univer- 2009;Raiterietal.2009,2010;Marscheretal.2008). Inpar- sityofAlabamainHuntsville,Huntsville,AL35899,USA ticular in summer 1997 BL Lac showed the largest optical 35Department of Physics, Center for Cosmology and Astro-Particle outbursteverrecordedin almost33 years(Nescietal. 1998; Physics,TheOhioStateUniversity,Columbus,OH43210,USA Tostietal.1999;Villataetal.2004b). 36ScienceInstitute,UniversityofIceland,IS-107Reykjavik,Iceland IntheX-raybandthetwobroadcomponentsofthespectral 37ResearchInstituteforScienceandEngineering, WasedaUniversity, energy distribution (SED) are overlapping and the radiation 3-4-1,Okubo,Shinjuku,Tokyo,169-8555Japan 38Centred’E´tudeSpatialedesRayonnements,CNRS/UPS,BP44346, atthisbandis attimesdominatedbythe high-energyendof F-30128ToulouseCedex4,France thesynchrotronemission,whileatotheroccasionsitisdom- 39DepartmentofAstronomy,StockholmUniversity,SE-10691Stock- inatedbythelow-frequencyportionofthehigh-energycom- holm,Sweden ponent(e.g.,Madejskietal. 1999; Ravasioetal. 2002). The 40IstitutoNazionalediFisicaNucleare,SezionediRoma“TorVergata”, I-00133Roma,Italy rapidX-rayvariabilityismainlyrestrictedtothelow-energy 41DepartmentofPhysicsandAstronomy,UniversityofDenver, Den- excess portion of the X-ray spectrum, presumably produced ver,CO80208,USA by synchrotron radiation (Ravasioetal. 2002, 2003). The 42Hiroshima Astrophysical Science Center, Hiroshima University, X-ray variability of BL Lac, except for a few major flaring Higashi-Hiroshima,Hiroshima739-8526,Japan events, has a log-normal distribution (Giebels&Degrange 43Institute ofSpaceandAstronautical Science, JAXA,3-1-1Yoshin- odai,Sagamihara,Kanagawa229-8510,Japan 2009), meaningthatthe emission is a multiplicativeproduct 44Max-Planck Institut fu¨r extraterrestrische Physik, 85748 Garching, ofalargenumberofindependentrandomevents. Germany Gamma-rayobservationsbyEGRETresultedinseveralde- 45Institut fu¨rAstro-undTeilchenphysik andInstitut fu¨rTheoretische tections (Figure 1). Observations after 1995 resulted in an Physik,Leopold-Franzens-Universita¨tInnsbruck,A-6020Innsbruck,Aus- average γ-ray flux above 100 MeV of (40 ± 12) × 10−8 tria 46SantaCruzInstituteforParticlePhysics,DepartmentofPhysicsand ph cm−2 s−1 (Cataneseetal. 1997) and in a flare in 1997 Department ofAstronomyandAstrophysics, University ofCalifornia at at a level (171±42)×10−8 ph cm−2 s−1 with 10.2σ sig- SantaCruz,SantaCruz,CA95064,USA nificance (Bloometal. 1997). Correlated γ-rays and opti- 47Department of Physics, University of Washington, Seattle, WA 98195-1560,USA cal flaring emission were observed during the EGRET era 48Max-Planck-Institutfu¨rRadioastronomie,AufdemHu¨gel69,53121 (Bloometal. 1997). Very high energy (VHE) γ-ray emis- Bonn,Germany sionwasclaimedbytheCrimeanGT-48(Neshporetal.2001) 49NYCB Real-Time Computing Inc., Lattingtown, NY 11560-1025, USA 50Astro Space Center of the Lebedev Physical Institute, 117810 58SchoolofPureandAppliedNaturalSciences,UniversityofKalmar, Moscow,Russia SE-39182Kalmar,Sweden 51Department ofChemistryandPhysics, PurdueUniversityCalumet, 59TuorlaObservatory,UniversityofTurku,FI-21500Piikkio¨,Finland Hammond,IN46323-2094,USA 60DepartmentofPhysicsandAstronomy,OhioUniversity,Athens,OH 52Partially supported by the International Doctorate on Astroparticle 45701,USA Physics(IDAPP)program 61InstitutoNacionaldeAstrof´ısica,O´pticayElectro´nica,Tonantzintla, 53Institucio´ Catalana de Recerca i Estudis Avanc¸ats (ICREA), Puebla72840,Mexico Barcelona,Spain 62Instituto de Astronom´ıa y Meteorolog´ıa, CUCEI, Universidad de 54Consorzio Interuniversitario per laFisica Spaziale (CIFS), I-10133 Guadalajara,44130Guadalajara,Jalisco,Mexico Torino,Italy 63AaltoUniversityMetsa¨hoviRadioObservatory,FIN-02540Kylmala, 55INTEGRALScienceDataCentre,CH-1290Versoix,Switzerland Finland 56Dipartimento diFisica, Universita` diRoma“TorVergata”, I-00133 64InstituteforAstrophysicalResearch,BostonUniversity,Boston,MA Roma,Italy 02215,USA 57Department of Physics, Royal Institute of Technology (KTH), Al- 65Finnish Centre for Astronomy with ESO (FINCA), University of baNova,SE-10691Stockholm,Sweden Turku,FI-21500Piikkio¨,Finland ThefirstFermimultifrequencycampaignonBLLac 3 section3.4andconclusionsinsection4. A ΛCDM cosmology with values given within 1σ of the WMAP results (Komatsuetal. 2009), namely Ω = 0.27, m Ω =0.73,andH =71kms−1Mpc−1isused. Λ 0 2. GAMMA-RAYOBSERVATIONSANDRESULTSBYFERMI-LAT 2.1. LATanalysisandobservations The Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope (Atwoodetal. 2009), is a pair-conversion γ-ray telescope, sensitive to photon energies from about 20 MeV up to >300 GeV. It consists of a tracker (composed of two sections, front and back, withdifferentangularresolutions),acalorimeterandananti- coincidencesystemtorejectthecharged-particlebackground. The LAT has a large peak effective area (∼ 8000 cm2 for 1 GeV photons in the event class considered here), viewing FIG.1.—Gamma-raylightcurveofBLLacobtained byEGRETinthe ≈2.4sroftheskywithangularresolution(68%containment period1991-1997. Datapointshavesourcedetectionsignificanceabove4σ radius) better than ≈ 1◦ at E = 1 GeV. The large field of (Nandikotkuretal.2007). view, improvedeffective area and sensitivity and the survey nominal mode make Fermi-LAT an optimal all-sky hunter and HEGRA (Kranich 2003) atmospheric Cherenkov tele- forhigh-energyflaresandanunprecedentedmonitorofγ-ray scopes. A significant(> 5σ) detectionabove200GeV was sources. Thedatasetusedinthispaperwascollectedduring made only by the MAGIC telescope in 2005 (Albertetal. thefirst18monthsofFermi scienceobserations,from2008 2007). Gamma-rayemissionwasexplainedwiththerequire- August4to2010February4(about550days,78weeksfrom ment of Comptonization of external-jet photons (external- MJD54682.7to55232.9,asshownintheweeklylightcurve radiationCompton,ERC)inadditiontotheSSC(in-jet)emis- in Figure 2, upper panel). This interval includes the period sion(Madejskietal. 1999;Bo¨ttcher&Bloom2000). Super- chosenfor thefirst Fermi MW campaignonBL Lac(2008, luminal motion of βapp up to (10.57± 0.74) has been ob- Aug. 19 – Oct. 7, MJD 54697.8-54746,i.e. about 48 days, served in this object (Listeretal. 2009; Dennetal. 2000). indicated by the line in Figure 2, upper panel). Fermi -LAT Followingresultsofpastmultifrequencycampaigns,possibly data analysis was performed with the standard Fermi -LAT distinctVLBIjetstructuresareassumedtocontribute,some- ScienceToolssoftwarepackage66usingversionv9r15p5. times with delays, to the radio flux density lightcurves, and Only events belonging to the “Diffuse” class in the energy sometimesaresuggestedtoberesponsibleforopticaltoTeV range0.1−100 GeV were used in the analysis. Instrument γ-ray flares (for example, Bachetal. 2006; Marscheretal. response functions (IRFs) used were P6 V3 DIFFUSE. In 2008). order to provide protection against significant background In this paper, we report on LAT observations of BL Lac contamination by Earth-limb γ rays, all events with zenith duringthefirst18monthsofFermi scienceoperations(from angles>105◦wereexcluded. 2008August04to2010February04).TheLAT’sreasonably The 18-month light curve was built using 1-week time uniformexposure,highsensitivity,andcontinuousskymoni- bins (Figures 2 and 4). For each time bin the inte- toringmakeitanexcellentinstrumentaroundwhichtoorga- grated flux (E>100 MeV) values were computed using the nizeasimultaneousmultifrequencycampaign. Theso-called maximum-likelihood algorithm implemented in the science Fermi plannedintensivecampaign(PIC)dedicatedtoBLLac tool gtlike. For each time bin we analyzed a region of was performed in 2008 August 19 – 2008 October 7 (MJD interest(RoI)of12◦inradius,centeredonthepositionofthe 54697.8–54746),duringroughlythefirsttwomonthsofsci- source. All point sources listed in the 1FGL (1-year) LAT ence operations, irrespective of the brightnessof the source. catalog(Abdoetal.2010b)within19◦fromBLLacertaeand This was part of a series of Fermi-LAT-collaboration PICs having test statistic67 TS > 50 and fluxes above 10−8 ph (Tosti2007;Thompson2007),involvingobservingproposals cm−2 s−1 were included in the RoI model using a power- submitted to the RXTE (Cycle 12) and Swift (Cycle 4) X- lawspectrum(dN/dE ∝E−Γ,whereΓisthephotonindex). raysatellites,andorganizedinadvanceoftheFermi launch. Theisotropicbackground(thesumoftheresidualinstrumen- This ensured access to the facilities allowing the best multi- tal background and extragalactic diffuse γ-ray background) wavelength (MW) coverage. The aim of the campaign is to was included in the RoI model using the standard model shedlightforthefirsttime onthe broad-bandradio-to-γ-ray fileisotropic iem v02.txt68,andtheGalacticdiffuse SED, including the high energy(X-ray and γ-ray) behavior, emissionwasincludedinthemodelingusingthefileandthe duringalowactivityphaseofthesource. The18-monthLAT standard file gll iem v02.fit. In the final light curve lightcurveshowsthatBLLacwasvariableinγ-raysformost computationthe photon index value was frozen to the value ofthese18months,withtheexceptionofthefirst2months, resultingfromthelikelihoodanalysisontheentireperiod.For whichcorrespondstotheperiodoftheMWcampaign.Insec- eachtimebin,iftheTSvalueforthesourcewasTS < 4or tion2thelightcurvebyFermi-LATduringthefirst18months thenumberofmodelpredictedphotonsN <10,thevalue ofsurveyandsimultaneousopticallong-termmonitoringdata pred arepresentedjoinedtotheanalysisoftheγ-rayspectrum. In 66http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicer section3themultiwavebandradio-bandtoX-rayfluxdensity 67TheteststatisticisdefinedasTS=2∆log(Likelihood)betweenmod- andparsec-scaleradiostructureobservationscollectedduring elswithandwithoutthesourceanditisameasureofthesourcesignificance thecampaignperiodarereportedanddiscussed. Theassem- (Mattoxetal.1996). bledspectralenergydistributionandmodelingarereportedin 68http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels. 4 Abdoetal. FIG.2.— Toppanel: 18-monthweeklyintegrated flux(E > 100MeV)lightcurveofBLLacobtained obtained from2008, Aug. 04to2010, Feb. 04. Bottompanel:superposedopticalV-bandandR-bandobservedflux(notcorrectedforinterstellarabsorptionandhostgalaxycontribution)lightcurvesobtained respectivelyattheStewardObservatory,KittPeak,Arizona,USA,andTuorlaObservatory,Turku,Finland,inthesameperiod. ofthefluxeswerereplacedbythe2-σupperlimits. Allerrors reportedinthefiguresorquotedinthetextare1-σstatistical 10−7 LAT spectrum campaign period errors. The estimated relative systematic uncertainty on the Power−law flux,accordingtoAbdoetal.(2010b)andreflectingtherela- LAT spectrum 18 months tivesystematicuncertaintyoneffectivearea,issetto10%at −1]s10−8 LogParabola 100MeV,5%at500MeVand20%at10GeV. −2 m c h 10−9 2.2. Gamma-rayspectralandtemporalbehavior E [p boTthhefoγr-trhaeyespneticrtera1l8a-nmaolynstihspoefrBioLd,Laancderftaoerwthaes4p8erdfoayrmseodf dN/d10−10 E thecampaign. ThesespectraareshowninFigure3. Theflux valueforeachenergybinandforthetwoperiodsarereported 10−11 in Table 1. The most energetic photon observed within the 95% point spread function containmentradius of the source for the 18-month period had energy 70 GeV, while for the 10−12 102 103 104 105 campaignperiodthehighestenergyphotonhad10GeV.The Energy [MeV] energy-spectrumbinningwasbuiltrequiringTS >50and/or model-predicted source photons > 8, except for the last FIG.3.— 18-monthaveraged energy spectrum ofBLLacobtained with abandlikelihoodovertheaccumulatedobservationsfrom2008Aug.04to bin, which had an upper limit rather than a detection. The 2010Feb.04(MJD54682.7-55232.9).Thespectrumshowsadeparturefrom 18-month spectrum results in an integrated average flux of asimplepowerlawthatcanbefittedbyalogparabolafunction. Theblue (19.85±0.40)×10−8 phcm−2 s−1 ,inthe0.1−100GeV (opensquare)symbolsrepresentthespectrumcorrespondingonlytothe48- dayperiodofthemultifrequencycampaign. range,withTS = 2375andphotonindexΓ = 2.38±0.01, whilethevalueforthe48-dayintervalofthemultifrequency campaign,(11.5±2.7)×10−8phcm−2s−1,andthephoton asinAbdoetal.(2010b), indexslightlyflatter(Γ=2.27±0.10),withaTS =111. Inordertoquantifythedepartureofthe18-monthspectrum (F −FPL)2 fromapowerlawshape,weuseaspectralcurvatureindexC C =X i i , (1) σ2+(frelF )2 i i i ThefirstFermimultifrequencycampaignonBLLac 5 TABLE1 BLLACγ-RAYSPECTRUMOBTAINEDWITHLIKELIHOOD F = PwiFi , (4) ANALYSISINEACHENERGYBAND. wt w P i Emin−Emax γ-rayflux Syst. andtheindexirunsoveralldatapointsexcepttheupperlimits [MeV] [×10−8phcm−2s−1] (61 bins). Here F and σ are flux values and the relative i i 18months statistical errors, respectively, and f is equalto 3% of the 100-200 7.62±1.03 10% flux for each interval, as suggestedrbely Abdoetal. (2010b). 200-562 5.14±0.27 5% For the 18 months, F was found to be 17.48× 10−8 ph 562-794 0.73±0.06 5% wt 794-1122 0.45±0.04 5% cm−2 s−1 and V = 193 with 60 d.o.f., which is consistent 1122-1585 0.31±0.03 10% with variability (the probabilitythe source is non-variableis 1585-2239 0.18±0.02 10% lessthan10−15). Thesamevaluescomputedjustforthefirst 2239-3162 0.11±0.02 10% 9 weeks, containing the period of the MW campaign, give 3162-6310 0.10±0.01 15% F = 10.67 × 10−8 ph cm−2 s−1 and V = 0.6 with 8 6310-35481 0.04±0.01 15% wt d.o.f.,whichisconsistentwithanon-variabilityhypothesisat Aug19-Sep9 > 99%confidence. Each of the LAT flux data pointsin the 100-562 7.18±2.12 5% 562-2239 1.28±0.24 10% upperpanelofFigure4hasTS >10. 2239-12589 0.17±0.07 15% Thisintervalwith no observedγ-rayvariability character- izes the intensive coordinated campaign period. After the campaign,startingfromabouthalfwaythrough2008Novem- whereiistheindexforaparticularenergybin,F istheob- ber until 2010 February 4, BL Lac showed variable weekly served flux, FPL is the flux in the ith bin predicited by the γ-rayfluxwithV =162with51d.o.f.,Fwt =19.15×10−8 i phcm−2s−1 . Inparticular,a1-weekγ-rayflareoccurredin globalpower-lawfit, σ is theerrorinF , andfrel istherel- i i theweekMJD54928.5-54935.5(2009Apr.7-14),withaflux ativesystematicuncertaintyinthatbin(reportedinTable1). valueof72×10−8phcm−2s−1.Thisisabout4timesgreater Thepower-lawfithastwoparameters: thenormalizationand than the mean flux value (F ) computed above. Moreover photonindex. Thecurvatureparameterisexpectedtofollow wt thisisthehighestweeklyfluxyetdetectedfromBLLac, al- aχ2 distributionwith 9−2 = 7 degreesoffreedom(d.o.f.) thoughanother likely flare was detected in the week around if the power law hypothesis is true. With 99% confidence MJD 55221 (2010 Jan. 25, Sokolovskyetal. 2010a). After thespectralshapeissignificantlydifferentfromapowerlaw the 2009 April flare the source also showed slightly higher whenC > 18.48. Fortheaccumulated18-monthdataonBL activityandflux. LacwefoundC = 20.88(0.1 < E < 100GeV),whichim- The 78 points of the 18-monthlight curve were also used pliesa curvedspectrum. Thesame procedure,whenapplied to compute the global normalized excess variance, as de- to the spectrum of the 48-day multifrequencycampaign, re- finedinVaughanetal.(2003);Abdoetal.(2010d): σ2 = sultedinC = 2.83(0.1 < E < 100GeV),implyingthereis NXS nosignificantevidencefordeviationfromasimplepower-law (S2 −σe2¯rr)/x¯2, where S2 is the varianceof the light curve in thisspectrum(Figures3and10). Thisdoesnotnecessar- andσ2 = σ2 +σ2 , the sumin quadratureofthestatisti- err i sys ilymeanthatthereisnocurvatureduringthis48-dayperiod, caluncertaintyofthefluxin thetime binandthesystematic becauseitcouldbeduetotheloweremissionstateandaccu- errorestimate(0.03hF i). Thisquantitymeasuredanintrinsic i mulatedstatistics. variabilityamplitudeof0.23±0.03,ingoodagreementwith To further explore curvature, the 18-month spectrum was the value found in Abdoetal. (2010d) reporting the weekly fitwithalog-parabolafunctioninthe0.1−300GeVenergy lightcurveofBLLac(fluxE >300MeV)duringthefirst11 band. Thiswasperformedintworuns: firstafitwithE months. This confirmsagain thatBL Lac was variable after break leftfree, then anotherwith E frozenatthe valuefound thefirstcoupleofmonthsofFermiscienceoperations. break in the first run (300 MeV) to improve the calculation of the 3. OBSERVATIONSANDRESULTSFROMTHEMULTIFREQUENCY otherparametervalues.Theresultofthelatterfitgives CAMPAIGN dN/dE=(2.02±0.07)×10−10 The 48-day PIC on BL Lac involved the participation of theRXTEandSwiftX-raysatellites,andofground-basedra- ×(E/300MeV)−((2.23±0.05)+(0.07±0.02)log(E/300MeV))d,ioandopticalobservatories. Theseincludedthe Metsa¨hovi 13.7 m radio-telescope operating at 37 GHz in Finland; the with TS = 2384.1. The higher TS value shows that the 18 VeryLongBaselineArray(VLBA)intheUSA,whichtooka months LAT spectrum does not follow a simple power law multi-waveband flux-structure observation on 2008 Septem- function,andthe log-parabolamodelcan describethisspec- ber2;twotelescopesoftheTuorlaObservatory,Finland,and trum. twotelescopesoftheStewardObservatory,USA,forthelong- Theweeklylightcurveinthe0.1-100GeVbandforthe18- termandsingle-bandopticalmonitoringaspresentedinFig- monthperiodispresentedinFigure2(upperpanel). Inorder ure2;andthe2.1mopticaltelescopeoftheObservatorioAs- to quantifythe variability, the variabilityindex as definedin trof´ısicoGuillermoHaro(OAGH,Mexico)operatinginnear- Abdoetal.(2010b),wascomputedfrom infrared,andthe1.3mMcGraw-HillopticalTelescopeofthe V =Xwi(Fi−Fwt)2, (2) MopDticMalOsnbaspesrhvoattsordyur(iAngrizthoenac,amUpSaAig),nfpoerrifoudrt(hTearbmleu2l)ti.-band i 3.1. X-rayandUVobservationsandresults where The RXTE/PCA space observatory performed sub-daily 1 w = , (3) monitoring of BL Lac for 20 days, during the same epoch i σ2+(frelF )2 i 6 Abdoetal. 1] 18 − s 16 2 − m 14 c h 12 p 10 −8[ 8 0 1 6 γ Weekly Fermi−LAT (E >100 MeV) F 4 1] 10 − s −2 9 XX−−RRaayy ((22−−1100 kkeeVV)) m SSwwiifftt−−XXRRTT c 8 g XXTTEE r 7 e 12[ 6 − 0 1 5 X F 4 3.5 SSwwiifftt−−UUVVOOTT WW11(cid:9)(cid:9) y] 3 MM22 J WW22 m 2.5 [ V U 2 F 1.5 12 11 SSwwiifftt−−UUVVOOTT y] 10 VV J 9 BB m 8 UU [ VR 7 UB 6 F 5 4 54700 54710 54720 54730 54740 55 OOAAGGHH ] 50 y JJ J 45 HH m [ 40 KK K 35 H FJ 30 25 20 3 54700 54710 54720 54730 54740 ] 2.8 y J 2.6 [ o di 2.4 a R 2.2 F Metsahovi−13.7m (37GHz) 2 1.8 54700 54710 54720 54730 54740 MJD FIG.4.—SimultaneousmultifrequencyfluxlightcurvesofBLLacfromthe48-daysFermiintensivecampaignobtainedwithFermi-LAT,Swift-XRTand UVOT,OAGH,andMetsa¨hoviobservations.LATweeklyfluxesreportedintheupperpanelforthisperiodareallTS>10detections.UV-to-near-IRfluxesare correctedforabsorption. as LAT and Swift, for a total of 80 pointings between 2008 andacheckwasperformedinthe40-100keVrangetoassure August20andSeptember9. OnlyPCU2wasactive,forato- thatthemodelbackgroundreproducedtheobservedone.The talexposureof157.3ks. ThePCA STANDARD2datawere average net count rate in the 3-18 keV band is 0.55±0.01 reduced and analyzed with the routines in HEASOFT V6.8 ctss−1pcu−1. The RXTE spectra were extracted and fitted usingthefilteringcriteriarecommendedbytheRXTE Guest separatelyforeachpointing,andsummedtoobtaintheaver- ObserverFacility. Onlythetop-layereventswereprocessed, age spectrum. Each spectrum is well-fit by a single power- ThefirstFermimultifrequencycampaignonBLLac 7 TABLE2 1.8 BLLACCOORDINATEDMULTIFREQUENCYCAMPAIGN(PIC) ANDLONG-TERMMONITORINGOBSERVATIONS 1.6 PIC(48days) 1.4 Instrument EnergyRange 2008Epochrange #obs. VLBA 4.6-43.2GHz Sep2 7 y] Metsa¨hovi 37GHz Aug20-Oct6 22 mJ 1.2 OMADGMH UJBHVKRI SeOpc6t6--O1c0t6 1185 ) [Fν 1 Swift-UVOT W2M2W1UBV Aug20-Oct2 141 (0 Swift-XRT 0.4-8KeV Aug20-Sep18 24 g10.8 Aug. 20 RXTE-PCA 3-18KeV Aug20-Sep8 19 Lo Aug. 23 Fermi-LAT 100MeV-100GeV Aug19-Oct7 48days 0.6 Sept. 01 Sept. 04 18months Sept. 06 Instrument EnergyRange Epochrange(MJD) #obs. 0.4 Tuorla R 54709.8-55191.8 162 Oct. 06 Steward V 54743.2-55213.1 89 0.2 Fermi-LAT 100MeV-100GeV 54682.7-55070 78weeks 14.2 14.4 14.6 14.8 15 15.2 Log ν [Hz] 10 FIG.5.—Simultaneousnear-IRtoUVSEDsofBLLacatdifferentepochs, collectedwithUVOT(Aug.20,23,Sept.1,4),OAGH(Sept.6),andMDM law model with Galactic absorption. The Galactic N was (Oct.6)observations. H fixed at two values: that measured by Elvisetal. (1989), basedondedicated21-cmobservations(2.015×1021cm−2); The XRT data analysis is performed using the script and the sum of this value with that inferredfrom millimeter xrtgrblc, available in the HEASoftsoftware package. In observations (Lucas&Liszt 1993), which includes the con- brief, the script selects the best source and background ex- tribution from molecular hydrogen along the line of sight tractionregionsbasedonthesourceintensity(acircleandan (NH ≃ 3.6 × 1021 cm−2). In the RXTE band, however, annulus,respectively). InthecaseofBL Lac,thesourceex- this difference yields negligible effects, with a difference in tractionregionhastypicallya55′′radiusandthebackground spectralindices∆ΓX ∼0.02. regionhas a 110′′-210′′inner-outerradius. Field sourcesare TheRXTE datashowedmodestfluxvariations,witharate excluded applying circular masks whose radius depends on whichremainedconstantat∼ 0.6cts s−1 uptoMJD54708, the field source intensity. Using these regions, source and andslowlydecreasingto∼ 0.4cts s−1 towardsMJD54718. backgroundcountrates,spectraandeventlistsareextracted. Spectralvariationsweremodestaswell,rangingfrom1.95± Thenetsourcecountratemustbecorrectedforirregularities 0.09 to 2.28± 0.07. The total average spectrum is well-fit in the exposure map and the Point-Spread Function (PSF). withasinglepower-lawmodel,withΓX = 2.18±0.06,and ThetotalcorrectionfactorisobtainedusingtheHEASofttool anunabsorbedfluxinthe2-10keVbandofF2−10 = (7.2± xrtlccorr. 0.3)×10−12 ergcm−2s−1 and χ2 = 0.81 (15d.o.f.). This ThescriptthathandlestheUVOTanalysisisuvotgrblc r spectrumcanalsobefitbyaconcavelogparabolaorbroken (available within HEASoft). It determines the presence of power-law model, with the slope hardening above 8-9 keV fieldsourcesandexcludesthemfromthebackgroundregion from∼2.2to∼1.9(χ2 ≃0.7);however,thelowstatisticsdo with circular regions whose sizes depend on their intensity. r notallowonetodetermineiftheimprovementissignificant, The optimalbackgroundregion is chosen after comparing3 and the single, rather flat (Γ ≃ 2, therefore νF ∝ ν0), annular regions centered on the main source in the summed X ν powerlawgivesagoodfit. images. The region with the lowest backgroundis selected. In the context of the overallSED, the low X-ray flux and The inner and outer radii are 27′′and 35′′, respectively, for the Γ ≃ 2 spectrum (flat X-ray SED) is evidence that the all the filters except V, for which the two radii are 35′′and X RXTE bandmightcorrespondtothepassagebetweenthetwo 42′′. Thesourceextractionregionisalsointensitydependent: humps of the blazars’ SED, as typical for ISPs. In the fol- The script selects the aperture size between 3′′and 5′′based lowingweshowthattheSwift-XRTresultsprovideusfurther on the observed source count-rate and the presence of close evidenceforthisconclusion. field sources. BL Lac is a relatively bright object and an The Swift gamma-ray burst satellite (Gehrelsetal. 2004) extraction region of 5′′is preferred. The field of view in performedadailymonitoringsimultaneoustoRXTE andLAT the V and B filters is full of field sources and in particular observations for 20 days (from 2008 Aug. 20, 15:19 UT, to there is a bright star east of the blazar. To avoid contami- 2008Sep. 09, 02:37UT;MJD 54698.64- 54718.11),plus3 nation from such a source, the extraction region is reduced moreseparatedobservationsafter18September. Datareduc- to 3′′. The script estimates the best source position using tion and analysiswas performedrunninga processing script thetaskuvotcentroidandthephotometryusingthetask customized for the XRT and UVOT data (Donato et al., in uvotsource.Theobtainedvaluesarealreadycorrectedfor preparation). ThescriptreprocessestheSwift data,storedin apertureeffectswhileweusedthedustmapsofSchlegeletal. theHEASARCarchiveusingthestandardHEASoftsoftware (1998) and the Milky Way extinction curve of Pei (1992) to (version6.8)andthelatestcalibrationdatabase(20091130for compensate the Galactic extinction. XRT and UVOT light XRT and 20100129for UVOT). The reduction of XRT data curvesandSEDsareshowninFigures4,5,and6. consistsofrunningxrtpipeline,selectingonlytheeventswith As with the harder energy band with RXTE, BL Lac does 0-12 grades in photon counting mode (PC). The UVOT im- notshowanymajorsignofvariabilityintheSwift-XRTdata. age mode data are processed followingthe steps reportedin The same Galactic (N ≃ 3.6 × 1021 cm−2) fixed value H theUVOTSoftwareGuide2.2. was used also for the XRT analysis. The 2-10 keV flux de- 8 Abdoetal. BL Lacertae, RXTE total flux is 6.37+0.12 ×10−12 erg cm−2 s−1. The X-rayphoton PCU2, power−law −0.11 indexis consistentwithin 1σ with the resultsobtainedusing RXTE data. 0.1 UsingtheentireXRTenergybandfrom0.3to10keV(Fig- 0.05 ure 6) and profiting from the increased statistics (the spec- V−1 trum is binned with 100 counts/bin), the spectral fit is more nts s ke−1 0.02 cfiotn(sχtr2rai=ned0a.8n2duwnidther1li4e6stdw.oo.ef.m)isissioonbtcaoinmepdowneinthts:athberobkeesnt ou 0.01 power-law with the energy break located at 1.71+0.15 keV C −0.14 andfixedabsorptionattheGalacticvalue. Thesoftandhard 5×10−3 photonindicesare2.57+0.06and2.09±0.05,respectivelyand −0.05 thereforethe breakin this XRT spectrumis significantcom- 1.4 pared to the power law. The 0.3-10 keV integrated flux is 1.2 Ratio 1 9.67+−00..1140×10−12ergcm−2s−1. TheUVOToptical-UVlightcurvesshowedsomevariabil- 0.8 ityduringthecampaignperiod(Figure4),butthisisnotwell 5 10 20 correlatedwiththeX-rayorγ-rayemission(whichisnotvari- Energy (keV) able).Thedailysimultaneousnear-IR,optical,andUVSEDs, reconstructedthanksto UVOT,andOAGH observations(re- portedinFigure5),showednosignificantspectralvariability Swift XRT 0.3−10 keV andatrendconsistentwithasinglepowerlawexceptforthe 2higherfrequencyUVbands.Thismaybeinagreementwith 0.1 thehypothesisofUVexcessduetothermalemissionfroman V−1 accretiondisk(Raiterietal.2009,2010). e k s s −1 3.2. Radiobandflux-structureobservationsandresults nt ou As part of an ongoing blazar monitoring program, the c 0.01 d 37 GHz observations were made with the 13.7 m diame- e aliz ter Metsa¨hovi radio telescope, which is a radome enclosed orm paraboloid antenna situated in Finland. The measurements n weremadewitha1GHz-banddualbeamreceivercenteredat 36.8GHz.Thehighelectronmobilitypseudomorphictransis- 1.2 torfrontendoperatesatroomtemperature. Theobservations o 1.1 are ON–ON, alternatingthe source and the sky in each feed rati 1 horn.Atypicalintegrationtimetoobtainonefluxdensitydata 0.9 pointis1200–1400s. Thedetectionlimitofthetelescopeat 0.8 0.5 1 2 5 37 GHz is on the order of 0.2 Jy under optimal conditions. Energy (keV) Data points with a signal-to-noise ratio < 4 are handled as non-detections. Thefluxdensityscale is setbyobservations ofDR21. Sources3C84and3C274areusedassecondary FIG.6.—Toppanel: RXTE combined3-18keVspectrumofBLLacex- calibrators. A detaileddescriptionon thedata reductionand tractedcumulatingthe20daysofobservationsofthisX-raysatelliteduring analysis is given in Tera¨srantaetal. (1998). The error esti- the campaign. Bottom panel: Swift -XRTcombined 0.4-8keV spectra of BLLacextractedcumulatingthe24daysofobservationsofthisX-raysatel- mate in the flux density includes the contribution from the liteduringthecampaign. measurementrmsandtheuncertaintyoftheabsolutecalibra- tion. rivedfromSwift observationslies between6 and 8 ×10−12 BLLacwasalsoobservedwiththeVeryLongBaselineAr- erg cm−2 s−1with a hint of a lower intensity at the end ray(VLBA)atsevenfrequencies(4.6,5.0,8.1,8.4,15.4,23.8 of the campaign when the flux was below 5 × 10−12 erg and43.2 GHz) in the frameworkof a surveyof parsec-scale cm−2 s−1. We found that in the day-by-day spectral anal- radiospectraoftwentyγ-raybrightblazars(Sokolovskyetal. ysis the photon index does not change significantly either. 2010b). The multifrequencyVLBA observationwas carried Using a single power-lawmodelwith fixed Galactic absorp- outon2008September2. Thedatareductionwasconducted tion, Leiden/Argentine/Bonn (LAB) Survey of Galactic HI in the standard manner using the AIPS package (Greisen (Kalberlaetal.2005)weightedaverageequalto1.73×1021 1990). The finalamplitudecalibrationaccuracyis estimated cm−2),theslopevariesbetween1.75and2.06.Sincethetypi- tobe ∼ 5%at 4.6-15.4GHz rangeand∼ 10%at23.8and calerroronthisparameterisoftheorderof0.1,thevariability 43.2GHz. The Difmap software (Shepherdetal. 1994) was iswithin2sigma. usedforimagingandmodelingofthevisibilitydata. Theabsenceofspectralchangesallowsustoextractanac- The VLBA images (Fig. 7, and 8) reveal a wide, rather cumulatedspectrum.Asafirststep,acomparisonoftheXRT smooth,curvedjetextending∼50mas(at5GHz)south-east andRXTE spectraaccumulatedoverthesameperiodandus- from the bright compact core. A few distinct, bright emis- ingthesamelowerenergythresholdof3keVresultsinvery sionfeaturesalignedalongthesouth-southwestdirectioncan goodagreementwith the power-lawphotonindexΓX found beseenintheinnerjetathigherfrequencies. We havemod- byRXTE.Thebestfitinthe3-8keVrangeisobtainedwitha elled the observedbrightnessdistributionwith a small num- power-lawwhoseslopeis2.19+0.13. The2-10keVintegrated ber of model componentshaving two-dimensionalGaussian −0.11 ThefirstFermimultifrequencycampaignonBLLac 9 FIG.7.—InnerjetofBLLacertaeasobservedbytheVLBAonSeptember02,2008. Imagesatdifferentfrequenciesareshiftedby8masinrelativeRight Ascension.Forthe15.4,23.8and43.2GHzimagemappeaksare1.69,1.52,1.32Jy/beam,firstcontoursare1.70,3.00,5.00mJy/beamrespectively.Thecontour levelsareincreasedbyafactorof3.Beamsize(naturalweighting)foreachfrequencyisindicatedbythecrosstotheleftofthecorrespondingimage. containtwo(ormore)distinctemissionfeaturesoritmaybe a continuous emission region. The angular resolution even at43GHz isnotsufficientto distinguishbetweenthese pos- sibilities. However, it is evident that the radio spectrum is changing along this region and it cannot be described by a single, uniform, self-absorbed,synchrotronemitting compo- nent. A turnover caused by the synchrotron self-absorption is detected in the averaged core spectrum at a frequency of ∼ 12 GHz (an average over the whole area with the nega- tivespectralindexat Fig. 8). Due to the inhomogeneity,the innermostcomponentatmm-wavelengthsmostlikelyhasan evenhigherturnoverfrequency,&40GHz.Usingthemethod describedinSokolovskyetal.(2010b),themagneticfield,B, of the core, in the frame of the relativistic jet, can be con- strained, giventhe Doppler factor, D = (Γ[1−βcosθ])−1, where Γ = (1 − β2)−1/2 and θ here are the bulk Lorentz factorandjetangletothelineofsight,respectively. Assum- ing a Doppler factor D = 7.3 (Hovattaetal. 2009), an up- per limit can be placed on the magnetic field strength in the core: B < 3G. We notethatthisupperlimitcorrespondsto atypicalvalueacrossanextendedandinhomogeneousregion FIG.8.—Spectralindexmap(Fν ∼ν−α,αisshownincolor)ofBLLac- contributing the bulk of the radio emission in 4.6 - 43 GHz ertaeconstructedusingVLBAobservationsat4.6,5.0,8.1and8.4GHz.The range.Themagneticfieldstrengthcanexceedtheabovelimit overlaidcontoursrepresenttotalintensityat8.4GHz(thepeakintensityis 1.75Jy/beam,thefirstcontouris0.70mJy/beam,thebeamsizeis1.57×1.22 locallyorinamorecompactregionshiddenfromsightinthe masatPA10.4◦.). Thespectralindexmapwassmoothedbyamedianfilter observedfrequencyrangebysynchrotronopacity. withradiusequaltotheindicatedbeamsize.Themapshowsanopticallythin jetwithα∼0.7andtheself-absorbedcoreregion(α<0.0). A2Dcross- 3.3. OpticalandnearIRobservationsandresults correlationtechniqueusingtheopticallythinpartofthejetwasemployedto alignimagesatdifferentfrequenciesallowingreliableextractionofthespec- Duringthe campaignseveralmulti-bandnear-infraredand tralinformation.Thespectralsteepeningtowardsthejetedgesvisibleonthe optical observations of BL Lac were also performed from spectralindexmapoccursontheangularscalecomparabletothebeamsize the ground by the 2.1 m telescope of the OAGH observa- andislikelyaneffectoftheunevenuv-coverageatdifferentfrequencies. tory,Sonora,Mexico,andthe1.3mMcGraw-HillTelescope oftheMDMObservatory,Arizona,USA.Inadditionalong- profiles. Thecoreregion(i.e., the brightfeatureatthe north termmonitoringinopticalRandV bandsduringthefirst18 end of the jet) is elongatedin the 43GHz image and can be monthsof Fermi observations(Figure 2), was performedby modelledbytwoGaussiancomponentsseparatedby0.25mas theobservingmonitoringprogramsattheTuorlaObservatory (0.32pcprojecteddistance).Atadistancesof1.5masand3.4 (1mTuorlaand0.35mKVAtelescopes),Turku,Finland,and masfromthecore,therearetwootherdistinctemissionfea- attheStewardObservatory(2.3mBokand1.5mKuipertele- turesin the jet. A table listing the parametersof the distinct scopes),USArespectively. features (“components”) can be found in Sokolovskyetal. Optical (UBVRI) data were taken with the 1.3 m (2010b). McGraw-HillTelescope(MDMobservatory).Exposuretimes The inner 0.25 mas part of the jet (i.e., the “core”) may rangedfrom40s(Rband)to 120s(U band). Therawdata 10 Abdoetal. were bias and flat-field corrected using IRAF. Instrumental 0.4 magnitudesof BL Lac andcomparisonstars B, C, H, andK fosH25Eftpihseruf.0hlaa1rrbeIoeerorSnNcseqomtnuimetodAugrtgqmi(oi´htiOahOudpetntleheelpsEAietpontcerepesGhpaytdtcecl)ot.(yHoratiIwtocolpTnso).carpeiesmholt(lemtwheo1ionreptcae9vfoutaChratse8rtteyototakhrR5ees.ttnie)redoontaddhNmOcgwnieekneAateeadwoacOtrtGitriecehyNopb7Halenhsel5teaeexayMah1nrdKltsrav0rdieatsac2Ioxdacnta4asonietlftpcehrrcd×amediaeuoncArsrase1uttrArstgasd0esuottnnisnr2adsnCtodit4tcrytgefaaouao´ırompfldspDodl´ıifieoysfcexAγsiJcarecSOaaa-,lt,oro,hntPaiHHnrdGCoyOHo´oanAuuspwriOaniooagNtlnaTi.fuflhcderiIroiaaCrTcadmrvKienAihenefsdyode--r,, --0000....4202 s bands. The plate scale in CANICA is 0.32 arcsec per pixel. -0.6 -40 -20 0 20 40 Observationsare usually carried out in series of 10 dithered LAG (Days) frames in each filter. Data are co-added after bias and flat- FIG.9.—Discrete crosscorrelation function (DCCF)between theγ-ray fieldcorrections.CANICAobservationsofBLLacpresented andopticallightcurvesofFig.2. inthisworkweremadeonsevenepochsbetweenMJD54715 and54747.ThedataareshowninFigures4and5,anddonot lag-20to+20days. Theresultwasacorrelationintensityof showsignsofvariability. 0.17±0.09 (corrected for the effect of measurementnoise) Thephotometricandpolarimetrymonitoringprogramatthe and a lag of −5±5 days, where negative lag means γ-rays TuorlaObservatory,a divisionof the Departmentof Physics lagging the R band. The choice of lag range for the fit, and Astronomy at the University of Turku, Finland, is per- from -15, +15 to -30, +30, as well as bin size, 3 or 4 days, formed throughthe 1.03 m telescope at Tuorla Observatory, onlyhadasmalleffectontheestimatedtimelagofthepeak andthe35cmtelescopeattheKVAobservatoryonLaPalma, and on the correlation strength, with the latter ranging from Canaryislands,Spain. MostofthemonitoredsourcesareBL 0.14to0.17. Theratherweaklong-termcorrelationbetween Lac objects listed in Costamante&Ghisellini(2002), as po- gamma-rays and optical tends to disfavor a one-zone syn- tential TeV γ-ray sources69. All photometric measures are chrotronplus synchrotronself-Compton(SSC) model, since takenusingtheR-filter(otherdetailsin Takaloetal.2008). inthismodelonewouldexpectelectronswithapproximately The optical spectropolarimetry and spectrophotometry of the same energies to make both the optical and γ-ray emis- blazarsattheUniversityofArizona,isperformedonaregular sion, and might favor an external radiation Compton (ERC) basis since the launch of Fermi using the Steward Observa- or multi-zonesynchrotron/SSCmodel(e.g.,Aharonianetal. tory2.3mBoktelescopeonKittPeak, Arizona,and1.54m 2009; Bo¨ttcheretal. 2009). The optical-UV variability ob- Kuiper telescope on Mt. Bigelow, Arizona, USA. Depend- served during the 48 days of the multiwavelength campaign ing on weather conditions, BL Lac is observed nightly dur- is not correlated with the weaker X-ray variability seen by ing each of the monthly monitoring campaigns, which typi- Swift-XRTandRXTE norwiththenon-variableγ-rayemis- cally last a week. All of the measurementshave been made sionobservedinthesameperiodbytheLAT(Figure4). The withtheSPOLspectropolarimeter(Schmidtetal.1992). The lackofcorrelationmightsupportthescenariowherebothsyn- Steward Observatory blazar monitoring program associated chrotron and IC photons contribute to the X-ray emission. withtheFermimissionisdescribedbySchmidtetal.(2009) Variability produced by the highest energy electrons would andthe data are publiclyavailable70. Detailsconcerningthe be smeared out by the IC component, and the mix of pho- tons from the low and high energy component would dilute reductionandcalibrationofboththepolarimetryandphotom- thecorrelationwiththesynchrotron,orsynchrotronplusther- etrycanalsobefoundinSchmidtetal.(2009)andreferences mal,optical-UVemission.Thiswouldexplainwhyvariability therein. The data products include high signal-to-noise flux in the optical/UV is greater than in X-rays. Moreoverif the andlinearpolarizationspectraspanningλ = 4000−7550A˚ synchrotron and IC emission components come from phys- anddifferentialV-bandphotometry. ically distinct regions, they would also weaken the correla- tion. Noevidencefora contributionbyaccretiondiskradia- 3.4. MultifrequencycorrelationandSED tionduringthislowactivitystateofthecampaignwasfound, TheopticalR-andV-bandlightcurveinthebottompanel althoughthismightcontributetothelackofclearcorrelation of Figure 2 shows more rapid variability due to the in- betweentheX-rayandoptical-UVemission. Therecentdis- creased sampling with respect to the weekly-averaged LAT coveryofaluminousHαemissionlineintheopticalspectra light curve. Overlapping time intervals of the 18-month ofBL Lac(Vermeulenetal.1995;Corbettetal. 1996,2000; light curves in γ-rays and in the R band were used to cal- Capettietal. 2010), as likely a productof the broad line re- culate the discrete cross correlation function (DCCF), fol- gion photoionizedby the disk radiation, can suggest a more lowing Edelson&Krolik (1988). In Figure 9 the DCCF is relevantroleplayedbythediskduringmajoroutburstwitha plotted with error bars estimated by a Monte Carlo method, highγ-rayComptondominance(asseenintheEGRET1997 taking measurement errors and data sampling into account outburst). (Petersonetal.1998). Thecorrelationstrengthandlag were TheaveragedSEDfromtheMWcampaign(2008Aug. 20 computedbyfitting a gaussianprofileto the DCCF between –Sep.9)isreportedinFigure10. Forthefirsttimethemulti- frequencyemissionfortheeponymousblazarsourceBLLac 69http://users.utu.fi/kani/1m/ is mapped from radio to GeV γ-rays during a low-activity 70http://james.as.arizona.edu/˜psmith/Fermi state. The relevantarchivalobservationsof BL Lac are also

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.