The feasibility of using algae as a co-substrate for biogas production Laboratory experiments of the co-digestion of algae and biosludge Möjligheten av att använda alger som samsubstrat for biogasproduktion Laboratoriska experiment av samrötning mellan alger och bioslam Lisa Arkelius Health, Science & Technology Master of science in industrial management and engineering Master Thesis: 30 ECTS Andreas Nilsson & Karin Granström Mikael Johnson 2015-06-08 Prologue This master thesis represents the last and final part of my education at Karlstad’s University, within Industrial Management and Energy- and Environmental Engineering. The thesis coves 30 university points and has been conducted during spring of 2015 at Karlstad’s University. I would like to thank my supervisors Andreas Nilsson and Karin Granström, for their mentorship, support and endless patience. Without their help and expertise this work had been much harder. I would also like to thank Susanne Ekendahl at SP, Technical Research Institute of Sweden, for her help answering questions about the cultivation of algae at Bäckhammars bruk. Also thanks to some of the other interests in the algae project, Nordic Paper, Region Värmland and The Paper Province, for an interesting meeting about the algae project. Last I want to thank my family for their endless support during my five year of education. Without their love and help, this would not been possible. Lisa Arkelius 2015-06-08 4 Abstract Today 88 % of the world energy comes from fossil fuels. Greenhouse gas emissions are increasing and the fossil fuels energy sources will decrease at some point. Other alternatives must be found, to substitute and lower the usage of fossil fuels. Biogas is one of these other options. It is a versatile fossil free fuel that can be used for heat, power and fuel for vehicles. Many different substrates have been used for biogas production over the years, and now algae are examined as a substrate. Algae have advantages over the former substrates used for biogas production. Laboratory experiments were conducted to examine the co-digestion potential of algae and biosludge, which is a rest product from a wastewater treatment plant at a pulp and paper mill. The profitability aspect of using algae and biosludge for biogas production has been examined as well. The result shows that unmixed algae were the highest methane producing substrate, which produced a maximum of 203,5 Nml/g VS. An interesting result was that both algae and biosludge separately produced more methane gas than the mixtures. The profitability aspect of the thesis showed that it is not profitable to use algae primarily for biogas production, based on the conditions of today. 5 Sammanfattning Idag kommer 88 % av världens energi från fossila bränslen. Utsläppen av växthusgaser ökar och de fossila bränslenas energikällor kommer att minska inom en viss tid. Andra alternativ måste hittas, för att ersätta och minska användningen av fossila bränslen. Biogas är ett av dessa alternativ, det är ett mångsidigt fossilfritt bränsle som kan användas för värme, el och bränsle för fordon. Många olika substrat har använts för biogasproduktion under årens lopp, och nu har alger undersöktes som ett nytt substrat. Alger har fördelar jämfört med de tidigare substrat som används för biogasproduktion. Laboratorieförsök genomfördes för att undersöka samrötning av alger och bioslam, som är en restprodukt från en avloppsanläggning vid ett massa- och pappersbruk. Lönsamhetsaspekten av att använda alger och bioslam för biogasproduktion har också undersökts . Resultatet visar att alger utan inblanding av bioslam gav mest metan och producerade maximalt 203,5 Nml/g VS. Ett intressant resultat var att både alger och bioslam rötade separat producerade mer metangas än blandningarna. Lönsamhetsaspekten av rapporten visade att det inte är lönsamt att använda alger för endast biogasproduktion, baserat på villkoren i dag. 6 Table of content 1. Introduction 11 1.1. Background 11 1.2. Problem discussion 13 1.3. Purpose 14 1.3.1. Research questions: 14 1.4. Delimitations 14 2. Theoretical framework 15 2.1. Biogas 15 2.2. Anaerobic Digestion 15 2.2.1. Inhibition of anaerobic digestion 17 2.3. Substrate 18 2.3.1. Algae 19 2.3.2. Biosludge 21 2.4. Digestate 22 3. Research methodology 25 3.1. Research strategy 25 3.2. Literature study 25 3.3. Experimental setup 26 3.3.1. Substrates and inoculum 26 3.3.2. AMPTS2 28 3.3.3. VS and TS 29 3.3.4. Round 1 30 3.3.5. Round 2 32 3.3.6. Round 3 33 3.3.7. pH and TAN 33 3.3.8. Digestate 34 3.4. Economy 35 4. Results 37 4.1. Experimental results 37 4.1.1. Round 1 37 4.1.2. Round 2 39 4.1.3. Round 3 41 7 4.1.4. Summary of the experimental results 43 4.1.5. Digestate 45 4.2. Economics 45 5. Analysis and discussion 47 6. Conclusions and future research 51 7. References 52 TABLE OF FIGURES FIGURE 1 BIOGAS USAGE IN SWEDEN 2013 12 FIGURE 2 THE DIFFERENT STAGES DURING ANAEROBIC DIGESTION 16 FIGURE 3 THE EQUIPMENT AMPTS2. 28 FIGURE 4 ACCUMULATED METHANE PRODUCTION, ROUND1 37 FIGURE 5 AVERAGE METHANE PRODUCTION OF THE TRIPLICATES,ROUND1 38 FIGURE 6 ACCUMULATED METHANE PRODUCTION,ROUND2 39 FIGURE 7 AVERAGE METHANE PRODUCTION OF THE TRIPLICATES,ROUND2 39 FIGURE 8 ACCUMULATED METHANE PRODUCTION, ROUND3 41 FIGURE 9 AVERAGE METHANE PRODUCTION OF THE TRIPLICATES, ROUND3 42 TABLE OF TABLES TABLE 1 RESTRICTIONS OF HEAVY METALS FOR DIGESTATE USAGE 23 TABLE 2 RESTRICTIONS OF NUTRIENTS IN DIGESTATE 23 TABLE 3 TS AND VS VALUES FOR THE INOCULUMS 27 TABLE 4 TS AND VS VALUES FOR THE ALGAE 27 TABLE 5 TS AND VS VALUES FOR THE BIOSLUDGE 28 TABLE 6 THE AMOUNT OF SUBSTRATE IN EACH OF THE TRIPLICATES 32 TABLE 7 THE AMOUNT OF SUBSTRATE IN EACH OF THE TRIPLICATES 33 TABLE 8 THE AMOUNT OF SUBSTRATE IN EACH OF THE TRIPLICATES 33 TABLE 9 HEAVY METAL CONTENT IN BIOSLUDGE IN 2007 34 TABLE 10 NUTRIENT CONTENT OF ALGAE AND BIOSLUDGE 35 TABLE 11 ANALYSES OF THE DIGESTATE AFTER ANAEROBIC DIGESTION 38 TABLE 12 ANALYSIS OF THE DIGESTATE AFTER ANAEROBIC DIGESTION 40 TABLE 13 ANALYSIS OF THE DIGESTATE AFTER ANAEROBIC DIGESTION 42 TABLE 14 MAXIMUM METHANE PRODUCTION, AVERAGE PRODUCTION AND STANDARD DEVIATION OF THE MIXTURES. 43 TABLE 15 AVERAGE VALUE AND STANDARD DEVIATION OF PH, TAN AND FAN 44 TABLE 16 COMPARING THE SUBSTRATES AGAINST RESTRICTIONS FOR USAGE OF DIGESTATE 45 TABLE 17 REVENUES AND COSTS FROM BIOGAS PRODUCTION BY ALGAE AND BIOSLUDGE 46 TABLE 18 REVENUES AND COSTS FROM BIOGAS PRODUCTION BY BIOSLUDGE 46 8 Nomenclature and list of words AMPTS2 Autometic Methane Potential Test System Anaerobic A process where microorganisms digestion break down organic material in the absence of oxygen Anaerobic A process where microorganisms fermentation break down organic material in the absence of oxygen Bioenergy Renewable energy that derives from biological sources Biogas A gas fuel which is produced during anaerobic digestion C/N-ratio The relation between carbon and nitrogen FAN Free Ammomium Nitrogen (NH ) (mg/l) 3 H S Hydrogen Sulfide (mg/l) 2 Lignocellulosic Biomass from trees, bushes and material grass. NH + Ammonium Nitrogen Ion (mg/l) 4 TAN Total Ammonium Nitrogen (NH - (mg/l) 3 N) TS Total Solids (%), (g VS/g sub), (g) VFA Volatile Fatty Acids (mg/l) VS Volatile Solids (%), (g VS/g sub), (g) 9 10
Description: