applied sciences Article The Experimental Realization of an Acoustic Cloak in Air with a Meta-Composite Shell Shiuh-KuangYang1,Jau-ChoLin1,2,*andJyin-WenCheng3 1 DepartmentofMechanicalandElectro-MechanicalEngineering,NationalSunYat-senUniversity, Kaohsiung80424,Taiwan;[email protected] 2 ArchitectureandBuildingResearchInstitute,MinistryofInterior,NewTaipeiCity23143,Taiwan 3 CepstrumTechnologyCorporation,Kaohsiung80245,Taiwan;[email protected] * Correspondence:[email protected];Tel.:+886-7-521-7252 AcademicEditor:VitalyiGusev Received:10March2017;Accepted:25April2017;Published:29April2017 Abstract: Anisotropic cloak shells can be used for the spatial transformation of a space to alter the propagation of acoustic waves by redirecting them along a pre-determined path. This paper outlinesthedesign,fabrication,andexperimentalanalysisofacircularacousticcloakshellmade of meta-composite material for in-air applications. Based on the three-dimensional coordinate transformation,wefirstdesignedananisotropiccirclemeta-compositecloakshellaccordingtoits impedance values. The cloak shell comprises various layered structures with cavities and tubes, respectively, providing acoustic mass and compliance for the provision of anisotropic material properties. Secondly,weconductednumericalandexperimentalanalysesunderpracticeworking conditionstodemonstratetheefficacyoftheacousticcloak.Thestructureofthecloakshell,fabricated bythree-dimensionalprinting(3Dprinting),isexperimentallyevaluatedinasemi-anechoicroom withafree-fieldenvironment. Thesimulationandexperimentalresultsdemonstratetheacoustic cloakingeffectsinthescatteringfarfield. Besidesthescatteringfield,thesoundfieldmeasurement resultsobtainedwiththeregionenclosedbytheshellalsoshowstheabilitiesofthecloakshellin alteringthedirectionofwavepropagationalongapre-determinedpathinair. Keywords: metamaterials;acousticcloaks;meta-compositecloakshell;transformationacoustic 1. Introduction In1968,Veselago[1]proposedtheconceptofmetamaterialspossessingpropertiesnotfoundin typicalmaterialsinEMwaves. Sincethen,numerousmetamaterialshavebeendeveloped,including negativerefractionmaterials,perfectlenses,andinvisibilitycloaks(Shelbyetal.[2]andPendryet al. [3,4]). In 2000, Liu et al. [5] used a lead sphere and silicon composite material to construct a resonantsonicmaterialwithuniquematerialproperties. Leeetal.[6]andHuangetal.[7]reported onamembranousmetamaterialstructure. CummerandSchurig[8]developedacousticcloaksusing transformationacoustics. Throughthetransformationofspatialcoordinates, incidentsoundfrom all directions can be guided to pass around an acoustic cloak shell. The object within the cloaked regionisunaffectedbyincidentacousticwavesandisthereforesaidtobeacousticallycloaked. In2007, CummerandSchurig[8]usedtheexactequivalenceofacousticsandEMwavesintheconstruction of two-dimensional (2D) acoustic cloaks. They paved the way for the application of coordinate transformationtechniquestoprovidecloaksforacousticwaves. Three-dimensionalacousticcloaking referstoacousticscattering,whichwasdevelopedin2008[9],therebydemonstratingtheexistence ofthree-dimensional(3D)transformationcloaks. In2013,Chenetal.[10]expandedthestrategyof transformation acoustics from simple cylindrical shapes to general coordinate systems. This was achievedbyovercomingthedifficultiesinvolvedinimpedancematchingalongtheboundaryofthe Appl.Sci.2017,7,456;doi:10.3390/app7050456 www.mdpi.com/journal/applsci Appl.Sci.2017,7,456 2of31 cloakshellinthebackgroundmedia. Theirresultshaveprovidedareferencebywhichthematerial parametersofvariousacousticcloakscanbederived. Inthefieldofoptics,AndkjærandSigmund[11] employedtopologyoptimizationfordesigningall-dielectriccloaksin2011. In2013,Fujiietal.[12] used a level set-based topology method that provides discrete cloaking configurations with good performance. Otomori et al. [13] proposed a method for the design of an electromagnetic cloak madeofferritematerialin2013. FujiiandUeta[14]describedthetopology-optimizedcarpetcloaks made of dielectric material in 2016. Lan et al. [15] experimentally demonstrated a unidirectional electromagneticcloakdesignbytopologyoptimization. TheyfabricatedaTefloncloakingsampleby apreciseengravingmachine. Urzhumovetal.[16]reportedamicrowaveX-bandcloakingdevice in2013. Previousresearchonacousticcloaksusedtheconceptofcoordinatetransformationtodevelop designparametersforcloakshells. Coordinatetransformationaltersthematerialpropertiesofacloak shellbymakingthemanisotropicwithspatiallyvaryingmassdensityandbulkmodulus;however, the complexity of such materials has hampered the realization of acoustic cloaks. In recent years, Zhangetal.[17]usedanetworkofacousticcircuitelementstocreateacylindricalcloakshellforuse inwateroverafrequencyrangeof52–64kHz. Theyusedthesamemetamaterialsforthefocusing of ultrasound images with a flat lens [18]. Carpet cloaks in air have also been researched. Popa and Cummer [19] and Zigoneanu et al. [20] used metamaterial structures comprising a periodic arrangement of perforated plastic plates, and used the impedance tube method to measure the transmission properties. Zhu et al. [21] and Popa et al. [22] performed numerical investigations andexperimentson2Dtriangularacousticgroundcarpetcloaksbasedonperforatedplasticplates. Sanchisetal.[23]recentlyusedageneticalgorithmtooptimizetheringstructureof3Dacousticcloaks toreducethescatteringofthefieldinordertomaketheacousticcloakworkable. In2013,Andkjær andSigmund[24]investigatedacloakthatconcealsanaluminumcylinderacousticallyforairborne sound based on a gradient-based topology optimization algorithm. In 2014, Zigoneanu et al. [25] usedtheconceptofcarpetcloakswithametamaterialcomprisingastructureofperforatedplatesfor thefabricationofapyramidaldeviceasanacousticcarpetcloakoperatingat3kHz. Thepyramidal cloakingdevicecomprisedfourperforatedplatecomponentstoenable3Dcloaking. Theoreticalandpracticalguidelineshavebeendevelopedforthedesignofacousticcloaksin water; however,littleworkhasbeencompletedonthedevelopmentofcloakshellsworkinginair. Enabling cloaking by the transformation of spatial coordinates (transformation acoustic) requires spatially anisotropic material properties along three coordinate axes. Furthermore, a cloak shell workinginairrequiresadensityorbulkmodulusoflessthanunityinsomeareasoftheshell;this, however,isnoteasytorealizephysically. Themetamaterialsdesignedforuseinwaterareinapplicable inair. Previousattemptstodevelopmetamaterialsaimedathidingobjectssubmergedinwaterwere unabletoprovidetheanisotropicmaterialdensitythatwouldberequiredinair. Eventhescattering cancellationtechniquesproposedbySanchisetal.[23]aredifficulttoimplement,andtheresulting cloakfailswhenthehiddenobjectisreplacedwithanotherobjectofadifferentshape. Thisfailurecan beattributedtothescatteringinteractioncausedbytheincongruitybetweenthenewobjectandthe designoftheringstructurewithinthecloakshell. The present study focused on the design, fabrication, and evaluation of acoustic cloak shells in air. This research involved the physical realization of the acoustic cloak in air by means of the proposedcloakshelldesignedtospatiallyvarytheimpedancevaluesofthecloakshell. Inaddition tothecloakdesign, wehavealsopresentedanewmeta-compositestructurematerialforpractical applications. Finally,arealcloakshellwasproducedby3Dprintingandsubjectedtobothnumerical andexperimentalanalyses. Appl. Sci. 2017, 7, 456 3 of 31 Appl.Sci.2017,7,456 3of31 2. The Design of the Cloak Shell with a Meta‐Composite Shell 2.12.. TThhe eDDeseigsing onf oa fCtihrceuClalro CakloaSkh Sehllelwl bityh TahrMeee‐Dtai-mCeonmsiponoasli tCeoSohrdeilnlate Transformation Acoustic cloaking is an important application in acoustic engineering. Developing the means to 2.1. TheDesignofaCircularCloakShellbyThree-DimensionalCoordinateTransformation control the propagation of sound waves has long been a goal of acoustic engineers. Transformation acoustiAcsc o[8u]s htiacvcel obaekeinn gusisedan inim thpeo rfotarnmt aopf pal icclaotaiokn shinelal ctoou csotinctreonlg tihnee eprrinopg.agDaetvioenlo opfi nsgouthned mweaavness to byc oimntpraorlttihneg parnoispoatgroatpioicn moaftseoruianld pwroapveerstiehsa.s Tlhonisg kbineedn oaf gdoeavlicoef caacno ubset iacpepnlgieinde aesr sa. Tnroainses fiosromlaatotiro n fora croesuisdteicnsti[a8l] bhuaivldeinbegesn anudse sdchinoothlse info trhme ovficainciltoya okf shhieglhlwtoacyosn otrr oalirtphoerptsr;o hpoawgaetvioern, iotf rseoquunirdesw tahve es abbilyityim top aarffteincgt saonuinsodtsr oinp itchem aautedriiballep frroeqpueretniecsy. rTahnigsek. indofdevicecanbeappliedasanoiseisolator forTrheissi dpenaptiearl bpurielsdeinntgss aan ndosvcehlo omlsetian‐cthoemvpiocisnitiety sotrfuhcitguhrwe abyassoedr aoirnp otrrtasn;shfoowrmevateiro,nit raecqouuisrteiscst,h e in awbihliitcyht othaef ftercatnssofournmdsatiinonth oefa supdaibtilael fcroeqourdeinncaytersa nsgqeu.eezes the transformed space into the cloak shell reTghioisnp, aapse srhporwesnen itns aFingouvreel m1ae. tTa-oc opmropdousictee satnru acctuoruestbiacs celdoaokn tfroarn asf othrmreaet‐idoinmaecnosuisotnicasl, oinbwjechti,c h weth aeptpralinesdf ocromoardtioinnaotef strpaantisaflocromoartdiionna tiens tshqeu eraezdeiaslt hdeirtercatniosfno,r meed, assp awceeliln atos tthhee cvloeratkicsahl edllirreecgtiioonn,, as u showninFigure1a. Toproduceanacousticcloakforathree-dimensionalobject,weappliedcoordinate e , as shown in Figure 1b. The coordinate transformation causes the real domain along the e wtransformationintheradialdirection,e ,aswellastheverticaldirection,e ,asshowninFigureu1b. u w diTrehcetiocono trod ibnea tceomtrapnrsefsosremd aintitoon thcaeu csleosakth sehreelal lrdegoimona,i nreasluolntigngth iene thde irfoecrmtioantioton boef cao tmrapnrsefsosremdeidn to u regthioenc lionaskidseh. eTlhlree rgeiaoln d,oremsualinti nisg siinmtuheltafonremouastliyo ncoomfaptrreasnsesdfo irnm tehde rveegritoicnailn dsiirdeec.tiTohne, reeal, dthoemreabiny is w exsteimnduilntagn tehoeu esflyfeccot mofp trhees scelodaikn ftrhoemv e2rDti ctoal 3dDir. eTchtiuosn,, tehwe, cthloearkebedy erexgteionnd iinng Ftihgeureeff 1ecbt ios ffrtheee fcrloomak tfhreo m eff2eDctsto o3f Din.cTidheuns,t twheavcelosa, kmeadkrienggi oitn ainn iFdiegaulr peo1sbitiisonfr efoerf rtohme ptlhaeceemffeecntst ooff oinbcjeidctesn rtewquavireisn,gm calokainkginigt.a n In idtehael phoosriitzioonntfaolr tphleanpela, ceams esnutgogfeosbtejedc tsbrye qCuhireinng ectl oaakl.i n[g1.0I]n, twhee huosriezdo ntthael pslapnaeti,aals scuogogrdesinteadteb y traCnhsefonremtaatli.o[n10 a]n,wd egouvseerdntihneg sepqautaiatliocno oerqduinivaateletnrcaen stofo drmetaertimoninaen tdheg omvaetrenriinagl peaqruaamtieotneresq ρu iavnadle λn cien to thed etrtaernmsfionremt hdeommaaitne roiaf lap 2aDra cmooetredrisnaρtea ncdircλlei ncltohaekt aras nfosflolorwmsd: omainofa2Dcoordinatecirclecloak asfollows: (a) (b) FigFuigreu r1e. 1D.eDsiegsnig onf ocfirccilrec lcelocaloka uksuinsgin tgratnrasnfosrfmoramtiaotnio ancoaucosutisctsi:c (sa:)( aa)ftaefrt ecroocordoirndaintea tteratnrasfnosrfmoramtiaotni,o n, ReRgieognio Bn nBon loonlognegr eerxeisxtiss tins itnheth teratnrasnfosrfmoremde ddodmoamina,i nth,ethreebreyb myamkainkgin tgheth oebojebcjte cwtiwthiitnh iinnainccaecscseisbslieb le to tioncinidceidnet nwtawvaevs.e Ts.hTish misamkeask ethset hmeamteartiearl ipalropproerpteiersti eosf othfet hcelocaloka skheshlle (lRle(Rgeiognio An)A a)naisnoitsrootproicp iacnadn d inhinohmoomgoegneenoeuosu. s(.b()b G)Geoemometertirci ctrtraannssffoorrmmaattiioonn iinn tthhee vveerrtitcicaalld diriercetcitoino,ne, we,wwh, ewrehinertehine stphaec espinacRee ginio n ReCginono lCo nngoe rloenxgisetrs einxitshtes tirna nthsefo trrmanesdfodrommeadi nd.oTmhiasino.p Tehraisti oonpeersasteinotnia ellsysecnotniavlelryt scothnevseprtasc ethwe isthpianceth e wittrhainns ftohrem terdandsofomrmainedin dtoomthaeineq iunitvoa ltehnet oefqauitvhainlepnlta toef ina othrdine rptolaatec hiine voeradceoru tsoti cacinhvieisvieb ilaictyoufostricth e three-dimensionalobject. invisibility for the three‐dimensional object. Appl.Sci.2017,7,456 4of31 eu df 0 0 f deu (cid:16) (cid:17)−1 ρ= 0 f df 0 (1a) eu deu (cid:16) (cid:17)−1 0 0 eu df f deu e (cid:18)df (cid:19)−1 λ = u (1b) f de u where ρ and λ are the mass density and bulk modulus, respectively, relative to the background media; e , e , and e are the position parameters of the coordinate system, as shown in Figure 1b. u v w e isanonnegativerealnumberdefiningtheradialposition,e liesbetween0to2πande definesthe u v w verticalposition. Function f isthecoordinatetransformfunctionintheradialdirectiontobedefined. Further,theverticalspaceistransformedandcompressedalongtheverticaldirection,asshownin Figure1b. Forcoordinatetransformationintheverticale direction,thetransformationfunctioninthe w verticaldirectionisselectedaccordingtothefollowing: e/ = g(e ) = δ·e . Hereδisthescalefactor w w w (realconstant)intheverticale direction. Inaccordancewiththemethodsoutlinedin[10],andusing w thewaveequationequivalencebetweenthecoordinatetransformeddomainandtheoutsidefield,the cloakshellmaterialparametersofbothradiale andverticale directionsinthetransformeddomain u w canbewrittenas(seetheSupplementaryMaterials): eu df 0 0 f deu (cid:16) (cid:17)−1 ρ= 0 f df 0 (2a) eu deu (cid:16) (cid:17)−1 0 0 (δ)2eu df f deu e (cid:18)df (cid:19)−1 λ = u . (2b) f de u Followingtheabovemethod,wedesignedthe3Dacousticcirclecloakshellworkinginair. Firstly, in the horizontal plane, we selected the transform function f of the cloak shell in the horizontal e −e planease/ = R +e (R −R )/R ,wheretheradialpositionsare R = 3and R = 6,and u v u 1 u 2 1 2 1 2 the cloak shell region along the radial direction is 3 < e < 6. The transform function f leads to u e/ = f(e ) = 3+0.5e , 4.5 < e/ < 6, e/ = e , and e/ = e . Theabovecoordinatetransformation u u u u v v w w procedure in the radial direction compresses the region in the real domain within e < 3 in the u horizontale −e planeintoregione/ > 3inthetransformeddomain. Thisprocessmakesregion u v u e <3intherealdomainnon-existentinthetransformeddomainandtransformsregione <3intoa u u cloakedregion.Objectsthatonewishestocloakcanbeplacedinsidethecloakedregiontoprotectthem frombeinghitbyincomingsoundwaves. Secondly,intheverticale direction,werandomlyselected w δ =0.4toobtainthecoordinatetransformationfunctionintheverticaldirection,e/ = g(e ) =0.4e . w w w SubstitutingthetransformationfunctionintoEquations(2a)and(2b)providesthematerialparameters ofthe3Dtransformedcloakshellasfollows: 0.33 ∼0.5 0 0 ρ= 0 2 ∼3 0 ρ (3a) 0 0 0 0.21 ∼0.32 λ =1.33λ ∼2λ . (3b) 0 0 According to the above results, the material properties of the cloak shell along e , e , and u v e are spatially varying in three directions. The circular acoustic cloak shell is composed of an w anisotropic inhomogeneous material. Since the acoustic impedance of the material is the primary factordeterminingthepropagationbehaviorofwavesthroughthemedium; therefore,weusethe Appl. Sci. 2017, 7, 456 5 of 31 Secondly, in the vertical ew direction, we randomly selected 0.4 to obtain the coordinate e/ g(e ) 0.4e transformation function in the vertical direction, w w w. Substituting the transformation function into Equations (2a) and (2b) provides the material parameters of the 3D transformed cloak shell as follows: 0.33~0.5 0 0 ρ 0 2~3 0 0 (3a) 0 0 0.21~0.32 λ1.330 ~20. (3b) According to the above results, the material properties of the cloak shell along e , e , and e u v w are spatially varying in three directions. The circular acoustic cloak shell is composed of an anisotropic inhomogeneous material. Since the acoustic impedance of the material is the primary factor Appl.Sci.2017,7,456 5of31 determining the propagation behavior of waves through the medium; therefore, we use the guiding principle in the design of the cloak shell material. The structural design of the cloak shell is divided ignutoi dthinrgeep lraiynecrisp laeloinngt htheed reasdigianl odfirtehcetioclno aaks pshloetltlemd iante Friigaul.rTe h2e. Tshtreu tchturerea lladyeesrisg n(eof =th 3e, c4l.o5,a aknsdh e6l;l u eis d=i v0i~d2edi)n ctoontshtrreuectl atyheer csloaalokn sghethlle rreagdioianl; dthireercetfioorne,a tshpeylo wtteildl bine pFhigyusricea2ll.yT rheealtihzreede blayy perrosp(oeusi=ng3 , 4v.5,and6;e =0~2π)constructthecloakshellregion;therefore,theywillbephysicallyrealizedby v meta‐composite structures. proposingmeta-compositestructures. Figure2.Thecloakshellregionisdividedintothreestructurallayers.Thethreelayers(eu=3,4.5,and F6i;geuvr=e 20.~ T2πhe) rcelopareks sehnetltlh reegcliooank iss hdeilvlirdeegdio inntwo itthhraene isstorturcotpuircaml laatyeerriasl. pTrhoep tehrrteiees .layers (eu = 3, 4.5, and 6; e = 0~2) represent the cloak shell region with anisotropic material properties. v SubstitutingthespatiallyvariedcloakshellmaterialparametersρandλinEquations(3a)and (cid:112) (cid:112) (3b)Sinutbostrietluattiinogn sthheip szpa=tiaρll·yc v=arρiedλ c/loρa=k sheλllρ m(thateerdieafil npiatrioamnoetfesrps ecρifi canadco ust iicni mEqpueadtaionncse )(,3wa)e canobtaintherequiredratioofspecificacousticimpedanceofthecloakshell,z ,ine ,e ande ,as and (3b) into relationship z c / (the definition shoefl l specuificv acouwstic showninFigure3a–c. ThediagraminFigure3isplottedaccordingtotherelationshipsbetweenthe iCmapretedsaianncec)o, owrde icnaant eosbatnaidn tthheec ryelqinudirreicda lractoioor odfi nsapteecisfyics taecmouosntitch iemhpoerdizaonnctea lopf ltahnee calosaSkx s=heell, cozs(e,) u shellv iann deS,y e= eaunsdin (eev),, ares sspheocwtivne ilny. FAigsusrheo w3an–cin. TFhigeu driea3g,rathme rina tiFoigoufrteh e3 sips epcliofitcteadc oaucsctoircdiimngp etdoa tnhcee u v w valuesofthecloakshellvariesspatiallyinthreedifferentdirections. Acomparisonofthevaluesin relationships between the Cartesian coordinates and the cylindrical coordinate system on the Figure3atothoseinFigure3cshowsthat,althoughtheyexhibitthesamedistribution,thevariation horizontal plane as Sx e cos(e ) and Sy e sin(e ), respectively. As shown in Figure 3, the ratiosinthe eu, ev, and ewudirectiovnsdiffer. Theiumpedavncevaluesofthecloakshellvaryspatially riantitoh eofe thaen dspeecidfiicr eacctoiounssti,ci nimcrepaesdianngcfer ovmaluthees ionfn tehrem colostatko sthheello uvaterriems ossptaltaiyaellry. Iinn tthhereee ddiifrfeecrteionnt , u w v dtihreecitmiopnesd. aAn cceomvaplaureisiosna ocfo tnhseta vnatl.uFeus ritnh eFrimguorree ,3ba ytos uthbostsiet uinti nFgigtuhree d3ecs sighnoewds mthaatte,r aialtlhpoaurgahm tehteeyrs (cid:112) eρxhainbdit λthoef sthame cel odaikstsrihbeulltioobnt, atihnee dvianriEatqiouna tiroantio(3s )iinn ttoheth eep,h aese, vaenlodc iety r edliarteicotniosnhsip diffλe/r.ρ ,Tthhee u v w designedphasevelocitiesinthee ,e ,ande directionswithinthecloakshellareobtained,asplotted impedance values of the cloak sheull vvary spawtially in the e and e directions, increasing from the inFigure4. AsshowninFigure4,varyingthevelocityaloungdirectiwone whilekeepingitconstantin v e idnnireercmtioonste utoa llothwes foourttehremmosatn ilpauyleart.i oInno fththee prvo pdaigraetcitoionnd, irtehceti oinmopfetdhaenacceo uvsatilcuwe aivse sai nctohnesteaun–te.v Fpulartnheerwmitohrien, tbhye cslouabkstsithuetliln.gT htehes pdateisailgvnaerdia tmioantseroifalt hpeaprhamaseetevresl ocρityainndsi deth oefc ltohaek cslhoealkl resghieolnl arerelatedtothecoordinatetransformation. Thecoordinatetransformationmakesthecloakshell obtained in Equation (3) into the phase velocity relationship /, the designed phase velocities becomeanisotropicandresultsinthespatialvariationsofthe phasevelocity. Throughthismechanism, wavesinsidethecloakshellcanbeguidedalongapre-determinedpath(asshowninFigure5,PathA); i.e.,thepropagationpathofthewavescanbemadetoavoidtheoriginaltransmissionpaththrough thetransformedregionoccupiedbythecloakedobject. Intheverticaldirectione ,theeffectofthe w coordinatetransformationincreasesthephasevelocityoftheacousticwaves,asshowninFigure4c. Variationsinthephasevelocitycausetheacousticwavestopropagatesmoothlyupward(asshown inFigure5,Pre-DeterminedPathB),therebyproducingacloakedspaceintheverticale direction. w Inthisway,thecloakshellcausestheacousticwavestopropagatealongthepre-determinedpathsand avoidhittingthecloakedobject. Appl. Sci. 2017, 7, 456 6 of 31 e e e in the , , and directions within the cloak shell are obtained, as plotted in Figure 4. u v w As shown in Figure 4, varying the velocity along direction e while keeping it constant in direction v e allows for the manipulation of the propagation direction of the acoustic waves in the e –e u u v planewithin the cloak shell. The spatial variations of the phase velocity inside the cloak shell region are related to the coordinate transformation. The coordinate transformation makes the cloak shell become anisotropic and results in the spatial variations of the phase velocity. Through this mechanism, waves inside the cloak shell can be guided along a pre‐determined path (as shown in Figure 5, Path A); i.e., the propagation path of the waves can be made to avoid the original transmission path through the transformed region occupied by the cloaked object. In the vertical direction e , the effect of the coordinate transformation increases the phase velocity of the acoustic w waves, as shown in Figure 4c. Variations in the phase velocity cause the acoustic waves to propagate smoothly upward (as shown in Figure 5, Pre‐Determined Path B), thereby producing a cloaked space in the vertical e direction. In this way, the cloak shell causes the acoustic waves to w propagate along the pre‐determined paths and avoid hitting the cloaked object. Appl.Sci.2017,7,456 6of31 (a) Appl. Sci. 2017, 7, 456 7 of 31 Appl. Sci. 2017, 7, 456 7 of 31 (b) (c) (c) Figure 3. The required ratio of specific acoustic impedance value z of the cloak shell (relative to FFthiiggeuu brraeec 3k3..g TTrohhueen rrdeeqq suupiierrceeiddfi crra aattciiooo uoosff tsiscpp eiemcciifpfiiecc daaaccnoocuuess tvtiicac liuimmep)p:e e(dada)a ncnclcoeea vkva aslulhueee llz zrsssehhhgeeellillllo onof fit nthh eeec clloo adakkir seshcheteilollln ((r;r ee(lblaa)tt iiivvnee t thtooe tthhee bbaacckkggrroouunndd ssppeecciifificc aaccoouussttiicc iimmppeeddaannccee vvaalluuee)):: ((aa)) ccllooaakk sshheellll rreeggiioonn iinn euedui rdecirteiocnti;o(nb;) (ibn) tihne theve u deeirve cddtiiirroeencc;ttii(oocn)n;i; n ((cct))h iienn e ttwhheed ireeewct ioddniirr.eeccttiioonn.. v w (a) (a) Figure4.Cont. (b) (b) (c) (c) Figure 4. Designed variation in wave phase velocity (relative to background) inside the cloak shell: (a) Figure 4. Designed variation in wave phase velocity (relative to background) inside the cloak shell: (a) in the e direction of the cloak shell region; (b) in the e direction; (c) in the e direction. in the eu direction of the cloak shell region; (b) in the ev direction; (c) in the ew direction. u v w The direction of incoming waves can be guided by altering the wave phase speed using the The direction of incoming waves can be guided by altering the wave phase speed using the anisotropic material properties of the cloak shell. anisotropic material properties of the cloak shell. Appl. Sci. 2017, 7, 456 7 of 31 (c) Figure 3. The required ratio of specific acoustic impedance value z of the cloak shell (relative to shell the background specific acoustic impedance value): (a) cloak shell region in e direction; (b) in the u e direction; (c) in the e direction. v w Appl.Sci.2017,7,456 7of31 (a) (b) (c) Figure 4. Designed variation in wave phase velocity (relative to background) inside the cloak shell: (a) Figure4. Designedvariationinwavephasevelocity(relativetobackground)insidethecloakshell: in the e direction of the cloak shell region; (b) in the e direction; (c) in the e direction. (a)intheeuudirectionofthecloakshellregion;(b)intheevdirectiovn;(c)intheewdirection.Twhedirection oTfhien cdoimreicntgiown aovfe sinccaonmbiengg uwidaevdesb ycaanlt ebrein gguthideewd abvye pahltaesriensgp ethede uwsainvge tphheaasnei ssoptreoepdi cumsinatge rtihael Appl. Spacrnio.i p2s0oe1trr7toi, e7ps,i 4co5 fm6t ha teecrlioala kprsohpeellr.ties of the cloak shell. 8 of 31 FFiigguurree 55.. PPrree-‐ddeetteerrmmiinneedd ppaatthh ffoorr wwaavvee pprrooppaaggaattiioonn aarroouunndd tthhee ccllooaakk sshheellll.. TThhee aanniissoottrrooppiicc mmaatteerriiaall pprrooppeerrttiieess ooff tthhee ccllooaakk sshheellll ccaauussee tthhee ddiirreeccttiioonn ooff wwaavvee pprrooppaaggaattiioonn ttoo cchhaannggee ffrroomm iittss oorriiggiinnaall ddiirreeccttiioonn ttoo aa pprree-‐ddeetteerrmmiinneedd ppaatthh.. 2.2. Meta‐Composite Structural Design for a Three‐Dimensional Circle‐Type Cloak Shell 2.2. Meta-CompositeStructuralDesignforaThree-DimensionalCircle-TypeCloakShell AAss sshhoowwnni ninF Figiguurere3 ,3t,h tehsep sepceificcifaicc oaucostuicstiimc pimedpaendcaenvcael uveaslu,zessh,e llz,svheallr,y vianrsyo mine saormeaes aorfetahse ocfl otahke schloeallk, wshheilclh, wnehcicehss niteacteessstihtaetuess ethoef uascelo oafk as chleolalkc asphaeblll ecaopfapbrloev oidf ipnrgovthidesinegs ptheceisfiec sipmecpiefidca inmcepevdaalunecse. Hvaelruee,sw. eHperroep, owsee apmroeptao-sceo ma pmoestitae‐csotrmupctousrieted setsriugcnteudret odpersoigvnideed dtioff eprreonvtiidmep dedifafenrceenvt ailmuepsedinanthcee evua,leuve,sa nind etwhed ireect,i oens,t harnodu gehth ediuresectoiofnssp etchirfiocusgthru cthtuer aulsceo mofp osnpeencitfsi.c Asstrpurcetvuiroaul sclyomdepsocnreibnetds. u v w inFigure2,theanisotropiccloakshellisactivebyathree-layermeta-compositestructure. Figure6 As previously described in Figure 2, the anisotropic cloak shell is active by a three‐layer explainsthecompositedblockelementsthatformthecloakshellbythelayermeta-compositestructure. meta‐composite structure. Figure 6 explains the composited block elements that form the cloak shell Theblockelementsinthelayeraredesignedaccordingtothespatiallyanisotropicpropertiesofthe by the layer meta‐composite structure. The block elements in the layer are designed according to the cloakshellthroughimpedancedesign. spatially anisotropic properties of the cloak shell through impedance design. Figure 6. The three layers of meta‐composite structures forming the cloak shell region. Each block element in the layer is designed according to the spatially anisotropic properties of the cloak shell through impedance design. Acoustic structural engineering [26–28] can be used to develop structural devices, such as tubes and cavities, in order to provide acoustic mass and acoustic compliance, respectively. Thus, the impedance value can be adjusted by altering the configuration of this structural device. As shown in Figure 7a, we assembled block elements with cavities and tubes in three directions, the tubes acting as acoustic mass and the cavity in the center ensuring acoustic compliance. Each block element Appl. Sci. 2017, 7, 456 8 of 31 Figure 5. Pre‐determined path for wave propagation around the cloak shell. The anisotropic material properties of the cloak shell cause the direction of wave propagation to change from its original direction to a pre‐determined path. 2.2. Meta‐Composite Structural Design for a Three‐Dimensional Circle‐Type Cloak Shell As shown in Figure 3, the specific acoustic impedance values, z , vary in some areas of the shell cloak shell, which necessitates the use of a cloak shell capable of providing these specific impedance values. Here, we propose a meta‐composite structure designed to provide different impedance e e e values in the , , and directions through the use of specific structural components. u v w As previously described in Figure 2, the anisotropic cloak shell is active by a three‐layer meta‐composite structure. Figure 6 explains the composited block elements that form the cloak shell by the layer meta‐composite structure. The block elements in the layer are designed according to the Aspppal.tSiacil.l2y0 1a7n,i7s,o4t5r6opic properties of the cloak shell through impedance design. 8of31 Figure6. Thethreelayersofmeta-compositestructuresformingthecloakshellregion. Eachblock Figure 6. The three layers of meta‐composite structures forming the cloak shell region. Each block elementinthelayerisdesignedaccordingtothespatiallyanisotropicpropertiesofthecloakshell tehlreomuegnht iminp tehdea lnacyeerd eiss idgnes.igned according to the spatially anisotropic properties of the cloak shell through impedance design. Acousticstructuralengineering[26–28]canbeusedtodevelopstructuraldevices,suchastubes Acoustic structural engineering [26–28] can be used to develop structural devices, such as tubes and cavities, in order to provide acoustic mass and acoustic compliance, respectively. Thus, the and cavities, in order to provide acoustic mass and acoustic compliance, respectively. Thus, the impedancevaluecanbeadjustedbyalteringtheconfigurationofthisstructuraldevice. Asshown impedance value can be adjusted by altering the configuration of this structural device. As shown in in Figure 7a, we assembled block elements with cavities and tubes in three directions, the tubes Figure 7a, we assembled block elements with cavities and tubes in three directions, the tubes acting actingasacousticmassandthecavityinthecenterensuringacousticcompliance. Eachblockelement as acoustic mass and the cavity in the center ensuring acoustic compliance. Each block element comprisesasinglecavityinthecenterwithfourtubesindifferentdirections. Theseblockelements provide the acoustic impedance value z . In the structure of tube, the physical law governing the b motion of air inside the tube [26,28] is f(t) = M(du(t)/dt), where M is the mass of volume fluid inside the tube. After dividing the cross-sectional area A of the tubes, the motion of air leads to (cid:0) (cid:1) f(t)/A = (M/A)·{d[u(t)A]/dtA},whichcanbefurtherexpressedas p(t) = M/A2 ·[dU(t)/dt]. (cid:0) (cid:1) Usingtheabove,therelationshipcanbefurtherexplainedasfollows: p(t) = M/A2 ·[dU(t)/dt] (cid:2) (cid:3) = (ρ l A)/A2 ·[dU(t)/dt]= M [dU(t)/dt] = jwM U. Inthestructureofthecavity,thephysical 0 e A A lawsgoverningthecompressionofairbeingactedonbyaforceinacavity[26,28]leadtothefollowing (cid:82) equation: p(t) = (1/C ) U(t)dt = U/jwC = −jU/wC . The value M is the acoustic mass A A A A or acoustic inertance, C is the acoustic compliance. Using the above properties, a block element A comprisingtubesandcavitystructuresprovidestheacousticimpedancevalueZ intherespectivee , b u e ,ande directionsasfollows: v w 1 (cid:18)ρ l (cid:19) 1(cid:18)ρ c2(cid:19) Z =jwM − j=jw 0 e − 0 j. (4) b A wC A w V A Appl. Sci. 2017, 7, 456 9 of 31 comprises a single cavity in the center with four tubes in different directions. These block elements z provide the acoustic impedance value . In the structure of tube, the physical law governing the b motion of air inside the tube [26,28] is f(t) M(du(t)/dt), where M is the mass of volume fluid inside the tube. After dividing the cross‐sectional area A of the tubes, the motion of air leads to f(t)/A(M/A) du(t)A /dtA , which can be further expressed as pt M / A2dUt/dt. Using the above, the relationship can be further explained as follows: p(t) M /A2dUt/dt = l A/ A2dUt/dt = M dUt/dt jwM U . In the 0 e A A structure of the cavity, the physical laws governing the compression of air being acted on by a force in a cavity [26,28] lead to the following equation: p(t)(1/C )U(t)dtU/jwC jU/wC . A A A M C The value is the acoustic mass or acoustic inertance, is the acoustic compliance. Using the A A above properties, a block element comprising tubes and cavity structures provides the acoustic impedance value Z in the respective e , e , and e directions as follows: b u v w 1 l 1c2 Zb jwMAwC j jw A0 e w V0 j (4) A . The first part, jwM is the acoustic impedance value supplied by the tube structure; A j(1/wC ) the second value, , is the acoustic impedance value supplied by the cavity structure. A In Equation (4), j 1, w is the circular frequency, is the density of the background 0 medium (air), and c is the wave speed in air. Values A represent the cross section of the tubes and value V is the volume of the cavity. Because tubes connected the cavity, forming as the flanged end in the cavity side, the effective length l is the original tube length plus the correction value of the Appl.Sci.2017,7,456 e 9of31 flanged end [27] as shown in Figure 7b. Appl. Sci. 2017, 7, 456 10 of 31 (a) (b) Figure 7. Structure of the meta‐composite material used to make up the cloak shell: (a) the block Figure7. Structureofthemeta-compositematerialusedtomakeupthecloakshell: (a)theblock elements include cavities and tubes arranged as circular elements in three layers. The inset on the elementsincludecavitiesandtubesarrangedascircularelementsinthreelayers. Theinsetonthe upper right shows the details of single block elements with rectangular cavities and tubes. upperrightshowsthedetailsofsingleblockelementswithrectangularcavitiesandtubes.Thebottom The bottom right inset exhibits both the cloak shell layered structures and cylinder object inside the rightinsetexhibitsboththecloakshelllayeredstructuresandcylinderobjectinsidethecloakedregion; cloaked region; (b) the part slices of the meta‐composite material layer exhibit the interior cavity and (b)thepartslicesofthemeta-compositemateriallayerexhibittheinteriorcavityandtubeindirections. tube in directions. The coefficient a explains the cross section dimension of and individual element, Thecoefficientaexplainsthecrosssectiondimensionofandindividualelement,andlerepresentsthe aenffde ctlieve rleepnrgetshesnotsf tthhee etuffbeectciovne nleenctgetdhsw oift hthteh etucbaev ictoy.nnected with the cavity. e e e ETqhueafitirosnt p(a4r)t ,pjwroMvideiss tihmepaecdouanstciec ivmaplueedsa nocf etvhael ucelosaukp pshlieeldl biny the,t ube, satrnudc ture; dthireesceticoonnsd. A u v w Tvhaleu √efr,ejq(1u/ewncCyA )o,f isththe emaecotau‐cstoimcipmopsieted asntrcuecvtualrue eiss uspept laiesd 1b0y00t hHezc,a vainty usntrduiscttourrtee.dI nfrEeqquueanticoyn f(o4r), j = −1,wisthecircularfrequency,ρ isthedensityofthebackgroundmedium(air),andcisthe human hearing. Using the relationshi0p Z A Z in conjunction with the specific cavity b i shell wavespeedinair. ValuesArepresentthecrosssectionofthetubesandvalueVisthevolumeofthe dimensions, the cloak shell can be represented using a three‐layer metamaterial comprising a cavity. Becausetubesconnectedthecavity,formingastheflangedendinthecavityside,theeffective sletrnugctthurlaeli bsltohcek oerleigmineanlt,t uasb eshloenwgnt hinp Fluigsutrhee 7c. oNrroetcet itohnatv aAlui eoaf2t hies flthaen cgreodsse‐nsedct[i2o7n]aal sarsehao owfn thien iFnidgiuvried7uba.l element forming the cloak shell layers, where the element size a of a specific layer in the studyE qisu aptrieosnen(t4e)d pinro vFiidguesre im7bp. eTdhaen cdeesvigalnu epsaroafmtehteersc lwoaekre sdheesllcriinbedeu ,ine vT,abalned 1.e wBedcairuesceti othnes . mTheetafmreaqtueerinacly sotfruthcetumree tap-rcoovmidpeoss itaecostursutcictu rmeaissss eatnasd 10a0c0ouHszti,ca ncoumndpilsiatonrctee drfartehqeure nthcyanf orachouumstainc rheesaisrtinangc.eU, stihneg sthheellr eisla atibolne sthoi psto|Zre |a·cAou=sticZ enerignyc roantjhuenrc tthioann wcoitnhstuhmees peenceifirgcyc aavnidty itd himase na slioowns‐,lothsse b i shell nclaotaukres.h Feilglucaren 8b eexrepplareinses nttheed iunsteinrigoar dtherteaeil-sla oyfe rthme emtaemtaa‐tceormialpcoosmitep rmisaintegriaals tsrtuructcuturarleb, lsohcokweilnegm tehnet , interior details of block elements with rectangular cavities and tubes sliced by a horizontal surface in the e –e plane and by a vertical surface in the e –e plane, respectively. Based on the principle u v u w of Equation (4), the combination of cavity and tubes of the block element provides the acoustic impedance value Z in the e , e , and e directions, respectively. The tubes connected the b u v w cavity without extending inside the interior of the cavity. In the design, the cloak shell structure element unit is composed of cavity and a pair of tubes series connected in the respective direction. They give the impedance performance as the Helmholtz resonator [29]. Table 1 lists the design parameters of the structure. A total of 144 block elements were used in the cloak shell. The volume of the cavities was set as 27,000 mm3 for each layer. The largest size of the cavities was 30 mm, and the wavelength of the design frequency was 343 mm (1000 Hz, c = 343 m/s); therefore, the size of the elements did not exceed 1/10 of the wavelength. The cloak shell structure elements were designed based on the principles of the long wavelength limit [30] and the structure of the cloak shell could then be treated as an effective medium for incident waves. As per the anisotropic nature of the acoustic impedance values in three different directions, the designed block element tube lengths in three directions belonging to the cloak shell are plotted in Figure 9. The spatial variations of the tube length around the circumference of the circle‐type shell agree with the required Appl.Sci.2017,7,456 10of31 asshowninFigure7. Notethat A = a2isthecross-sectionalareaoftheindividualelementforming i thecloakshelllayers,wheretheelementsizeaofaspecificlayerinthestudyispresentedinFigure7b. ThedesignparametersweredescribedinTable1. Becausethemetamaterialstructureprovidesacoustic massandacousticcomplianceratherthanacousticresistance,theshellisabletostoreacousticenergy ratherthanconsumeenergyandithasalow-lossnature. Figure8explainstheinteriordetailsofthe meta-compositematerialstructure,showingtheinteriordetailsofblockelementswithrectangular cavitiesandtubesslicedbyahorizontalsurfaceinthee –e planeandbyaverticalsurfaceinthee –e u v u w plane,respectively. BasedontheprincipleofEquation(4),thecombinationofcavityandtubesofthe blockelementprovidestheacousticimpedancevalueZ inthee ,e ,ande directions,respectively. b u v w Thetubesconnectedthecavitywithoutextendinginsidetheinteriorofthecavity. Inthedesign,the cloakshellstructureelementunitiscomposedofcavityandapairoftubesseriesconnectedinthe respectivedirection. TheygivetheimpedanceperformanceastheHelmholtzresonator[29]. Table1 liststhedesignparametersofthestructure. Atotalof144blockelementswereusedinthecloakshell. Thevolumeofthecavitieswassetas27,000mm3 foreachlayer. Thelargestsizeofthecavitieswas 30mm,andthewavelengthofthedesignfrequencywas343mm(1000Hz,c=343m/s);therefore, thesizeoftheelementsdidnotexceed1/10ofthewavelength. Thecloakshellstructureelements weredesignedbasedontheprinciplesofthelongwavelengthlimit[30]andthestructureofthecloak shellcouldthenbetreatedasaneffectivemediumforincidentwaves. Aspertheanisotropicnatureof theacousticimpedancevaluesinthreedifferentdirections,thedesignedblockelementtubelengths inthreedirectionsbelongingtothecloakshellareplottedinFigure9. Thespatialvariationsofthe Appl. Sci. 2017, 7, 456 11 of 31 tubelengtharoundthecircumferenceofthecircle-typeshellagreewiththerequiredimpedanceofthe Appl. Sci. 2017, 7, 456 11 of 31 cloakshellinFigure3. Throughthecombinationofthecentercavityanddifferenttubelengthsinthe impedance of the cloak shell in Figure 3. Through the combination of the center cavity and different eu,evi,tmuapbneed dlaeenwncgdet hiorsfe ticnht eiot hcnleos a,ekth s, eheepllr, oinapn Fodisg euedrem 3d.ei rTteahc-rtcoioounmgsh,p ttohhseei tcpeorsmotprbouinsceatdtui ormen epotfar e‐tchcoeism ceeplnyotsesiritme c asuvtrliautytce tausnrtdeh depirafefnecirisseeonltty r opic u v w matetrsuiibamelu pllearntoegpst ehrtsht iieen s a,thnweis hoetiurco,h peipcvr , omavnaiddte ereiatwhl edpisrrohepcetelilrotsnietsrs,u , tchwteuh pricerhof poporrsoethdvei dm3ee Dttah‐ceco oomsrhdpeolilns iatsetter usttcrrtuaucnrtesu frofeor rmp rtaehcteiiso en3lyDc loak. Italssociomdouersldacitnreiasbt eet shtretah neasnfaoinsroimstroaottpirooincp cimcloamatkea.r tiIeatrl aialpslropo dproeesrptciereirsbt,ie esws thhoiefc chal noipasrokotvrsoihdpeeilc l tmchaean tesbrhieaelal lpc hrsotirepuvecrettduiersien odffo icrrle octahtkley sth3heDrll o ugh theimccoaponer ddbiean naacctehe itedrvaeensdisg fionnrd.miraetciotlny cthloraoku.g Iht tahlseo i mdepsecdriabnecse tdhees aignnis. otropic material properties of cloak shell can be achieved indirectly through the impedance design. TabTleab1l.eD 1e. sDiegsnigpna praarmameteetresrso offb blloocckk eelleemmeennttss uusesded ini nthteh celocalok askheslhl. ell. Table 1. Design parameters of block elements used in the cloak shell. Layer Element Size a Cavity Volume Tube Inner Diameter c Element Number/per ElementSizea CavityVolume Element LayerNNLuuamymbebre err Eleme(mntm S)i ze a Cba v× ibty × V bo (lmumme3) TubTeu IbnenI(enmrn Dmeri)a Dmieatmere tcerc(mElmem) ent LNauymerb er/per (mm) b×b×b(mm3) Number/perLayer Num1b er (m5m5 ) b × b 2×7 b,0 (0m0 m3) (m11m.2)8 La2y8e r 1 1 5555 2277,,000000 e ‐direc1t1io.2n8 11.2181.28 28 28 u 2 22 414.4211.2.2 222777,,00,0000000 eeuve‐‐udd-idrireiercectticoitoinon n 11.92 8 11.28 5522 52 3 43.9 27,000 eve‐vd-idreircetci1ot1ino.2 n8 9 9 64 3 43.9 27,000 11.28 64 3 43.9 27,000 11.28 64 Block eBlelomcekn t Blockelement deimlemenesniot ns dimensions dimensions Figure 8. The interior details of the meta‐composite material structure. The block elements include Fciagvuirtiee s8 .a nTdh et uinbteesr aiorrr adnegteadil sa so cf itrhceu lmare etale‐mcoemnptso isnit teh mreea tlearyiaelr ss.t Truhcet uinrsee. tT ohne tbhleo lcekf te slhemowens ttsh ein dcelutadiels coafv ibtileosc ka nedl etmubeenst sa rwrainthg erde catsa cnigrcuulalarr cealevmitieenst sa innd t hturebee lsa yselircse.d T hbey i nas estu ornfa tchee ilne ftt hshe oews– thee d petlaaniles . u v oTf hbel orcigkh et leinmseent tps rewsietnht sr edcetataniglsu loafr tchaev ibtileosc ka nedle mtuebnetss sslliicceedd bbyy aa ssuurrffaaccee iinn tthhee eeu––eev pplalannee. . u w TThhee yr iegxhhti binits tehte pdreetsaeilnst os f dtheeta cillso aokf sthheell lbalyoecrke de lsetmruecntutsr essl iicnesdid eb yth ea cslouarkfaecde reing iothne. Tehue –coemwb ipnlaatnioen. Tohfe cya vexithyi baint dth teu dbeetsa oilfs tohfe t hbelo cclkoa ekl esmheelnl tla pyreorvedid setsr uthcteu arecos uinsstiicd eim thpee cdlaonakcee dv arelugeio nZ. Th ien c sopmebciifnica tieon , b u oef ca, vaintdy aend tduibreesc toiof nths,e r belsopcekc teilveemlye.n t provides the acoustic impedance value Zb in specific eu, v w e , and e directions, respectively. v w
Description: