ebook img

The existence of a semialgebraic continuous factorization map for some compact linear groups PDF

0.09 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The existence of a semialgebraic continuous factorization map for some compact linear groups

UDK 512.815.1+512.815.6+512.816.1+512.816.2 MSC 14L24+22C05 O.G.Styrt 5 1 0 The existence 2 n of a semialgebraic continuous a J factorization map 0 1 for some compact linear groups ] G A It is proved that each of compact linear groups of one special type admits . h a semialgebraic continuous factorization map onto a real vector space. t a Key words: Lie group, factorization map of an action, semialgebraic map. m [ §1. Introduction 1 v 8 In this paper, we prove that each of compact linear groups of one certain type admits 2 a semialgebraic continuous factorization map onto a real vector space. This problem arose 3 fromthequestionwhenthetopologicalquotientofacompactlineargroupishomeomorphic 2 to a vector space that was researchedin [1, 2, 3, 4, 5]. 0 . Forconvenience,denotebyPR (resp.byPC)theclassofallfinite-dimensionalEuclidean 1 (resp. Hermitian) spaces. Let F be one of the fields R and C. We will write Fk (k > 0) for 0 the space Fk ∈ PF whose standard basis is orthonormal. For any spaces W1,W2 ∈ PF, we 5 1 will write W1⊕W2 for their orthogonal direct sum W1⊕W2 ∈PF (unless they are linearly : independent subspacesofthe samespace).ForanyspaceW ∈PF,denote byS(W)the real v subspace A ∈ EndF(W): A = A∗ ⊂ EndF(W), by O(W) the compact Lie group C ∈ Xi ∈GLF(W(cid:8)): CC∗ =E ⊂GLF(W),(cid:9)and by SO(W) its compact subgroup O(W)∩SLF(cid:8)(W). (cid:9) r The following theorem is the main result of the paper and will be proved in §3. a Theorem1.1. Consideranumberk ∈{1,2},aspaceW ∈PF suchthatdimFW >2−k, and the representation O(W): S(W)/(RE) ⊕HomF(Fk,W), C: (A+RE,B)→(CAC−1+RE,CB). (1.1) (cid:0) (cid:1) 1 1)If k = 1, then there exist a real vector space V and, in terms of the representation O(W): V⊕F, C: (v,λ)→(v,detFC·λ),asemialgebraiccontinuous O(W) -equivariant (cid:0) (cid:1) surjective map S(W)/(RE) ⊕HomF(Fk,W) → V ⊕F whose fibres coincide with the (cid:0) (cid:1) SO(W) -orbits. (cid:0) (cid:1) 2)If k =2, then there exist a real vector space V and a semialgebraic continuous surjective map S(W)/(RE) ⊕HomF(Fk,W)→V whose fibres coincide with the O(W) -orbits. (cid:0) (cid:1) (cid:0) (cid:1) §2. Auxiliary facts Consider a space W ∈PF and the subsets S+(W):= A∈S(W): A>0 ⊂S(W) and (cid:8) (cid:9) S0(W):=(cid:0)S+(W)(cid:1)/(cid:0)GLF(W)(cid:1)⊂S+(W)⊂S(W). Set M(W):= (A,λ)∈S+(W)×F: detFA=|λ|2 ⊂S(W)⊕F. (cid:8) (cid:9) The following statement is well-known. Statement 2.1. The fibres of the map π: EndF(W)→S(W)⊕F, X →(XX∗,detFX) coincide with the orbits of the action SO(W): EndF(W), C: X →XC−1, (2.1) and π EndF(W) =M(W)⊂S(W)⊕F. (cid:0) (cid:1) Lemma2.1. ThemapM(W)→ S(W)/(RE) ⊕F, (A,λ)→(A+RE,λ)isabijection. (cid:0) (cid:1) (cid:3) See Lemma 5.1 in [3]. (cid:4) Corollary 2.1. The map S0(W)→S(W)/(RE), A→A+RE is a bijection. Corollary 2.2. The map EndF(W) → S(W)/(RE) ⊕F, X → (XX∗+RE,detFX) (cid:0) (cid:1) is surjective, and its fibres coincide with the orbits of the action (2.1). (cid:3) Follows from Statement 2.1 and Lemma 2.1. (cid:4) Now consider arbitrary spaces W,W1 ∈PF over the filed F. Statement 2.2. The fibres of the map π: HomF(W1,W)→S(W), X →XX∗ coincide with the orbits of the action O(W1): HomF(W1,W), C1: X →XC1−1, (2.2) and π HomF(W1,W) = A ∈ S+(W): rkFA 6 dimFW1 ⊂ S(W). In particular, in the (cid:0) (cid:1) (cid:8) (cid:9) case dimFW1 =dimFW −1, we have π HomF(W1,W) =S0(W)⊂S(W). (cid:0) (cid:1) We omit the proof since it is clear. Corollary 2.3. Suppose that dimFW1 =dimFW −1. Then the map HomF(W1,W)→ →S(W)/(RE), X →XX∗+RE is surjective, and its fibres coincide with the orbits of the action (2.2). (cid:3) Follows from Statement 2.2 and Corollary 2.1. (cid:4) 2 §3. Proof of the main result In this section, we will prove Theorem 1.1. Firstofall,letusprovetheclaimforapair(k,W)(k ∈{1,2},W ∈PF,dimFW =2−k). If k = 2 and W = 0, then the space of the representation (1.1) is trivial. If k = 1 and dimFW = 1, then the representation (1.1) is isomorphic to the tautological representation of the group O(W) and, consequently, to the representation O(W): F, C: λ → detFC ·λ, and the subgroup SO(W)⊂O(W) is trivial. Thiscompletelyprovestheclaimforapair(k,W)(k ∈{1,2},W ∈PF,dimFW =2−k). Take an arbitrary pair (k,W) (k ∈ {1,2}, W ∈ PF, n := dimFW > 2−k) and assume that the claim of Theorem 1.1 holds for any pair (k,W1) (W1 ∈PF, dimFW1 =n−1). We will now prove it for the pair (k,W). Sincen>2−k >0,thereexistsaspaceW1 ∈PFsuchthatdimFW1 =n−1.Considerthe embedding R: O(W1)֒→O(W1⊕Fk), R(C1): (x1,x2)→(C1x1,x2). The representations O(W1): S(W1⊕Fk), C1: A→R(C1)AR(C1−1) (3.1) and O(W1): S(W1)⊕HomF(Fk,W1)⊕S(Fk), C1: (A1,B,A2) → (C1A1C1−1,C1B,A2) are isomorphic via the O(W1) -equivariant R-linear isomorphism (cid:0) (cid:1) θ: S(W1)⊕HomF(Fk,W1)⊕S(Fk)→S(W1⊕Fk), ∗ θ(A1,B,A2): (x1,x2)→(A1x1+Bx2,B x1+A2x2). Therefore, the representation (3.1) is isomorphic to the direct sum of some trivial real representation of the group O(W1) and the representation O(W1): S(W1)/(RE) ⊕HomF(Fk,W1), C1: (A1+RE,B)→(C1A1C1−1+RE,C1B) (cid:0) (cid:1) ′ withtrivialfixedpointsubspace.Thus,thereexistarealvectorspaceV andanisomorphism ϕ: S(W1⊕Fk)/(RE)→V′⊕ S(W1)/(RE) ⊕HomF(Fk,W1) of the representations (cid:0) (cid:1) O(W1): S(W1⊕Fk)/(RE), C1: A+RE →R(C1)AR(C1−1)+RE; O(W1): V′⊕ S(W1)/(RE) ⊕HomF(Fk,W1), C1: (v′,A1+RE(cid:0),B)→(v′,C1(cid:1)A1C1−1+RE,C1B). In terms of the representations O(W)×O(W1): HomF(W1⊕Fk,W), (C,C1): Z →CZR(C1−1); O(W)×O(W1): S(W)/(RE) ⊕HomF(Fk,W), (C,C1): (A+RE(cid:0),B)→(CA(cid:1)C−1+RE,CB); O(W)×O(W1): V′⊕ S(W1)/(RE) ⊕HomF(Fk,W1), (C,C1): (v′,A1+RE,B(cid:0) )→(v′,C1A(cid:1)1C1−1+RE,C1B), 3 the maps π0: HomF(W1⊕Fk,W)→ S(W)/(RE) ⊕HomF(Fk,W), ψ: HomF(W1⊕Fk,W)→ZV→′⊕(cid:0)(ZS|(WW1)1()Z/(cid:0)(|RWE1))∗+⊕RHEo,mZ(cid:1)F|(FFkk(cid:1);,W1), Z →ϕ(Z∗Z+RE) (cid:0) (cid:1) are O(W)×O(W1) -equivariant. By Corollary 2.3, the map π0 is surjective, and its fibres (cid:0) (cid:1) coincide with the O(W1) -orbits. (cid:0) (cid:1) Case 1). k =1. Consider the representation O(W)×O(W1): V′⊕ S(W1)/(RE) ⊕HomF(Fk,W1)⊕F, (C,C1): (v′,A1+RE,B,µ)→(v(cid:0)′,C1A1C1−1+(cid:1)RE,C1B,detFC·detFC1−1·µ). SincedimFW1 =n−1,thereexistarealvectorspaceV1 and,intermsoftherepresentation O(W)×O(W1): V′⊕V1⊕F2, (C,C1): (v′,v1,λ,µ)→(v′,v1,detFC1·λ,detFC·detFC1−1·µ), a semialgebraic continuous O(W)×O(W1) -equivariant surjective map (cid:0) (cid:1) π1: V′⊕ S(W1)/(RE) ⊕HomF(Fk,W1)⊕F→V′⊕V1⊕F2 (cid:0) (cid:1) whose fibres coincide with the SO(W1) -orbits. Since dimF(W1⊕Fk)=(n−1)+k=n= =dimFW, we can identify W a(cid:0)nd W1⊕(cid:1)Fk as spaces of the class PF. The map ψ: HomF(W1⊕Fk,W)→V′⊕ S(W1)/(RE) ⊕HomF(Fk,W1)⊕F, e Z → ψ(Z),detFZ =(cid:0) ϕ(Z∗Z+R(cid:1)E),detFZ (cid:0) (cid:1) (cid:0) (cid:1) is O(W)×O(W1) -equivariant. Also, by Corollary 2.2, the map ψ is surjective, and its (cid:0) (cid:1) fibres coincide with the SO(W) -orbits. Hence, the map π1 ◦ψ: HeomF(W1 ⊕Fk,W) → →V′⊕V1⊕F2 is O(W)(cid:0)×O(W1(cid:1)) -equivariant and surjective, aend its fibres coincide with (cid:0) (cid:1) the SO(W)×SO(W1) -orbits. If we consider the representation (cid:0) (cid:1) O(W)×O(W1): V′⊕V1⊕R⊕F, (C,C1): (v′,v1,t,λ)→(v′,v1,t,detFC·λ), then the map γ: V′⊕V1⊕F2 →V′⊕V1⊕R⊕F, (v′,v1,λ,µ)→ v′,v1,|λ|2−|µ|2,λµ is (cid:0) (cid:1) O(W)×O(W1) -equivariant. Denote by T the multiplicative group c ∈ F: |c| = 1 . We (cid:0) (cid:1) (cid:8) (cid:9) have n>2−k =1, dimFW1 =n−1>0. Consequently, detFC1: C1 ∈O(W1) =T. (3.2) (cid:8) (cid:9) One caneasily see thatthe map F2 →R⊕F, (λ,µ)→ |λ|2−|µ|2,λµ is surjective,andits fibres coincide with the orbits of the representation T:(cid:0)F2, c: (λ,µ)→(cid:1)(cλ,c−1µ). By (3.2), themapγ issurjective,anditsfibrescoincidewiththe O(W1) -orbits.Itfollowsfromabove (cid:0) (cid:1) 4 thatthemapγ◦π1◦ψ: HomF(W1⊕Fk,W)→V′⊕V1⊕R⊕Fis O(W)×O(W1) -equivariant (cid:0) (cid:1) and surjective, and iets fibres coincide with the SO(W)×O(W1) -orbits. (cid:0) (cid:1) Recall that the map π0 is O(W)×O(W1) -equivariant and surjective, and its fibres (cid:0) (cid:1) coincide with the O(W1) -orbits. Therefore,there exists an O(W) -equivariantsurjective (cid:0) (cid:1) (cid:0) (cid:1) map π: S(W)/(RE) ⊕HomF(Fk,W) → V′ ⊕V1 ⊕R⊕F satisfying π◦π0 ≡ γ ◦π1 ◦ψ (cid:0) (cid:1) whosefibrescoincidewiththe SO(W) -orbits.Sincethemapsγ,π1,ψ,π0aresemialgebraice, (cid:0) (cid:1) continuous, and surjective, so is the map π. e This completely proves the claim in the case k =1. Case 2). k =2. SincedimFW1 =n−1,thereexistarealvectorspaceV1 andasemialgebraiccontinuous surjective map π1: V′⊕ S(W1)/(RE) ⊕HomF(Fk,W1) → V′⊕V1 whose fibres coincide (cid:0) (cid:1) withthe O(W1) -orbits.Further,dimF(W1⊕Fk)=(n−1)+k=n+1=dimFW+1,and,by (cid:0) (cid:1) Corollary2.3,the mapψ is surjective,andits fibres coincide withthe O(W) -orbits.Since themapψis O(W)×O(W1) -equivariant,themapπ1◦ψ: HomF(W1⊕(cid:0)Fk,W(cid:1))→V′⊕V1 is (cid:0) (cid:1) surjective,anditsfibrescoincidewiththe O(W)×O(W1) -orbits.Recallthatthemapπ0 is (cid:0) (cid:1) O(W)×O(W1) -equivariantandsurjective,anditsfibrescoincidewiththe O(W1) -orbits. (cid:0)Hence,there exi(cid:1)stsa surjectivemap π: S(W)/(RE) ⊕HomF(Fk,W)→V(cid:0)′⊕V1 sa(cid:1)tisfying (cid:0) (cid:1) π◦π0 ≡π1◦ψ whose fibres coincide with the O(W) -orbits. Since the maps π1,ψ,π0 are (cid:0) (cid:1) semialgebraic, continuous, and surjective, so is the map π. This completely proves the claim in the case k =2. Thus,wehavecompletelyprovedTheorem1.1(usingmathematicalinductionondimFW separately for each number k ∈{1,2}). 5 References [1] M.A.Mikhailova,On the quotient space modulo the action of a finite group generated by pseudoreflections, Mathematics of the USSR-Izvestiya, 1985,vol.24, 1, 99—119. [2] O.G.Styrt,Ontheorbit spaceofacompact linearLiegroupwithcommutativeconnected component, Tr. Mosk. Mat. O-va, 2009, vol.70,235—287 (Russian). [3] O.G.Styrt, On the orbit space of a three-dimensional compact linear Lie group, Izv. RAN, Ser. math., 2011, vol.75, 4, 165—188 (Russian). [4] O.G.Styrt,Ontheorbit spaceof an irreducible representation ofaspecial unitarygroup, Tr. Mosk. Mat. O-va, 2013, vol.74, 1, 175—199 (Russian). [5] O.G.Styrt, On the orbit spaces of irreducible representations of simple compact Lie groups of types B, C, and D, J. Algebra, 2014, vol.415,137—161. 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.