The Finite Element Method: Its Basis and Fundamentals Sixth edition O.C. Zienkiewicz, CBE, FRS UNESCOProfessorofNumericalMethodsinEngineering InternationalCentreforNumericalMethodsinEngineering,Barcelona PreviouslyDirectoroftheInstituteforNumericalMethodsinEngineering UniversityofWales,Swansea R.L. Taylor J.Z. Zhu ProfessorintheGraduateSchool SeniorScientist DepartmentofCivilandEnvironmentalEngineering ESIUSR&DInc. UniversityofCaliforniaatBerkeley 5850WaterlooRoad,Suite140 Berkeley,California Columbia,Maryland AMSTERDAM•BOSTON•HEIDELBERG•LONDON•NEWYORK•OXFORD PARIS•SANDIEGO•SANFRANCISCO•SINGAPORE•SYDNEY•TOKYO ElsevierButterworth-Heinemann LinacreHouse,JordanHill,OxfordOX28DP 30CorporateDrive,Burlington,MA01803 Firstpublishedin1967byMcGraw-Hill FiftheditionpublishedbyButterworth-Heinemann2000 Reprinted2002 Sixthedition2005 Copyright(cid:1)c 2000,2005. O.C.Zienkiewicz,R.L.TaylorandJ.Z.Zhu.Allrightsreserved TherightsofO.C.Zienkiewicz,R.L.TaylorandJ.Z.Zhutobeidentifiedastheauthorsofthiswork havebeenassertedinaccordancewiththeCopyright,DesignsandPatentsAct1988 Nopartofthispublicationmaybereproducedinanymaterialform(including photocopyingorstoringinanymediumbyelectronicmeansandwhetherornot transientlyorincidentallytosomeotheruseofthispublication)withoutthewritten permissionofthecopyrightholderexceptinaccordancewiththeprovisionsofthe Copyright,DesignsandPatentsAct1988orunderthetermsofalicenceissuedby theCopyrightLicensingAgencyLtd,90,TottenhamCourtRoad,London, EnglandW1T4LP.Applicationsforthecopyrightholder’swrittenpermission toreproduceanypartofthispublicationshouldbeaddressedtothepublisher. PermissionsmaybesoughtdirectlyfromElsevier’sScience&Technology RightsDepartmentinOxford,UK:phone:(+44)1865843830, fax:(+44)1865853333,e-mail:[email protected] completeyourrequeston-lineviatheElsevierhomepage(http://www.elsevier.com), byselecting‘CustomerSupport’andthen‘ObtainingPermissions’ BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheLibraryofCongress ISBN0750663200 PublishedwiththecooperationofCIMNE, theInternationalCentreforNumericalMethodsinEngineering, Barcelona,Spain(www.cimne.upc.es) ForinformationonallElsevierButterworth-Heinemannpublications visitourwebsiteathttp://books.elsevier.com TypesetbyKolamInformationServicesPLtd,Pondicherry,India Dedication ThisbookisdedicatedtoourwivesHelen,MaryLouand Songandourfamiliesfortheirsupportandpatienceduring thepreparationofthisbook,andalsotoallofourstudents andcolleagueswhoovertheyearshavecontributedtoour knowledgeofthefiniteelementmethod. Inparticularwe wouldliketomentionProfessorEugenioOn˜ateandhis groupatCIMNEfortheirhelp,encouragementandsupport duringthepreparationprocess. Preface Itisthirty-eightyearssincetheTheFiniteElementMethodinStructuralandContinuum Mechanics was first published. This book, which was the first dealing with the finite elementmethod,providedthebasisfromwhichmanyfurtherdevelopmentsoccurred. The expandingresearchandfieldofapplicationoffiniteelementsledtothesecondeditionin 1971,thethirdin1977,thefourthastwovolumesin1989and1991andthefifthasthree volumes in 2000. The size of each of these editions expanded geometrically (from 272 pages in 1967 to the fifth edition of 1482 pages). This was necessary to do justice to a rapidlyexpandingfieldofprofessionalapplicationandresearch. Evenso,muchfiltering ofthecontentswasnecessarytokeeptheseeditionswithinreasonablebounds. Inthepresenteditionwehavedecidednottopursuethecourseofhavingthreecontiguous