ebook img

The Experimental Realization of an Acoustic Cloak in Air with a Meta-Composite Shell PDF

31 Pages·2017·10.88 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Experimental Realization of an Acoustic Cloak in Air with a Meta-Composite Shell

applied sciences Article The Experimental Realization of an Acoustic Cloak in Air with a Meta-Composite Shell Shiuh-KuangYang1,Jau-ChoLin1,2,*andJyin-WenCheng3 1 DepartmentofMechanicalandElectro-MechanicalEngineering,NationalSunYat-senUniversity, Kaohsiung80424,Taiwan;[email protected] 2 ArchitectureandBuildingResearchInstitute,MinistryofInterior,NewTaipeiCity23143,Taiwan 3 CepstrumTechnologyCorporation,Kaohsiung80245,Taiwan;[email protected] * Correspondence:[email protected];Tel.:+886-7-521-7252 AcademicEditor:VitalyiGusev Received:10March2017;Accepted:25April2017;Published:29April2017 Abstract: Anisotropic cloak shells can be used for the spatial transformation of a space to alter the propagation of acoustic waves by redirecting them along a pre-determined path. This paper outlinesthedesign,fabrication,andexperimentalanalysisofacircularacousticcloakshellmade of meta-composite material for in-air applications. Based on the three-dimensional coordinate transformation,wefirstdesignedananisotropiccirclemeta-compositecloakshellaccordingtoits impedance values. The cloak shell comprises various layered structures with cavities and tubes, respectively, providing acoustic mass and compliance for the provision of anisotropic material properties. Secondly,weconductednumericalandexperimentalanalysesunderpracticeworking conditionstodemonstratetheefficacyoftheacousticcloak.Thestructureofthecloakshell,fabricated bythree-dimensionalprinting(3Dprinting),isexperimentallyevaluatedinasemi-anechoicroom withafree-fieldenvironment. Thesimulationandexperimentalresultsdemonstratetheacoustic cloakingeffectsinthescatteringfarfield. Besidesthescatteringfield,thesoundfieldmeasurement resultsobtainedwiththeregionenclosedbytheshellalsoshowstheabilitiesofthecloakshellin alteringthedirectionofwavepropagationalongapre-determinedpathinair. Keywords: metamaterials;acousticcloaks;meta-compositecloakshell;transformationacoustic 1. Introduction In1968,Veselago[1]proposedtheconceptofmetamaterialspossessingpropertiesnotfoundin typicalmaterialsinEMwaves. Sincethen,numerousmetamaterialshavebeendeveloped,including negativerefractionmaterials,perfectlenses,andinvisibilitycloaks(Shelbyetal.[2]andPendryet al. [3,4]). In 2000, Liu et al. [5] used a lead sphere and silicon composite material to construct a resonantsonicmaterialwithuniquematerialproperties. Leeetal.[6]andHuangetal.[7]reported onamembranousmetamaterialstructure. CummerandSchurig[8]developedacousticcloaksusing transformationacoustics. Throughthetransformationofspatialcoordinates, incidentsoundfrom all directions can be guided to pass around an acoustic cloak shell. The object within the cloaked regionisunaffectedbyincidentacousticwavesandisthereforesaidtobeacousticallycloaked. In2007, CummerandSchurig[8]usedtheexactequivalenceofacousticsandEMwavesintheconstruction of two-dimensional (2D) acoustic cloaks. They paved the way for the application of coordinate transformationtechniquestoprovidecloaksforacousticwaves. Three-dimensionalacousticcloaking referstoacousticscattering,whichwasdevelopedin2008[9],therebydemonstratingtheexistence ofthree-dimensional(3D)transformationcloaks. In2013,Chenetal.[10]expandedthestrategyof transformation acoustics from simple cylindrical shapes to general coordinate systems. This was achievedbyovercomingthedifficultiesinvolvedinimpedancematchingalongtheboundaryofthe Appl.Sci.2017,7,456;doi:10.3390/app7050456 www.mdpi.com/journal/applsci Appl.Sci.2017,7,456 2of31 cloakshellinthebackgroundmedia. Theirresultshaveprovidedareferencebywhichthematerial parametersofvariousacousticcloakscanbederived. Inthefieldofoptics,AndkjærandSigmund[11] employedtopologyoptimizationfordesigningall-dielectriccloaksin2011. In2013,Fujiietal.[12] used a level set-based topology method that provides discrete cloaking configurations with good performance. Otomori et al. [13] proposed a method for the design of an electromagnetic cloak madeofferritematerialin2013. FujiiandUeta[14]describedthetopology-optimizedcarpetcloaks made of dielectric material in 2016. Lan et al. [15] experimentally demonstrated a unidirectional electromagneticcloakdesignbytopologyoptimization. TheyfabricatedaTefloncloakingsampleby apreciseengravingmachine. Urzhumovetal.[16]reportedamicrowaveX-bandcloakingdevice in2013. Previousresearchonacousticcloaksusedtheconceptofcoordinatetransformationtodevelop designparametersforcloakshells. Coordinatetransformationaltersthematerialpropertiesofacloak shellbymakingthemanisotropicwithspatiallyvaryingmassdensityandbulkmodulus;however, the complexity of such materials has hampered the realization of acoustic cloaks. In recent years, Zhangetal.[17]usedanetworkofacousticcircuitelementstocreateacylindricalcloakshellforuse inwateroverafrequencyrangeof52–64kHz. Theyusedthesamemetamaterialsforthefocusing of ultrasound images with a flat lens [18]. Carpet cloaks in air have also been researched. Popa and Cummer [19] and Zigoneanu et al. [20] used metamaterial structures comprising a periodic arrangement of perforated plastic plates, and used the impedance tube method to measure the transmission properties. Zhu et al. [21] and Popa et al. [22] performed numerical investigations andexperimentson2Dtriangularacousticgroundcarpetcloaksbasedonperforatedplasticplates. Sanchisetal.[23]recentlyusedageneticalgorithmtooptimizetheringstructureof3Dacousticcloaks toreducethescatteringofthefieldinordertomaketheacousticcloakworkable. In2013,Andkjær andSigmund[24]investigatedacloakthatconcealsanaluminumcylinderacousticallyforairborne sound based on a gradient-based topology optimization algorithm. In 2014, Zigoneanu et al. [25] usedtheconceptofcarpetcloakswithametamaterialcomprisingastructureofperforatedplatesfor thefabricationofapyramidaldeviceasanacousticcarpetcloakoperatingat3kHz. Thepyramidal cloakingdevicecomprisedfourperforatedplatecomponentstoenable3Dcloaking. Theoreticalandpracticalguidelineshavebeendevelopedforthedesignofacousticcloaksin water; however,littleworkhasbeencompletedonthedevelopmentofcloakshellsworkinginair. Enabling cloaking by the transformation of spatial coordinates (transformation acoustic) requires spatially anisotropic material properties along three coordinate axes. Furthermore, a cloak shell workinginairrequiresadensityorbulkmodulusoflessthanunityinsomeareasoftheshell;this, however,isnoteasytorealizephysically. Themetamaterialsdesignedforuseinwaterareinapplicable inair. Previousattemptstodevelopmetamaterialsaimedathidingobjectssubmergedinwaterwere unabletoprovidetheanisotropicmaterialdensitythatwouldberequiredinair. Eventhescattering cancellationtechniquesproposedbySanchisetal.[23]aredifficulttoimplement,andtheresulting cloakfailswhenthehiddenobjectisreplacedwithanotherobjectofadifferentshape. Thisfailurecan beattributedtothescatteringinteractioncausedbytheincongruitybetweenthenewobjectandthe designoftheringstructurewithinthecloakshell. The present study focused on the design, fabrication, and evaluation of acoustic cloak shells in air. This research involved the physical realization of the acoustic cloak in air by means of the proposedcloakshelldesignedtospatiallyvarytheimpedancevaluesofthecloakshell. Inaddition tothecloakdesign, wehavealsopresentedanewmeta-compositestructurematerialforpractical applications. Finally,arealcloakshellwasproducedby3Dprintingandsubjectedtobothnumerical andexperimentalanalyses. Appl. Sci. 2017, 7, 456   3 of 31  Appl.Sci.2017,7,456 3of31 2. The Design of the Cloak Shell with a Meta‐Composite Shell  2.12.. TThhe eDDeseigsing onf oa fCtihrceuClalro CakloaSkh Sehllelwl bityh TahrMeee‐Dtai-mCeonmsiponoasli tCeoSohrdeilnlate Transformation  Acoustic cloaking is an important application in acoustic engineering. Developing the means to  2.1. TheDesignofaCircularCloakShellbyThree-DimensionalCoordinateTransformation control the propagation of sound waves has long been a goal of acoustic engineers. Transformation  acoustiAcsc o[8u]s htiacvcel obaekeinn gusisedan inim thpeo rfotarnmt aopf pal icclaotaiokn shinelal ctoou csotinctreonlg tihnee eprrinopg.agDaetvioenlo opfi nsgouthned mweaavness to byc oimntpraorlttihneg parnoispoatgroatpioicn moaftseoruianld pwroapveerstiehsa.s Tlhonisg kbineedn oaf gdoeavlicoef caacno ubset iacpepnlgieinde aesr sa. Tnroainses fiosromlaatotiro n fora croesuisdteicnsti[a8l] bhuaivldeinbegesn anudse sdchinoothlse info trhme ovficainciltoya okf shhieglhlwtoacyosn otrr oalirtphoerptsr;o hpoawgaetvioern, iotf rseoquunirdesw tahve es abbilyityim top aarffteincgt saonuinsodtsr oinp itchem aautedriiballep frroeqpueretniecsy. rTahnigsek. indofdevicecanbeappliedasanoiseisolator forTrheissi dpenaptiearl bpurielsdeinntgss aan ndosvcehlo omlsetian‐cthoemvpiocisnitiety sotrfuhcitguhrwe abyassoedr aoirnp otrrtasn;shfoowrmevateiro,nit raecqouuisrteiscst,h  e in awbihliitcyht othaef ftercatnssofournmdsatiinonth oefa supdaibtilael fcroeqourdeinncaytersa nsgqeu.eezes the transformed space into the cloak  shell reTghioisnp, aapse srhporwesnen itns aFingouvreel m1ae. tTa-oc opmropdousictee satnru acctuoruestbiacs celdoaokn tfroarn asf othrmreaet‐idoinmaecnosuisotnicasl, oinbwjechti,c h  weth aeptpralinesdf ocromoardtioinnaotef strpaantisaflocromoartdiionna tiens tshqeu eraezdeiaslt hdeirtercatniosfno,r meed, assp awceeliln atos tthhee cvloeratkicsahl edllirreecgtiioonn,, as u showninFigure1a. Toproduceanacousticcloakforathree-dimensionalobject,weappliedcoordinate e , as shown in Figure 1b. The coordinate transformation causes the real domain along the  e   wtransformationintheradialdirection,e ,aswellastheverticaldirection,e ,asshowninFigureu1b. u w diTrehcetiocono trod ibnea tceomtrapnrsefsosremd aintitoon thcaeu csleosakth sehreelal lrdegoimona,i nreasluolntigngth iene thde irfoecrmtioantioton boef cao tmrapnrsefsosremdeidn to u regthioenc lionaskidseh. eTlhlree rgeiaoln d,oremsualinti nisg siinmtuheltafonremouastliyo ncoomfaptrreasnsesdfo irnm tehde rveegritoicnailn dsiirdeec.tiTohne, reeal, dthoemreabiny is w exsteimnduilntagn tehoeu esflyfeccot mofp trhees scelodaikn ftrhoemv e2rDti ctoal 3dDir. eTchtiuosn,, tehwe, cthloearkebedy erexgteionnd iinng Ftihgeureeff 1ecbt ios ffrtheee fcrloomak tfhreo m eff2eDctsto o3f Din.cTidheuns,t twheavcelosa, kmeadkrienggi oitn ainn iFdiegaulr peo1sbitiisonfr efoerf rtohme ptlhaeceemffeecntst ooff oinbcjeidctesn rtewquavireisn,gm calokainkginigt.a n In idtehael phoosriitzioonntfaolr tphleanpela, ceams esnutgogfeosbtejedc tsbrye qCuhireinng  ectl oaakl.i n[g1.0I]n, twhee huosriezdo ntthael pslapnaeti,aals  scuogogrdesinteadteb y traCnhsefonremtaatli.o[n10 a]n,wd egouvseerdntihneg sepqautaiatliocno oerqduinivaateletnrcaen stofo drmetaertimoninaen tdheg omvaetrenriinagl peaqruaamtieotneresq ρu iavnadle λn cien to thed etrtaernmsfionremt hdeommaaitne roiaf lap 2aDra cmooetredrisnaρtea ncdircλlei ncltohaekt aras nfosflolorwmsd: omainofa2Dcoordinatecirclecloak asfollows:   (a)    (b)  FigFuigreu r1e. 1D.eDsiegsnig onf ocfirccilrec lcelocaloka uksuinsgin tgratnrasnfosrfmoramtiaotnio ancoaucosutisctsi:c (sa:)( aa)ftaefrt ecroocordoirndaintea tteratnrasfnosrfmoramtiaotni,o n, ReRgieognio Bn nBon loonlognegr eerxeisxtiss tins itnheth teratnrasnfosrfmoremde ddodmoamina,i nth,ethreebreyb myamkainkgin tgheth oebojebcjte cwtiwthiitnh iinnainccaecscseisbslieb le to tioncinidceidnet nwtawvaevs.e Ts.hTish misamkeask ethset hmeamteartiearl ipalropproerpteiersti eosf othfet hcelocaloka skheshlle (lRle(Rgeiognio An)A a)naisnoitsrootproicp iacnadn d inhinohmoomgoegneenoeuosu. s(.b()b G)Geoemometertirci ctrtraannssffoorrmmaattiioonn iinn tthhee vveerrtitcicaalld diriercetcitoino,ne, we,wwh, ewrehinertehine stphaec espinacRee ginio n ReCginono lCo nngoe rloenxgisetrs einxitshtes tirna nthsefo trrmanesdfodrommeadi nd.oTmhiasino.p Tehraisti oonpeersasteinotnia ellsysecnotniavlelryt scothnevseprtasc ethwe isthpianceth e wittrhainns ftohrem terdandsofomrmainedin dtoomthaeineq iunitvoa ltehnet oefqauitvhainlepnlta toef ina othrdine rptolaatec hiine voeradceoru tsoti cacinhvieisvieb ilaictyoufostricth e three-dimensionalobject. invisibility for the three‐dimensional object. Appl.Sci.2017,7,456 4of31  eu df 0 0  f deu  (cid:16) (cid:17)−1  ρ=  0 f df 0  (1a)  eu deu   (cid:16) (cid:17)−1  0 0 eu df f deu e (cid:18)df (cid:19)−1 λ = u (1b) f de u where ρ and λ are the mass density and bulk modulus, respectively, relative to the background media; e , e , and e are the position parameters of the coordinate system, as shown in Figure 1b. u v w e isanonnegativerealnumberdefiningtheradialposition,e liesbetween0to2πande definesthe u v w verticalposition. Function f isthecoordinatetransformfunctionintheradialdirectiontobedefined. Further,theverticalspaceistransformedandcompressedalongtheverticaldirection,asshownin Figure1b. Forcoordinatetransformationintheverticale direction,thetransformationfunctioninthe w verticaldirectionisselectedaccordingtothefollowing: e/ = g(e ) = δ·e . Hereδisthescalefactor w w w (realconstant)intheverticale direction. Inaccordancewiththemethodsoutlinedin[10],andusing w thewaveequationequivalencebetweenthecoordinatetransformeddomainandtheoutsidefield,the cloakshellmaterialparametersofbothradiale andverticale directionsinthetransformeddomain u w canbewrittenas(seetheSupplementaryMaterials):  eu df 0 0  f deu  (cid:16) (cid:17)−1  ρ=  0 f df 0  (2a)  eu deu   (cid:16) (cid:17)−1  0 0 (δ)2eu df f deu e (cid:18)df (cid:19)−1 λ = u . (2b) f de u Followingtheabovemethod,wedesignedthe3Dacousticcirclecloakshellworkinginair. Firstly, in the horizontal plane, we selected the transform function f of the cloak shell in the horizontal e −e planease/ = R +e (R −R )/R ,wheretheradialpositionsare R = 3and R = 6,and u v u 1 u 2 1 2 1 2 the cloak shell region along the radial direction is 3 < e < 6. The transform function f leads to u e/ = f(e ) = 3+0.5e , 4.5 < e/ < 6, e/ = e , and e/ = e . Theabovecoordinatetransformation u u u u v v w w procedure in the radial direction compresses the region in the real domain within e < 3 in the u horizontale −e planeintoregione/ > 3inthetransformeddomain. Thisprocessmakesregion u v u e <3intherealdomainnon-existentinthetransformeddomainandtransformsregione <3intoa u u cloakedregion.Objectsthatonewishestocloakcanbeplacedinsidethecloakedregiontoprotectthem frombeinghitbyincomingsoundwaves. Secondly,intheverticale direction,werandomlyselected w δ =0.4toobtainthecoordinatetransformationfunctionintheverticaldirection,e/ = g(e ) =0.4e . w w w SubstitutingthetransformationfunctionintoEquations(2a)and(2b)providesthematerialparameters ofthe3Dtransformedcloakshellasfollows:   0.33 ∼0.5 0 0 ρ=  0 2 ∼3 0 ρ (3a)   0 0 0 0.21 ∼0.32 λ =1.33λ ∼2λ . (3b) 0 0 According to the above results, the material properties of the cloak shell along e , e , and u v e are spatially varying in three directions. The circular acoustic cloak shell is composed of an w anisotropic inhomogeneous material. Since the acoustic impedance of the material is the primary factordeterminingthepropagationbehaviorofwavesthroughthemedium; therefore,weusethe Appl. Sci. 2017, 7, 456   5 of 31  Secondly, in the vertical  ew direction, we randomly selected 0.4 to obtain the coordinate  e/  g(e ) 0.4e transformation function in the vertical direction, w w w. Substituting the transformation  function into Equations (2a) and (2b) provides the material parameters of the 3D transformed cloak  shell as follows:  0.33~0.5 0 0    ρ 0 2~3 0 0  (3a)  0 0 0.21~0.32   λ1.330 ~20.  (3b) According to the above results, the material properties of the cloak shell along  e ,  e , and  e   u v w are spatially varying in three directions. The circular acoustic cloak shell is composed of an anisotropic  inhomogeneous  material.  Since  the  acoustic  impedance  of  the  material  is  the  primary  factor  Appl.Sci.2017,7,456 5of31 determining the propagation behavior of waves through the medium; therefore, we use the guiding  principle in the design of the cloak shell material. The structural design of the cloak shell is divided  ignutoi dthinrgeep lraiynecrisp laeloinngt htheed reasdigianl odfirtehcetioclno aaks pshloetltlemd iante Friigaul.rTe h2e. Tshtreu tchturerea lladyeesrisg n(eof =th 3e, c4l.o5,a aknsdh e6l;l  u eis d=i v0i~d2edi)n ctoontshtrreuectl atyheer csloaalokn sghethlle rreagdioianl; dthireercetfioorne,a tshpeylo wtteildl bine pFhigyusricea2ll.yT rheealtihzreede blayy perrosp(oeusi=ng3 , 4v.5,and6;e =0~2π)constructthecloakshellregion;therefore,theywillbephysicallyrealizedby v meta‐composite structures.  proposingmeta-compositestructures.   Figure2.Thecloakshellregionisdividedintothreestructurallayers.Thethreelayers(eu=3,4.5,and F6i;geuvr=e 20.~ T2πhe) rcelopareks sehnetltlh reegcliooank iss hdeilvlirdeegdio inntwo itthhraene isstorturcotpuircaml laatyeerriasl. pTrhoep tehrrteiees .layers (eu = 3, 4.5,  and 6;  e  = 0~2) represent the cloak shell region with anisotropic material properties.  v SubstitutingthespatiallyvariedcloakshellmaterialparametersρandλinEquations(3a)and (cid:112) (cid:112) (3b)Sinutbostrietluattiinogn sthheip szpa=tiaρll·yc v=arρiedλ c/loρa=k sheλllρ m(thateerdieafil npiatrioamnoetfesrps ecρifi canadco ust iicni mEqpueadtaionncse )(,3wa)e  canobtaintherequiredratioofspecificacousticimpedanceofthecloakshell,z ,ine ,e ande ,as and  (3b)  into  relationship  z c  /   (the  definition shoefl l specuificv  acouwstic  showninFigure3a–c. ThediagraminFigure3isplottedaccordingtotherelationshipsbetweenthe iCmapretedsaianncec)o, owrde icnaant eosbatnaidn tthheec ryelqinudirreicda lractoioor odfi nsapteecisfyics taecmouosntitch iemhpoerdizaonnctea lopf ltahnee calosaSkx s=heell, cozs(e,)  u shellv iann deS,y  e= eaunsdin (eev),, ares sspheocwtivne ilny. FAigsusrheo w3an–cin. TFhigeu driea3g,rathme rina tiFoigoufrteh e3 sips epcliofitcteadc oaucsctoircdiimngp etdoa tnhcee  u v w valuesofthecloakshellvariesspatiallyinthreedifferentdirections. Acomparisonofthevaluesin relationships between the Cartesian coordinates and the cylindrical coordinate system on the  Figure3atothoseinFigure3cshowsthat,althoughtheyexhibitthesamedistribution,thevariation horizontal plane as  Sx e cos(e ) and  Sy e sin(e ), respectively. As shown in Figure 3, the  ratiosinthe eu, ev, and ewudirectiovnsdiffer. Theiumpedavncevaluesofthecloakshellvaryspatially riantitoh eofe thaen dspeecidfiicr eacctoiounssti,ci nimcrepaesdianngcfer ovmaluthees ionfn tehrem colostatko sthheello uvaterriems ossptaltaiyaellry. Iinn tthhereee ddiifrfeecrteionnt , u w v dtihreecitmiopnesd. aAn cceomvaplaureisiosna ocfo tnhseta vnatl.uFeus ritnh eFrimguorree ,3ba ytos uthbostsiet uinti nFgigtuhree d3ecs sighnoewds mthaatte,r aialtlhpoaurgahm tehteeyrs  (cid:112) eρxhainbdit λthoef sthame cel odaikstsrihbeulltioobnt, atihnee dvianriEatqiouna tiroantio(3s )iinn ttoheth eep,h aese, vaenlodc iety r edliarteicotniosnhsip diffλe/r.ρ ,Tthhee  u v w designedphasevelocitiesinthee ,e ,ande directionswithinthecloakshellareobtained,asplotted impedance values of the cloak sheull vvary spawtially in the  e  and  e  directions, increasing from the  inFigure4. AsshowninFigure4,varyingthevelocityaloungdirectiwone whilekeepingitconstantin v e idnnireercmtioonste utoa llothwes  foourttehremmosatn ilpauyleart.i oInno fththee  prvo pdaigraetcitoionnd, irtehceti oinmopfetdhaenacceo uvsatilcuwe aivse sai nctohnesteaun–te.v  Fpulartnheerwmitohrien, tbhye cslouabkstsithuetliln.gT htehes pdateisailgvnaerdia tmioantseroifalt hpeaprhamaseetevresl ocρityainndsi deth oefc ltohaek  cslhoealkl resghieolnl    arerelatedtothecoordinatetransformation. Thecoordinatetransformationmakesthecloakshell obtained in Equation (3) into the phase velocity relationship /, the designed phase velocities  becomeanisotropicandresultsinthespatialvariationsofthe phasevelocity. Throughthismechanism, wavesinsidethecloakshellcanbeguidedalongapre-determinedpath(asshowninFigure5,PathA); i.e.,thepropagationpathofthewavescanbemadetoavoidtheoriginaltransmissionpaththrough thetransformedregionoccupiedbythecloakedobject. Intheverticaldirectione ,theeffectofthe w coordinatetransformationincreasesthephasevelocityoftheacousticwaves,asshowninFigure4c. Variationsinthephasevelocitycausetheacousticwavestopropagatesmoothlyupward(asshown inFigure5,Pre-DeterminedPathB),therebyproducingacloakedspaceintheverticale direction. w Inthisway,thecloakshellcausestheacousticwavestopropagatealongthepre-determinedpathsand avoidhittingthecloakedobject. Appl. Sci. 2017, 7, 456   6 of 31  e e e in the  ,  , and   directions within the cloak shell are obtained, as plotted in Figure 4.   u v w As shown in Figure 4, varying the velocity along direction  e  while keeping it constant in direction v   e  allows for the manipulation of the propagation direction of the acoustic waves in the  e –e   u u v planewithin the cloak shell. The spatial variations of the phase velocity inside the cloak shell region    are related to the coordinate transformation. The coordinate transformation makes the cloak shell  become  anisotropic  and  results  in  the  spatial  variations  of  the  phase  velocity.  Through  this  mechanism, waves inside the cloak shell can be guided along a pre‐determined path (as shown in  Figure 5, Path A); i.e., the propagation path of the waves can be made to avoid the original  transmission path through the transformed region occupied by the cloaked object. In the vertical  direction  e , the effect of the coordinate transformation increases the phase velocity of the acoustic  w waves, as shown in Figure 4c. Variations in the phase velocity cause the acoustic waves to propagate  smoothly upward (as shown in Figure 5, Pre‐Determined Path B), thereby producing a cloaked  space in the vertical  e  direction. In this way, the cloak shell causes the acoustic waves to  w propagate along the pre‐determined paths and avoid hitting the cloaked object.  Appl.Sci.2017,7,456 6of31   (a) Appl. Sci. 2017, 7, 456   7 of 31  Appl. Sci. 2017, 7, 456   7 of 31    (b)   (c)   (c) Figure 3. The required ratio of specific acoustic impedance value  z  of the cloak shell (relative to  FFthiiggeuu brraeec 3k3..g TTrohhueen rrdeeqq suupiierrceeiddfi crra aattciiooo uoosff tsiscpp eiemcciifpfiiecc daaaccnoocuuess tvtiicac liuimmep)p:e e(dada)a ncnclcoeea vkva aslulhueee llz zrsssehhhgeeellillllo onof fit nthh eeec clloo adakkir seshcheteilollln ((r;r ee(lblaa)tt iiivvnee t thtooe   tthhee bbaacckkggrroouunndd ssppeecciifificc aaccoouussttiicc iimmppeeddaannccee vvaalluuee)):: ((aa)) ccllooaakk sshheellll rreeggiioonn iinn euedui rdecirteiocnti;o(nb;) (ibn) tihne theve  u deeirve  cddtiiirroeencc;ttii(oocn)n;i; n ((cct))h  iienn e ttwhheed  ireeewct  ioddniirr.eeccttiioonn..   v w   (a)   (a) Figure4.Cont.   (b)   (b)   (c)   (c) Figure 4. Designed variation in wave phase velocity (relative to background) inside the cloak shell: (a)  Figure 4. Designed variation in wave phase velocity (relative to background) inside the cloak shell: (a)  in the  e  direction of the cloak shell region; (b) in the  e  direction; (c) in the  e  direction.   in the  eu direction of the cloak shell region; (b) in the  ev direction; (c) in the  ew direction.   u v w The direction of incoming waves can be guided by altering the wave phase speed using the  The direction of incoming waves can be guided by altering the wave phase speed using the  anisotropic material properties of the cloak shell.  anisotropic material properties of the cloak shell. Appl. Sci. 2017, 7, 456   7 of 31    (c) Figure 3. The required ratio of specific acoustic impedance value  z  of the cloak shell (relative to  shell the background specific acoustic impedance value): (a) cloak shell region in  e  direction; (b) in the  u e  direction; (c) in the  e  direction.  v w Appl.Sci.2017,7,456 7of31   (a)   (b)   (c) Figure 4. Designed variation in wave phase velocity (relative to background) inside the cloak shell: (a)  Figure4. Designedvariationinwavephasevelocity(relativetobackground)insidethecloakshell: in the  e  direction of the cloak shell region; (b) in the  e  direction; (c) in the  e  direction.   (a)intheeuudirectionofthecloakshellregion;(b)intheevdirectiovn;(c)intheewdirection.Twhedirection oTfhien cdoimreicntgiown aovfe sinccaonmbiengg uwidaevdesb ycaanlt ebrein gguthideewd abvye pahltaesriensgp ethede uwsainvge tphheaasnei ssoptreoepdi cumsinatge rtihael  Appl. Spacrnio.i p2s0oe1trr7toi, e7ps,i 4co5 fm6t ha teecrlioala kprsohpeellr.ties of the cloak shell.  8 of 31    FFiigguurree 55.. PPrree-‐ddeetteerrmmiinneedd ppaatthh ffoorr wwaavvee pprrooppaaggaattiioonn aarroouunndd tthhee ccllooaakk sshheellll.. TThhee aanniissoottrrooppiicc mmaatteerriiaall  pprrooppeerrttiieess ooff tthhee ccllooaakk sshheellll ccaauussee tthhee ddiirreeccttiioonn ooff wwaavvee pprrooppaaggaattiioonn ttoo cchhaannggee ffrroomm iittss oorriiggiinnaall  ddiirreeccttiioonn ttoo aa pprree-‐ddeetteerrmmiinneedd ppaatthh..  2.2. Meta‐Composite Structural Design for a Three‐Dimensional Circle‐Type Cloak Shell  2.2. Meta-CompositeStructuralDesignforaThree-DimensionalCircle-TypeCloakShell AAss sshhoowwnni ninF Figiguurere3 ,3t,h tehsep sepceificcifaicc oaucostuicstiimc pimedpaendcaenvcael uveaslu,zessh,e llz,svheallr,y vianrsyo mine saormeaes aorfetahse ocfl otahke  schloeallk, wshheilclh, wnehcicehss niteacteessstihtaetuess ethoef uascelo oafk as chleolalkc asphaeblll ecaopfapbrloev oidf ipnrgovthidesinegs ptheceisfiec sipmecpiefidca inmcepevdaalunecse.  Hvaelruee,sw. eHperroep, owsee apmroeptao-sceo ma pmoestitae‐csotrmupctousrieted setsriugcnteudret odpersoigvnideed dtioff eprreonvtiidmep dedifafenrceenvt ailmuepsedinanthcee  evua,leuve,sa nind etwhed ireect,i oens,t harnodu gehth ediuresectoiofnssp etchirfiocusgthru cthtuer aulsceo mofp osnpeencitfsi.c Asstrpurcetvuiroaul sclyomdepsocnreibnetds.   u v w inFigure2,theanisotropiccloakshellisactivebyathree-layermeta-compositestructure. Figure6 As  previously  described  in  Figure  2,  the  anisotropic  cloak  shell  is  active  by  a  three‐layer  explainsthecompositedblockelementsthatformthecloakshellbythelayermeta-compositestructure. meta‐composite structure. Figure 6 explains the composited block elements that form the cloak shell  Theblockelementsinthelayeraredesignedaccordingtothespatiallyanisotropicpropertiesofthe by the layer meta‐composite structure. The block elements in the layer are designed according to the  cloakshellthroughimpedancedesign. spatially anisotropic properties of the cloak shell through impedance design.    Figure 6. The three layers of meta‐composite structures forming the cloak shell region. Each block  element in the layer is designed according to the spatially anisotropic properties of the cloak shell  through impedance design.  Acoustic structural engineering [26–28] can be used to develop structural devices, such as tubes  and cavities, in order to provide acoustic mass and acoustic compliance, respectively. Thus, the  impedance value can be adjusted by altering the configuration of this structural device. As shown in  Figure 7a, we assembled block elements with cavities and tubes in three directions, the tubes acting  as acoustic mass and the cavity in the center ensuring acoustic compliance. Each block element Appl. Sci. 2017, 7, 456   8 of 31    Figure 5. Pre‐determined path for wave propagation around the cloak shell. The anisotropic material  properties of the cloak shell cause the direction of wave propagation to change from its original  direction to a pre‐determined path.  2.2. Meta‐Composite Structural Design for a Three‐Dimensional Circle‐Type Cloak Shell  As shown in Figure 3, the specific acoustic impedance values,  z , vary in some areas of the  shell   cloak shell, which necessitates the use of a cloak shell capable of providing these specific impedance  values. Here, we propose a meta‐composite structure designed to provide different impedance  e e e values in the  ,  , and   directions through the use of specific structural components.   u v w As  previously  described  in  Figure  2,  the  anisotropic  cloak  shell  is  active  by  a  three‐layer  meta‐composite structure. Figure 6 explains the composited block elements that form the cloak shell  by the layer meta‐composite structure. The block elements in the layer are designed according to the  Aspppal.tSiacil.l2y0 1a7n,i7s,o4t5r6opic properties of the cloak shell through impedance design.  8of31   Figure6. Thethreelayersofmeta-compositestructuresformingthecloakshellregion. Eachblock Figure 6. The three layers of meta‐composite structures forming the cloak shell region. Each block  elementinthelayerisdesignedaccordingtothespatiallyanisotropicpropertiesofthecloakshell tehlreomuegnht iminp tehdea lnacyeerd eiss idgnes.igned according to the spatially anisotropic properties of the cloak shell  through impedance design.  Acousticstructuralengineering[26–28]canbeusedtodevelopstructuraldevices,suchastubes Acoustic structural engineering [26–28] can be used to develop structural devices, such as tubes  and cavities, in order to provide acoustic mass and acoustic compliance, respectively. Thus, the and cavities, in order to provide acoustic mass and acoustic compliance, respectively. Thus, the  impedancevaluecanbeadjustedbyalteringtheconfigurationofthisstructuraldevice. Asshown impedance value can be adjusted by altering the configuration of this structural device. As shown in  in Figure 7a, we assembled block elements with cavities and tubes in three directions, the tubes Figure 7a, we assembled block elements with cavities and tubes in three directions, the tubes acting  actingasacousticmassandthecavityinthecenterensuringacousticcompliance. Eachblockelement as acoustic mass and the cavity in the center ensuring acoustic compliance. Each block element  comprisesasinglecavityinthecenterwithfourtubesindifferentdirections. Theseblockelements provide the acoustic impedance value z . In the structure of tube, the physical law governing the b motion of air inside the tube [26,28] is f(t) = M(du(t)/dt), where M is the mass of volume fluid inside the tube. After dividing the cross-sectional area A of the tubes, the motion of air leads to (cid:0) (cid:1) f(t)/A = (M/A)·{d[u(t)A]/dtA},whichcanbefurtherexpressedas p(t) = M/A2 ·[dU(t)/dt]. (cid:0) (cid:1) Usingtheabove,therelationshipcanbefurtherexplainedasfollows: p(t) = M/A2 ·[dU(t)/dt] (cid:2) (cid:3) = (ρ l A)/A2 ·[dU(t)/dt]= M [dU(t)/dt] = jwM U. Inthestructureofthecavity,thephysical 0 e A A lawsgoverningthecompressionofairbeingactedonbyaforceinacavity[26,28]leadtothefollowing (cid:82) equation: p(t) = (1/C ) U(t)dt = U/jwC = −jU/wC . The value M is the acoustic mass A A A A or acoustic inertance, C is the acoustic compliance. Using the above properties, a block element A comprisingtubesandcavitystructuresprovidestheacousticimpedancevalueZ intherespectivee , b u e ,ande directionsasfollows: v w 1 (cid:18)ρ l (cid:19) 1(cid:18)ρ c2(cid:19) Z =jwM − j=jw 0 e − 0 j. (4) b A wC A w V A Appl. Sci. 2017, 7, 456   9 of 31  comprises a single cavity in the center with four tubes in different directions. These block elements  z provide the acoustic impedance value  . In the structure of tube, the physical law governing the  b motion of air inside the tube [26,28] is  f(t) M(du(t)/dt), where M is the mass of volume fluid  inside the tube. After dividing the cross‐sectional area A of the tubes, the motion of air leads to      f(t)/A(M/A) du(t)A /dtA ,  which  can  be  further  expressed  as  pt M / A2dUt/dt. Using the above, the relationship can be further explained as follows: p(t) M /A2dUt/dt =  l A/ A2dUt/dt =  M dUt/dt jwM U .  In  the  0 e A A structure of the cavity, the physical laws governing the compression of air being acted on by a force  in a cavity [26,28] lead to the following equation:  p(t)(1/C )U(t)dtU/jwC jU/wC .  A A A M C The value   is the acoustic mass or acoustic inertance,   is the acoustic compliance. Using the  A A above properties, a block element comprising tubes and cavity structures provides the acoustic  impedance value  Z  in the respective  e ,  e , and  e  directions as follows:  b u v w 1 l  1c2  Zb  jwMAwC j jw A0 e w V0 j   (4) A . The  first  part,  jwM  is  the  acoustic  impedance  value  supplied  by  the  tube  structure;   A j(1/wC ) the second value,  , is the acoustic impedance value supplied by the cavity structure.   A In Equation (4),  j 1,  w is the circular frequency,    is the density of the background  0 medium (air), and c is the wave speed in air. Values A represent the cross section of the tubes and  value V is the volume of the cavity. Because tubes connected the cavity, forming as the flanged end  in the cavity side, the effective length  l  is the original tube length plus the correction value of the  Appl.Sci.2017,7,456 e 9of31 flanged end [27] as shown in Figure 7b.    Appl. Sci. 2017, 7, 456   10 of 31  (a) (b) Figure 7. Structure of the meta‐composite material used to make up the cloak shell: (a) the block  Figure7. Structureofthemeta-compositematerialusedtomakeupthecloakshell: (a)theblock elements include cavities and tubes arranged as circular elements in three layers. The inset on the  elementsincludecavitiesandtubesarrangedascircularelementsinthreelayers. Theinsetonthe upper  right  shows  the  details  of  single  block  elements  with  rectangular  cavities  and  tubes.   upperrightshowsthedetailsofsingleblockelementswithrectangularcavitiesandtubes.Thebottom The bottom right inset exhibits both the cloak shell layered structures and cylinder object inside the  rightinsetexhibitsboththecloakshelllayeredstructuresandcylinderobjectinsidethecloakedregion; cloaked region; (b) the part slices of the meta‐composite material layer exhibit the interior cavity and  (b)thepartslicesofthemeta-compositemateriallayerexhibittheinteriorcavityandtubeindirections. tube in directions. The coefficient a explains the cross section dimension of and individual element,  Thecoefficientaexplainsthecrosssectiondimensionofandindividualelement,andlerepresentsthe aenffde ctlieve rleepnrgetshesnotsf tthhee etuffbeectciovne nleenctgetdhsw oift hthteh etucbaev ictoy.nnected with the cavity.  e e e ETqhueafitirosnt p(a4r)t ,pjwroMvideiss tihmepaecdouanstciec ivmaplueedsa nocf etvhael ucelosaukp pshlieeldl biny the,t ube, satrnudc ture; dthireesceticoonnsd.   A u v w Tvhaleu √efr,ejq(1u/ewncCyA )o,f isththe emaecotau‐cstoimcipmopsieted asntrcuecvtualrue eiss uspept laiesd 1b0y00t hHezc,a vainty usntrduiscttourrtee.dI nfrEeqquueanticoyn f(o4r),  j = −1,wisthecircularfrequency,ρ isthedensityofthebackgroundmedium(air),andcisthe human hearing. Using the relationshi0p  Z A  Z  in conjunction with the specific cavity  b i shell wavespeedinair. ValuesArepresentthecrosssectionofthetubesandvalueVisthevolumeofthe dimensions, the cloak shell can be represented using a three‐layer metamaterial comprising a  cavity. Becausetubesconnectedthecavity,formingastheflangedendinthecavityside,theeffective sletrnugctthurlaeli bsltohcek oerleigmineanlt,t uasb eshloenwgnt hinp Fluigsutrhee 7c. oNrroetcet itohnatv  aAlui eoaf2t hies flthaen cgreodsse‐nsedct[i2o7n]aal sarsehao owfn thien  iFnidgiuvried7uba.l element forming the cloak shell layers, where the element size a of a specific layer in the  studyE qisu aptrieosnen(t4e)d pinro vFiidguesre im7bp. eTdhaen cdeesvigalnu epsaroafmtehteersc lwoaekre sdheesllcriinbedeu ,ine vT,abalned 1.e wBedcairuesceti othnes . mTheetafmreaqtueerinacly  sotfruthcetumree tap-rcoovmidpeoss itaecostursutcictu rmeaissss eatnasd 10a0c0ouHszti,ca ncoumndpilsiatonrctee drfartehqeure nthcyanf orachouumstainc  rheesaisrtinangc.eU, stihneg sthheellr eisla atibolne sthoi psto|Zre |a·cAou=sticZ enerignyc roantjhuenrc tthioann wcoitnhstuhmees peenceifirgcyc aavnidty itd himase na slioowns‐,lothsse  b i shell nclaotaukres.h Feilglucaren 8b eexrepplareinses nttheed iunsteinrigoar dtherteaeil-sla oyfe rthme emtaemtaa‐tceormialpcoosmitep rmisaintegriaals tsrtuructcuturarleb, lsohcokweilnegm tehnet , interior details of block elements with rectangular cavities and tubes sliced by a horizontal surface in  the  e –e  plane and by a vertical surface in the  e –e  plane, respectively. Based on the principle  u v u w of Equation (4), the combination of cavity and tubes of the block element provides the acoustic  impedance value  Z  in the  e ,  e , and  e directions, respectively. The tubes connected the  b u v w  cavity without extending inside the interior of the cavity. In the design, the cloak shell structure  element unit is composed of cavity and a pair of tubes series connected in the respective direction.  They give the impedance performance as the Helmholtz resonator [29]. Table 1 lists the design  parameters of the structure. A total of 144 block elements were used in the cloak shell. The volume of  the cavities was set as 27,000  mm3 for each layer. The largest size of the cavities was 30 mm,   and the wavelength of the design frequency was 343 mm (1000 Hz, c = 343 m/s); therefore, the size of  the elements did not exceed 1/10 of the wavelength. The cloak shell structure elements were  designed based on the principles of the long wavelength limit [30] and the structure of the cloak  shell could then be treated as an effective medium for incident waves. As per the anisotropic nature  of the acoustic impedance values in three different directions, the designed block element tube  lengths in three directions belonging to the cloak shell are plotted in Figure 9. The spatial variations  of  the  tube length around  the  circumference  of the  circle‐type  shell  agree  with  the required Appl.Sci.2017,7,456 10of31 asshowninFigure7. Notethat A = a2isthecross-sectionalareaoftheindividualelementforming i thecloakshelllayers,wheretheelementsizeaofaspecificlayerinthestudyispresentedinFigure7b. ThedesignparametersweredescribedinTable1. Becausethemetamaterialstructureprovidesacoustic massandacousticcomplianceratherthanacousticresistance,theshellisabletostoreacousticenergy ratherthanconsumeenergyandithasalow-lossnature. Figure8explainstheinteriordetailsofthe meta-compositematerialstructure,showingtheinteriordetailsofblockelementswithrectangular cavitiesandtubesslicedbyahorizontalsurfaceinthee –e planeandbyaverticalsurfaceinthee –e u v u w plane,respectively. BasedontheprincipleofEquation(4),thecombinationofcavityandtubesofthe blockelementprovidestheacousticimpedancevalueZ inthee ,e ,ande directions,respectively. b u v w Thetubesconnectedthecavitywithoutextendinginsidetheinteriorofthecavity. Inthedesign,the cloakshellstructureelementunitiscomposedofcavityandapairoftubesseriesconnectedinthe respectivedirection. TheygivetheimpedanceperformanceastheHelmholtzresonator[29]. Table1 liststhedesignparametersofthestructure. Atotalof144blockelementswereusedinthecloakshell. Thevolumeofthecavitieswassetas27,000mm3 foreachlayer. Thelargestsizeofthecavitieswas 30mm,andthewavelengthofthedesignfrequencywas343mm(1000Hz,c=343m/s);therefore, thesizeoftheelementsdidnotexceed1/10ofthewavelength. Thecloakshellstructureelements weredesignedbasedontheprinciplesofthelongwavelengthlimit[30]andthestructureofthecloak shellcouldthenbetreatedasaneffectivemediumforincidentwaves. Aspertheanisotropicnatureof theacousticimpedancevaluesinthreedifferentdirections,thedesignedblockelementtubelengths inthreedirectionsbelongingtothecloakshellareplottedinFigure9. Thespatialvariationsofthe Appl. Sci. 2017, 7, 456   11 of 31  tubelengtharoundthecircumferenceofthecircle-typeshellagreewiththerequiredimpedanceofthe Appl. Sci. 2017, 7, 456   11 of 31  cloakshellinFigure3. Throughthecombinationofthecentercavityanddifferenttubelengthsinthe impedance of the cloak shell in Figure 3. Through the combination of the center cavity and different  eu,evi,tmuapbneed dlaeenwncgdet hiorsfe  ticnht eiot hcnleos a,ekth s, eheepllr,  oinapn Fodisg euedrem  3d.ei rTteahc-rtcoioounmgsh,p  ttohhseei  tcpeorsmotprbouinsceatdtui ormen epotfar e‐tchcoeism ceeplnyotsesiritme c asuvtrliautytce tausnrtdeh  depirafefnecirisseeonltty r opic u v w matetrsuiibamelu pllearntoegpst ehrtsht iieen s a,thnweis hoetiurco,h peipcvr , omavnaiddte ereiatwhl  edpisrrohepcetelilrotsnietsrs,u , tchwteuh pricerhof poporrsoethdvei dm3ee Dttah‐ceco oomsrhdpeolilns iatsetter usttcrrtuaucnrtesu frofeor rmp rtaehcteiiso en3lyDc  loak. Italssociomdouersldacitnreiasbt eet shtretah neasnfaoinsroimstroaottpirooincp  cimcloamatkea.r tiIeatrl  aialpslropo dproeesrptciereirsbt,ie esws thhoiefc chal noipasrokotvrsoihdpeeilc l tmchaean tesbrhieaelal lpc hrsotirepuvecrettduiersien  odffo icrrle octahtkley  sth3heDrll o ugh theimccoaponer ddbiean naacctehe itedrvaeensdisg fionnrd.miraetciotlny  cthloraoku.g Iht  tahlseo i mdepsecdriabnecse  tdhees aignnis. otropic material properties of cloak shell  can be achieved indirectly through the impedance design.  TabTleab1l.eD 1e. sDiegsnigpna praarmameteetresrso offb blloocckk eelleemmeennttss uusesded ini nthteh celocalok askheslhl. ell. Table 1. Design parameters of block elements used in the cloak shell.  Layer  Element Size a  Cavity Volume  Tube Inner Diameter c Element Number/per  ElementSizea CavityVolume Element LayerNNLuuamymbebre err  Eleme(mntm S)i ze a  Cba v× ibty × V bo (lmumme3)   TubTeu IbnenI(enmrn Dmeri)a Dmieatmere tcerc(mElmem) ent LNauymerb er/per  (mm) b×b×b(mm3) Number/perLayer Num1b er  (m5m5 )  b × b 2×7 b,0 (0m0 m3)  (m11m.2)8   La2y8e r  1 1  5555  2277,,000000  e ‐direc1t1io.2n8  11.2181.28  28  28 u 2 22   414.4211.2.2   222777,,00,0000000   eeuve‐‐udd-idrireiercectticoitoinon n  11.92 8  11.28 5522   52 3  43.9  27,000  eve‐vd-idreircetci1ot1ino.2 n8  9  9 64  3 43.9 27,000 11.28 64 3  43.9  27,000  11.28  64  Block  eBlelomcekn t  Blockelement deimlemenesniot ns  dimensions dimensions          Figure 8. The interior details of the meta‐composite material structure. The block elements include  Fciagvuirtiee s8 .a nTdh et uinbteesr aiorrr adnegteadil sa so cf itrhceu lmare etale‐mcoemnptso isnit teh mreea tlearyiaelr ss.t Truhcet uinrsee. tT ohne  tbhleo lcekf te slhemowens ttsh ein dcelutadiels   coafv ibtileosc ka nedl etmubeenst sa rwrainthg erde catsa cnigrcuulalarr  cealevmitieenst sa innd t hturebee lsa yselircse.d T hbey i nas estu ornfa tchee  ilne ftt hshe oews– thee d petlaaniles .   u v oTf hbel orcigkh et leinmseent tps rewsietnht sr edcetataniglsu loafr  tchaev ibtileosc ka nedle mtuebnetss  sslliicceedd  bbyy  aa  ssuurrffaaccee  iinn  tthhee  eeu––eev  pplalannee. .    u w TThhee yr iegxhhti binits tehte  pdreetsaeilnst os f dtheeta cillso aokf  sthheell  lbalyoecrke de lsetmruecntutsr essl iicnesdid eb yth ea  cslouarkfaecde  reing iothne.  Tehue –coemwb ipnlaatnioen.    Tohfe cya vexithyi baint dth teu dbeetsa oilfs  tohfe t hbelo cclkoa ekl esmheelnl tla pyreorvedid setsr uthcteu arecos uinsstiicd eim thpee cdlaonakcee dv arelugeio nZ. Th ien c sopmebciifnica tieon ,  b u oef ca, vaintdy  aend tduibreesc toiof nths,e r belsopcekc teilveemlye.n t provides the acoustic impedance value  Zb in specific eu,  v w  e , and  e directions, respectively.  v w

Description:
outlines the design, fabrication, and experimental analysis of a circular acoustic cloak shell made of meta-composite material for in-air applications. ANSYS Mechanical APDL Acoustic Analysis Guide; Released 14.0; ANSYS: Canonsburg, PA, USA, 2013. 32. Howard, C.Q.; Cazzolato, B.S. Acoustic
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.