volumesbutratherwetreatthewholeworkasanassemblyofthreeseparateworks,each onecapableofbeingusedwithouttheothersandeachoneappealingperhapstoadifferent audience. Thoughnaturallywerecommendtheuseofthewholeensembletopeoplewishing todevotemuchoftheirtimeandstudytothefiniteelementmethod. InparticularthefirstvolumewhichwasentitledTheFiniteElementMethod: TheBasis is now renamed The Finite Element Method: Its Basis and Fundamentals. This volume has been considerably reorganized from the previous one and is now, we believe, better suitedforteachingfundamentalsofthefiniteelementmethod. Thesequenceofchapters hasbeensomewhatalteredandseveralexamplesofworkedproblemshavebeenaddedto thetext. Asetofproblemstobeworkedoutbystudentshasalsobeenprovided. Inadditiontoitspreviouscontentthisbookhasbeenconsiderablyenlargedbyincluding more emphasis on use of higher order shape functions in formulation of problems and a newchapterdevotedtothesubjectofautomaticmeshgeneration. Abeginnerinthefinite elementfieldwillfindveryrapidlythatmuchoftheworkofsolvingproblemsconsistsof preparingasuitablemeshtodealwiththewholeproblemandasthesizeofcomputershas seemedtoincreasewithoutlimitsthesizeofproblemscapableofbeingdealtwithisalso increasing. Thus,meshescontainingsometimesmorethanseveralmillionnodeshavetobe preparedwithdetailsofthematerialinterfaces,boundariesandloadsbeingwellspecified. Therearemanybooksdevotedexclusivelytothesubjectofmeshgenerationbutwefeel that the essence of dealing with this difficult problem should be included here for those whowishtohaveacomplete‘encyclopedic’knowledgeofthesubject. xiv Preface The chapter on computational methods is much reduced by transferring the computer sourceprogramanduserinstructionstoawebsite.†Thishastheverysubstantialadvantage ofnotonlyeliminatingerrorsinprogramandmanualbutalsoinensuringthatthereaders havethebenefitofthemostrecentversionoftheprogramavailableatalltimes. Thetwofurthervolumesformagainseparatebooksandherewefeelthatacompletely differentaudiencewillusethem. ThefirstoftheseisentitledTheFiniteElementMethod in Solid and Structural Mechanics and the second is a text entitled The Finite Element MethodinFluidDynamics. Eachofthesetwovolumesisastandalonetextwhichprovides thefullknowledgeofthesubjectforthosewhohaveacquiredanintroductiontothefinite elementmethodthroughothertexts. Ofcoursetheviewpointoftheauthorsintroducedin thisvolumewillbecontinuedbutitispossibletostartatadifferentpoint. Weemphasizeherethefactthatallthreebooksstresstheimportanceofconsideringthe finiteelementmethodasauniqueandwholebasisofapproachandthatitcontainsmanyof theothernumericalanalysismethodsasspecialcases. Thus,imaginationandknowledge shouldbecombinedbythereadersintheirendeavours. TheauthorsareparticularlyindebtedtotheInternationalCenterofNumericalMethodsin Engineering(CIMNE)inBarcelonawhohaveallowedtheirpre-andpost-processingcode (GiD)tobeaccessedfromthewebsite. Thisallowssuchdifficulttasksasmeshgeneration andgraphicoutputtobedealtwithefficiently. TheauthorsarealsogratefultoProfessors EricKasperandJoseLuisPerez-Apariciofortheircarefulscrutinyoftheentiretextand DrsJoaquimPeiro´ andC.K.Leefortheirreviewofthenewchapteronmeshgeneration. Resources to accompany this book Worked solutions to selected problems in this book are available online for teachers and lecturerswhoeitheradoptorrecommendthetext. Pleasevisithttp://books.elsevier.com/ manualsandfollowtheregistrationandlogininstructionsonscreen. OCZ,RLTandJZZ †CompletesourcecodeandusermanualforprogramFEAPpv maybeobtainedatnocostfromthepublisher’s webpage:http://books.elsevier.com/companionsorfromtheauthors’webpage:http://www.ce.berkeley.edu/˜rlt Contents Preface xiii 1 Thestandarddiscretesystemandoriginsofthefiniteelementmethod 1 1.1 Introduction 1 1.2 Thestructuralelementandthestructuralsystem 3 1.3 Assemblyandanalysisofastructure 5 1.4 Theboundaryconditions 6 1.5 Electricalandfluidnetworks 7 1.6 Thegeneralpattern 9 1.7 Thestandarddiscretesystem 10 1.8 Transformationofcoordinates 11 1.9 Problems 13 2 Adirectphysicalapproachtoproblemsinelasticity: planestress 19 2.1 Introduction 19 2.2 Directformulationoffiniteelementcharacteristics 20 2.3 Generalizationtothewholeregion–internalnodalforceconcept abandoned 31 2.4 Displacementapproachasaminimizationoftotalpotentialenergy 34 2.5 Convergencecriteria 37 2.6 Discretizationerrorandconvergencerate 38 2.7 Displacementfunctionswithdiscontinuitybetweenelements– non-conformingelementsandthepatchtest 39 2.8 Finiteelementsolutionprocess 40 2.9 Numericalexamples 40 2.10 Concludingremarks 46 2.11 Problems 47 3 Generalizationofthefiniteelementconcepts. Galerkin-weightedresidualand variationalapproaches 54 3.1 Introduction 54 3.2 Integralor‘weak’statementsequivalenttothedifferentialequations 57 3.3 Approximationtointegralformulations: theweightedresidual- Galerkinmethod 60 viii Contents 3.4 Virtualworkasthe‘weakform’ofequilibriumequationsforanalysis ofsolidsorfluids 69 3.5 Partialdiscretization 71 3.6 Convergence 74 3.7 Whatare‘variationalprinciples’? 76 3.8 ‘Natural’variationalprinciplesandtheirrelationtogoverning differentialequations 78 3.9 Establishmentofnaturalvariationalprinciplesforlinear,self-adjoint, differentialequations 81 3.10 Maximum,minimum,orasaddlepoint? 83 3.11 Constrainedvariationalprinciples. Lagrangemultipliers 84 3.12 Constrainedvariationalprinciples. Penaltyfunctionandperturbed lagrangianmethods 88 3.13 Leastsquaresapproximations 92 3.14 Concludingremarks–finitedifferenceandboundarymethods 95 3.15 Problems 97 4 ‘Standard’and‘hierarchical’elementshapefunctions: somegeneralfamilies ofC continuity 103 0 4.1 Introduction 103 4.2 Standardandhierarchicalconcepts 104 4.3 Rectangularelements–somepreliminaryconsiderations 107 4.4 Completenessofpolynomials 109 4.5 Rectangularelements–Lagrangefamily 110 4.6 Rectangularelements–‘serendipity’family 112 4.7 Triangularelementfamily 116 4.8 Lineelements 119 4.9 Rectangularprisms–Lagrangefamily 120 4.10 Rectangularprisms–‘serendipity’family 121 4.11 Tetrahedralelements 122 4.12 Othersimplethree-dimensionalelements 125 4.13 Hierarchicpolynomialsinonedimension 125 4.14 Two-andthree-dimensional,hierarchicalelementsofthe‘rectangle’ or‘brick’type 128 4.15 Triangleandtetrahedronfamily 128 4.16 Improvementofconditioningwithhierarchicalforms 130 4.17 Globalandlocalfiniteelementapproximation 131 4.18 Eliminationofinternalparametersbeforeassembly–substructures 132 4.19 Concludingremarks 134 4.20 Problems 134 5 Mappedelementsandnumericalintegration–‘infinite’and ‘singularityelements’ 138 5.1 Introduction 138 5.2 Useof‘shapefunctions’intheestablishmentofcoordinate transformations 139 5.3 Geometricalconformityofelements 143 5.4 Variationoftheunknownfunctionwithindistorted,curvilinear elements. Continuityrequirements 143 Contents ix 5.5 Evaluationofelementmatrices. Transformationinξ,η,ζ coordinates 145 5.6 Evaluationofelementmatrices. Transformationinareaandvolume coordinates 148 5.7 Orderofconvergenceformappedelements 151 5.8 Shapefunctionsbydegeneration 153 5.9 Numericalintegration–onedimensional 160 5.10 Numericalintegration–rectangular(2D)orbrickregions(3D) 162 5.11 Numericalintegration–triangularortetrahedralregions 164 5.12 Requiredorderofnumericalintegration 164 5.13 Generationoffiniteelementmeshesbymapping. Blendingfunctions 169 5.14 Infinitedomainsandinfiniteelements 170 5.15 Singularelementsbymapping–useinfracturemechanics,etc. 176 5.16 Computationaladvantageofnumericallyintegratedfiniteelements 177 5.17 Problems 178 6 Problemsinlinearelasticity 187 6.1 Introduction 187 6.2 Governingequations 188 6.3 Finiteelementapproximation 201 6.4 Reportingofresults: displacements,strainsandstresses 207 6.5 Numericalexamples 209 6.6 Problems 217 7 Fieldproblems–heatconduction,electricandmagneticpotential andfluidflow 229 7.1 Introduction 229 7.2 Generalquasi-harmonicequation 230 7.3 Finiteelementsolutionprocess 233 7.4 Partialdiscretization–transientproblems 237 7.5 Numericalexamples–anassessmentofaccuracy 239 7.6 Concludingremarks 253 7.7 Problems 253 8 Automaticmeshgeneration 264 8.1 Introduction 264 8.2 Two-dimensionalmeshgeneration–advancingfrontmethod 266 8.3 Surfacemeshgeneration 286 8.4 Three-dimensionalmeshgeneration–Delaunaytriangulation 303 8.5 Concludingremarks 323 8.6 Problems 323 9 Thepatchtest,reducedintegration,andnon-conformingelements 329 9.1 Introduction 329 9.2 Convergencerequirements 330 9.3 Thesimplepatchtest(testsAandB)–anecessaryconditionfor convergence 332 9.4 Generalizedpatchtest(testC)andthesingle-elementtest 334 9.5 Thegeneralityofanumericalpatchtest 336 9.6 Higherorderpatchtests 336 x Contents 9.7 Applicationofthepatchtesttoplaneelasticityelementswith ‘standard’and‘reduced’quadrature 337 9.8 Applicationofthepatchtesttoanincompatibleelement 343 9.9 Higherorderpatchtest–assessmentofrobustness 347 9.10 Concludingremarks 347 9.11 Problems 350 10 Mixedformulationandconstraints–completefieldmethods 356 10.1 Introduction 356 10.2 Discretizationofmixedforms–somegeneralremarks 358 10.3 Stabilityofmixedapproximation. Thepatchtest 360 10.4 Two-fieldmixedformulationinelasticity 363 10.5 Three-fieldmixedformulationsinelasticity 370 10.6 Complementaryformswithdirectconstraint 375 10.7 Concludingremarks–mixedformulationoratestofelement ‘robustness’ 379 10.8 Problems 379 11 Incompressibleproblems,mixedmethodsandotherproceduresofsolution 383 11.1 Introduction 383 11.2 Deviatoricstressandstrain,pressureandvolumechange 383 11.3 Two-fieldincompressibleelasticity(u–pform) 384 11.4 Three-fieldnearlyincompressibleelasticity(u–p–εv form) 393 11.5 Reducedandselectiveintegrationanditsequivalencetopenalized mixedproblems 398 11.6 Asimpleiterativesolutionprocessformixedproblems: Uzawa method 404 11.7 Stabilizedmethodsforsomemixedelementsfailingthe incompressibilitypatchtest 407 11.8 Concludingremarks 421 11.9 Problems 422 12 Multidomainmixedapproximations–domaindecompositionand‘frame’ methods 429 12.1 Introduction 429 12.2 LinkingoftwoormoresubdomainsbyLagrangemultipliers 430 12.3 Linkingoftwoormoresubdomainsbyperturbedlagrangianand penaltymethods 436 12.4 Interfacedisplacement‘frame’ 442 12.5 Linkingofboundary(orTrefftz)-typesolutionbythe‘frame’of specifieddisplacements 445 12.6 Subdomainswith‘standard’elementsandglobalfunctions 451 12.7 Concludingremarks 451 12.8 Problems 451 13 Errors,recoveryprocessesanderrorestimates 456 13.1 Definitionoferrors 456 13.2 Superconvergenceandoptimalsamplingpoints 459 13.3 Recoveryofgradientsandstresses 465
Description: