ebook img

The existence and space-time decay rates of strong solutions to Navier-Stokes Equations in weighed $L^\infty(|x|^\gamma{\rm dx})\cap L^\infty(|x|^\beta{\rm dx})$ spaces PDF

0.17 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The existence and space-time decay rates of strong solutions to Navier-Stokes Equations in weighed $L^\infty(|x|^\gamma{\rm dx})\cap L^\infty(|x|^\beta{\rm dx})$ spaces

The existence and space-time decay rates of strong solutions to Navier-Stokes Equations in weighed L∞( x γdx) L∞( x βdx) spaces | | ∩ | | D. Q. Khai, N. M. Tri Institute of Mathematics, VAST 18 Hoang Quoc Viet, 10307 Cau Giay, Hanoi, Vietnam 6 1 0 2 Abstract: In this paper, we prove some results on the existence and n space-time decay rates of global strong solutions of the Cauchy problem a for the Navier-Stokes equations in weighed L∞(Rd, x γdx) L∞(Rd, x βdx) J 7 spaces. | | ∩ | | ] P §1. Introduction A h. This paper studies the Cauchy problem of the incompressible Navier- t Stokes equations (NSE) in the whole space Rd for d 2, a ≥ m [ ∂ u = ∆u .(u u) p, t −∇ ⊗ −∇  .u = 0, 1  ∇ v u(0,x) = u , 0 3 2  which is a condensed writing for 7 1 0 1 k d, ∂ u = ∆u d ∂ (u u ) ∂ p, . ≤ ≤ t k k − l=1 l l k − k 1  d ∂ u = 0, P 0  l=1 l l 6 P1 k d, uk(0,x) = u0k. ≤ ≤ 1  : v The unknown quantities are the velocity u(t,x) = (u (t,x),...,u (t,x)) of 1 d i X the fluid element at time t and position x and the pressure p(t,x). r There is an extensive literature on the existence and decay rate of strong so- a lutionsoftheCauchyproblemforNSE.MariaE.Schonbek[1]established the decay of the homogeneous Hm norms for solutions to NSE in two dimensions. She showed that if u is a solution to NSE with an arbitrary u Hm L1(R2) 0 ∈ ∩ with m 3 then ≥ kDαuk22 ≤ Cα(t+1)−(|α|+1) andkDαuk∞ ≤ Cα(t+1)−(|α|+21) for allt ≥ 1,α ≤ m. 2Keywords: Navier-Stokes equations; space-time decay rate 3e-mail address: [email protected],[email protected] 1 Zhi-Min Chen [2] showed that if u L1(Rd) Lp(Rd),(d p < ) and 0 ∈ ∩ ≤ ∞ u + u is small enough then there is a unique solution 0 1 0 p k k k k u BC([0, );L1 Lp), which satisfies decay property ∈ ∞ ∩ suptd2 u ∞ +t12 Du ∞ +t12 D2u ∞ < . k k k k k k ∞ t>0 (cid:0) (cid:1) Kato[3] studiedstrong solutionsinthespaces Lq(Rd)by applying theLq Lp − estimates for the semigroup generated by the Stokes operator. He showed that there is T > 0 and a unique solution u, which satisfies t21(1−dq)u BC([0,T);Lq), for d q , ∈ ≤ ≤ ∞ t21(2−dq) u BC([0,T);Lq), for d q , ∇ ∈ ≤ ≤ ∞ as u Ld(Rd). He showed that T = if u is small enough. 0 ∈ ∞ 0 Ld(Rd) (cid:13) (cid:13) In 2002, Cheng He and Ling Hsiao [4] extended the results of Kato, they (cid:13) (cid:13) estimated on decay rates of higher order derivatives in time variable and space variables for the strong solution to NSE with initial data in Ld(Rd). They showed thatif u issmall enoughthenthereisaunique solution 0 Ld(Rd) u, which satisfies (cid:13) (cid:13) (cid:13) (cid:13) t12(1+|α|+2α0−dq)DαDα0u BC([0, );Lq), for q d, x t ∈ ∞ ≥ t12(2+|α|−dq)Dαp BC([0, );Lq), for q d, x ∈ ∞ ≥ where α = (α ,α ,...,α ), α = α +α +...+α and α N. Dα denotes 1 2 d | | 1 2 d 0 ∈ x ∂x|α| = ∂|α|/(∂xα11∂xα22...∂xαdd), ∂tα0 = ∂α0/∂tα0. In 2005, Okihiro Sawada [5] obtained the decay rate of solution to NSE with initial data in H˙ d2−1(Rd). He showed that every mild solution in the class u BC([0,T);H˙ d2−1) and t12(d2−dp)u BC([0,T);H˙pd2−1), ∈ ∈ for some T > 0 and p (2, ] satisfies ∈ ∞ d d (cid:13)u(t)(cid:13)H˙qd2−1+α ≤ K1(K2α˜)α˜t−α2˜ for α > 0,q ≥ 2, and α˜ := α+ 2 − q (cid:13) (cid:13) where constants K and K depend only on d,p,M , and M with 1 2 1 2 M1 = 0<sut<pT(cid:13)u(t)(cid:13)H˙ d2−1 and M2 = 0<sut<pTtd2(12−p1)(cid:13)u(t)(cid:13)H˙pd2−1. The time-de(cid:13)cay p(cid:13)roperties are therefore well un(cid:13)derst(cid:13)ood. However, there are few results on the spatial decay properties. Farwing and Sohr [7] showed a class of weighted x α weak solutions with second derivatives in space | | 2 variables and one order derivatives in time variable in Ls([0,+ );Lq) for ∞ 1 < q < 3/2,1 < s < 2 and 0 3/q+2/s 4 α < min 1/2,3 3/q in the ≤ − ≤ { − } case of exterior domains. In [10], they also showed that there exists a class of weak solutions satisfying C(u ,f,α) if 0 α < 1, t 0 ≤ 2 |x|α2u 22 +Z |x|α2∇u 22dt ≤  C(u0,f,α′,α)tα2′−1/4 if 21 ≤ α < α′ < 1, (cid:13) (cid:13) 0 (cid:13) (cid:13) C(u ,f)(t1/4 +t1/2) if α = 1. (cid:13) (cid:13) (cid:13) (cid:13) 0  While in [11], a class of weak solutions (1+ x 2)1/4u L∞([0,+ );Lp(R3)) | | ∈ ∞ was constructed for 6/5 p < 3/2, which satisfies ≤ t |x|21u 22 +Z |x|12∇u 22dt ≤ C(u0,f)(t1/4 +t1/2). (cid:13) (cid:13) 0 (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) In 2002 Takahashi [9] studied the existence and space-time decay rates of globalstrongsolutionsoftheCauchyproblemfortheNavier-Stokesequations in the weighted L∞(Rd,(1 + x )βdx) spaces. Takahashi showed that if u 0 | | satisfies (et∆u0)(x) < δ(1+ x )−β, (et∆u0)(x) < δ(1+t)−β2, (1) | | | | | | with sufficiently small δ, then NSE has a global mild solution u such that u(x,t) C(1+ x )−β, u(x,t) C(1+t)−β2, | | ≤ | | | | ≤ where β is restricted by the condition 1 β d+1. ≤ ≤ Takahashi also showed that if u (x) c(1+ x )−β for some 0 < β d, 0 | | ≤ | | ≤ then (et∆u0)(x) c(1+ x )−β, (et∆u0)(x) c(1+t)−2β. | | ≤ | | | | ≤ In this paper, we discuss the existence and space-time decay rates of global strongsolutionsoftheCauchy problemfortheNavier-Stokes equations inthe weightedL∞(Rd, x γdx) L∞(Rd, x βdx)spaces. ThespacesL∞(Rd, x γdx) | | ∩ | | | | ∩ L∞(Rd, x βdx) are more general than the spaces L∞(Rd,(1 + x )βdx). | | | | In particular, L∞(Rd, x γdx) L∞(Rd, x βdx) = L∞(Rd,(1+ x )βdx) when | | ∩ | | | | γ = 0, and so this result improves the previous one. The content of this paper is as follows: in Section 2, we state our main 3 theorems after introducing some notations. In Section 3, we first prove the some estimates concerning the heat semigroup with the Helmholtz-Leray projection and some auxiliary lemmas. Finally, in Section 4, we will give the proof of the main theorems. §2. Statement of the results Now, for T > 0, we say that u is a mild solution of NSE on [0,T] cor- responding to a divergence-free initial datum u when u solves the integral 0 equation t u = et∆u e(t−τ)∆P . u(τ,.) u(τ,.) dτ. 0 −Z ∇ ⊗ 0 (cid:0) (cid:1) Above we have used the following notation: for a tensor F = (F ) we define ij thevector .F by( .F) = d ∂ F andfortwovectorsuandv,wedefine ∇ ∇ i j=1 j ij their tensor product (u v) P= u v . The operator P is the Helmholtz-Leray ij i j ⊗ projection onto the divergence-free fields (Pf) = f + R R f , j j j k k X 1≤k≤d where R is the Riesz transforms defined as j ∂ iξ j j R = i.e. R g(ξ) = gˆ(ξ). j j √ ∆ ξ − d | | The heat kernel et∆ is defined as et∆u(x) = ((4πt)−d/2e−|.|2/4t u)(x). ∗ For a space of functions defined on Rd, say E(Rd), we will abbreviate it as E and we do not distinguish between the vector-valued and scalar-value spaces of functions. Throughout the paper, we sometimes use the notation A . B as an equivalent to A CB with a uniform constant C. The ≤ notation A B means that A . B and B . A. Let β 0, we define the ≃ ≥ space L∞( x βdx) := L∞(Rd, x βdx) which is made up by the measurable | | | | functions u such that u := esssup x β u(x) < + . L∞(|x|βdx) | | | | ∞ (cid:13) (cid:13) x∈Rd (cid:13) (cid:13) Now we can state our result 4 Theorem 1. Assume that d 1, and 0 γ 1 β < d. Then for all ≥ ≤ ≤ ≤ f L∞( x γdx) L∞( x βdx) we have ∈ | | ∩ | | sup x γ˜t21(γ−γ˜) + x αt12(1−α) + x β˜t21(β−β˜) et∆f | | | | | | | | x∈Rd,t>0(cid:0) (cid:1) . f + f L∞(|x|γdx) L∞(|x|βdx) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) for 0 γ˜ γ,0 α 1, and 0 β˜ β. ≤ ≤ ≤ ≤ ≤ ≤ Theorem 2. Let 0 γ 1 β < d be fixed, then for all γ˜,α, and β˜ ≤ ≤ ≤ satisfying ˜ ˜ ˜ ˜ 0 γ˜ γ,β 0,β 2 < β β,0 < α < 1, and β β 1 < α < d β, ≤ ≤ ≥ − ≤ − − − there exists a positive constant δ such that for all u L∞( x γdx) γ,γ˜,α,β,β˜,d 0 ∈ | | ∩ L∞( x βdx) with div(u ) = 0 satisfying 0 | | sup |x|γ˜t21(γ−γ˜) +|x|αt21(1−α) +|x|β˜t12(β−β˜) |et∆u0| ≤ δγ,γ˜,α,β,β˜,d, (2) x∈Rd,t>0(cid:0) (cid:1) NSE has a global mild solution u on (0, ) Rd such that ∞ × sup x γ +tγ2 + x β +tβ2 u(x,t) < + . (3) | | | | | | ∞ x∈Rd,t>0(cid:0) (cid:1) Remark 1. Our result improves the previous result for L∞(Rd,(1+ x )βdx). | | This space, studied in [9], is a particular case of the space L∞( x γdx) | | ∩ L∞( x βdx) when γ = 0. Furthermore, we prove that Takahashi’s result | | holds true under a much weaker condition on the initial data. Indeed, from Lemma 4 and Theorem 1, it is easily seen that the condition (2) of Theorem 2 is weaker than the condition (1). Remark 2. We invoke Theorem 1 to deduce that if u L∞( x γdx) 0 ∈ | | ∩ L∞( x βdx) and u + u is small enough then the | | 0 L∞(|x|γdx) 0 L∞(|x|βdx) (cid:13) (cid:13) (cid:13) (cid:13) condition (2) of Theorem 2 is valid. (cid:13) (cid:13) (cid:13) (cid:13) Theorem 3. Let 1 β < d be fixed, then for all α satisfying 0 < α < 1, there ≤ exists a positive constant δ such that for all u L∞( x dx) L∞( x βdx) α,d 0 ∈ | | ∩ | | with div(u ) = 0 satisfying 0 sup x αt21(1−α) et∆u0 δα,d, (4) | | | | ≤ x∈Rd,t>0 NSE has a global mild solution u on (0, ) Rd such that ∞ × 1 sup x +t2 u(x,t) < + | | | | ∞ x∈Rd,t>0(cid:0) (cid:1) 5 and sup x β u(x,t) < + , for all T (0, ). | | | | ∞ ∈ ∞ x∈Rd,0<t<T Remark 3. We invoke Theorem 1 to deduce that if u L∞( x dx) and 0 ∈ | | u is small enough then the condition (4) of Theorem 3 is valid. 0 L∞(|x|dx) (cid:13) (cid:13) (cid:13) (cid:13) §3. Some auxiliary results In this section we establish some auxiliary lemmas. We first prove a version of Young’s inequality type for convolutions in L∞( x βdx) spaces. | | Lemma 1. Assume that d 1,0 < α < d,0 < β < d and α+β > d. Then ≥ for all f L∞( x αdx) and for all g L∞( x βdx) we have ∈ | | ∈ | | f g . f g . ∗ L∞(|x|α+β−ddx) L∞(|x|αdx) L∞(|x|βdx) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) Proof. Since f g isbilinear onL∞( x αdx) L∞( x βdx), wemay assume ∗ | | × | | f = g = 1. We have L∞(|x|αdx) L∞(|x|βdx) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (f g)(x) = f(x y)g(y)dy = + + = I +I +I . ∗ ZRd − Z|y|<|x| Z|x|<|y|<3|x| Z|y|>3|x| 1 2 3 2 2 2 2 From f(x) x −α, and g(x) x −β, | | ≤ | | | | ≤ | | we get dy 2α dy 1 I . | 1| ≤ Z|y|<|x2| |x−y|α|y|β ≤ |x|α Z|y|<|x2| |y|β ≃ |x|α+β−d dy 2β dy 1 I . | 2| ≤ Z|x2|<|y|<3|2x| |x−y|α|y|β ≤ |x|β Z|y|<5|2x| |y|α ≃ |x|α+β−d dy dy 1 I 3α . | 3| ≤ Z|y|>3|2x| |x−y|α|y|β ≤ Z|y|>3|2x| |y|α|y|β ≃ |x|α+β−d We thus obtain 1 (f g)(x) . . | ∗ | x α+β−d | | The proof Lemma 1 is complete. WenowdeducetheL∞( x γdx) L∞( x βdx)estimatefortheheatsemigroup. | | − | | 6 Lemma 2. Assume that d 1 and 0 γ β < d. Then for all ≥ ≤ ≤ f L∞( x βdx) we have ∈ | | et∆f . t−21(β−γ) f , for t > 0. (5) L∞(|x|γdx) L∞(|x|βdx) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) Proof. We have (et∆f)(x) = 1 E x−y f(y)dy, where E(x) = (4π)−d2e−|x4|2. ZRd td/2 (cid:0) √t (cid:1) Recall the simate t−d2e−|x4|t2 . x −αt−12(d−α), for 0 α d. (6) | | ≤ ≤ We first consider the case 0 < γ < β. From the inequality (6) and Lemma 1, we have f (et∆f)(x) . (cid:13) (cid:13)L∞(|x|βdx) dy . t−12(β−γ) x −γ f . | | ZRd t12(β−(cid:13)γ) x(cid:13) y γ+d−β y β | | (cid:13) (cid:13)L∞(|x|βdx) | − | | | (cid:13) (cid:13) This proves (5). We consider the case 0 = γ < β. Applying Proposition 2.4 (b) in ([6], pp. 20) and note that x −β Lβd,∞ | | ∈ . |et∆f(x)| . t−d2(cid:13)E(cid:0)√t(cid:1)(cid:13)Ld−dβ,1(cid:13)f(cid:13)Lβd,∞ . t−β2(cid:13)E(cid:13)Ld−dβ,1(cid:13)f(cid:13)L∞(|x|βdx). (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) This proves (5). Suppose finally that 0 γ = β. We have ≤ 1 x y E − f(y)dy = + = I +I . ZRd td/2 (cid:0) √t (cid:1) Z|y|<|x| Z|y|>|x| 1 2 2 2 From the inequality (6), we have I . f x y −d y −βdy | 1| (cid:13) (cid:13)L∞(|x|βdx)Z|y|<|x| | − | | | ≤ (cid:13) (cid:13) 2 x f | | −d y −βdy f x −β. (cid:13) (cid:13)L∞(|x|βdx)(cid:0) 2 (cid:1) Z|y|<|x| | | ≃ (cid:13) (cid:13)L∞(|x|βdx)| | (cid:13) (cid:13) 2 (cid:13) (cid:13) 1 x y I f E − y −βdy | 2| ≤ (cid:13) (cid:13)L∞(|x|βdx)Z|y|>|x| td/2 (cid:0) √t (cid:1)| | ≤ (cid:13) (cid:13) 2 x 1 y f | | −β E dy = C f x −β, (cid:13) (cid:13)L∞(|x|βdx)(cid:0) 2 (cid:1) Zy∈Rd td/2 (cid:0)√t(cid:1) (cid:13) (cid:13)L∞(|x|βdx)| | (cid:13) (cid:13) (cid:13) (cid:13) 7 where C = 2β E(y)dy < + . Z ∞ y∈Rd Therefore, et∆f(x) . f x −β. | | L∞(|x|βdx)| | (cid:13) (cid:13) The proof of Lemma 2 is complete.(cid:13) (cid:13) We now deduce the L∞( x γdx) L∞( x βdx) estimate for the operator | | − | | et∆P . Asshownin[6], thekernel functionF ofet∆P satisfiesthefollowing t ∇ ∇ inequalities x 1 Ft(x) = t−d+21F , F(x) . , (7) √t | | (1+ x )d+1 (cid:0) (cid:1) | | Ft(x) . x −αt−21(d+1−α), for 0 α d+1. (8) | | | | ≤ ≤ By using the inequalities (7) and (8) and arguing as in the proof of Lemma 2, we can easily prove the following lemma. Lemma 3. Assume that d 1 and 0 γ β < d. Then for all ≥ ≤ ≤ f L∞( x βdx) we have ∈ | | et∆P .f . t−21(β+1−γ) f , for t > 0. ∇ L∞(|x|γdx) L∞(|x|βdx) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) Lemma 4. Let 0 γ < β d. Assume that f ′(Rd) and satisfies the ≤ ≤ ∈ S following inequality sup x γ + x β (et∆f)(x) = C < + , (9) | | | | | | ∞ x∈Rd,t>0(cid:0) (cid:1) then f L∞( x γdx) L∞( x βdx) ∈ | | ∩ | | and esssup x γ + x β f(x) C. (10) | | | | | | ≤ x∈Rd (cid:0) (cid:1) Proof. Since 1 Lβd,∞ Lγd,∞ and Lβd,∞ Lγd,∞ Lq for all q |x|γ+|x|β ∈ ∩ ∩ ⊂ satisfying d < q < d, it follows that et∆f L∞(0, ;Lq) for all q d, d , β γ ∈ ∞ ∈ β γ by a compactness theorem in Banach space, there exists a sequence t (cid:0)whic(cid:1)h k converges to 0 such that etk∆f converges weakly to f′ in Lq with f′ Lq. ∈ Since et∆ is a continuous semigroup on ′(Rd), it follows that f = f′ Lq. S ∈ Since et∆ is a continuous semigroup on Lq(Rd),(1 q < ), we get ≤ ∞ d d lim etk∆f f = 0, for q , . k→∞(cid:13) − (cid:13)Lq ∈ (cid:0)β γ(cid:1) (cid:13) (cid:13) 8 Therefore, there exists a subsequence t of the sequence t such that kj k lim(etkj∆f)(x) = f(x) for almost everywhere x Rd. (11) j→∞ ∈ The inequality (10) is deduced from equalities (9) and (11). Remark 4. We invoke Lemma 4 for γ = 0 and Lemma 2 for γ = β to deduce that the condition (1) of Takahashi on the initial data is equivalent to the condition u δ. 0 L∞((1+|x|)βdx) ≤ (cid:13) (cid:13) Lemma 5. Let γ,θ R an(cid:13)d t(cid:13)> 0, then ∈ (a) If θ < 1 then t 1 2 2 (t τ)−γτ−θdτ = Ct1−γ−θ, where C = (1 τ)−γτ−θdτ < . Z − Z − ∞ 0 0 (b) If γ < 1 then t 1 (t τ)−γτ−θdτ = Ct1−γ−θ, where C = (1 τ)−γτ−θdτ < . Zt − Z1 − ∞ 2 2 (c) If γ < 1 and θ < 1 then t 1 (t τ)−γτ−θdτ = Ct1−γ−θ, where C = (1 τ)−γτ−θdτ < . Z − Z − ∞ 0 0 The proof of this lemma is elementary and may be omitted. Let us recall the following result on solutions of a quadratic equation in Banach spaces (Theorem 22.4 in [6], p. 227). Theorem 4. Let E be a Banach space, and B : E E E be a continuous × → bilinear map such that there exists η > 0 so that B(x,y) η x y , k k ≤ k kk k for all x and y in E. Then for any fixed y E such that y 1 , the ∈ k k ≤ 4η equation x = y B(x,x) has a unique solution x E satisfying x 1 . − ∈ k k ≤ 2η §4. Proofs of Theorems 1, 2, and 3 In this section we will give the proofs of Theorems 1, 2, and 3. We now need eight more lemmas. In order to proceed, we define an auxiliary space 9 Kβ . Let α,β, and T be such that 0 α β < d,0 < T + , we define α,T ≤ ≤ ≤ ∞ theauxiliaryspaceKβ whichismadeupbythemeasurablefunctionsu(t,x) α,T such that esssup x αt21(β−α) u(x,t) < + . | | | | ∞ x∈Rd,0<t<T The auxiliary space Kβ is equipped with the norm α,T u := esssup x αt12(β−α) u(x,t) . Kβ | | | | (cid:13) (cid:13) α,T x∈Rd,0<t<T (cid:13) (cid:13) We rewrite Lemma 2 as follows Lemma 6. Assume that d 1 and 0 α β < d. Then for all ≥ ≤ ≤ f L∞( x βdx) we have et∆f Kβ and et∆f C f , ∈ | | ∈ α,T Kβ ≤ L∞(|x|βdx) (cid:13) (cid:13) α,T (cid:13) (cid:13) where C is a positive constant independent of T. (cid:13) (cid:13) (cid:13) (cid:13) Lemma 7. Assume that d 1 and 0 α β < d. Then ≥ ≤ ≤ Kβ Kβ Kβ . α,T ⊂ β,T ∩ 0,T The proof of this lemma is elementary and may be omitted. Lemma 8. Assume that d 1,T < + , and 0 α β β˜ < d. Then ≥ ∞ ≤ ≤ ≤ Kβ Kβ˜ . α,T ⊂ α,T The proof of this lemma is elementary and may be omitted. In the following lemmas a particular attention will be devoted to the study of the bilinear operator B(u,v)(t) defined by t B(u,v)(t) = e(t−τ)∆P . u(τ) v(τ) dτ. (12) Z ∇ ⊗ 0 (cid:0) (cid:1) Lemma 9. Let β,β˜,βˆ, and α be such that ˜ ˜ ˜ ˜ 0 β < d,β > β 2,0 β β,0 < α < 1,β β 1 < α < d β, ≤ − ≤ ≤ − − − ˆ ˜ ˆ ˜ 0 β β, and α+β 1 < β α+β. ≤ ≤ − ≤ Then the bilinear operator B is continuous from K1 Kβ into Kβ and α,T × β˜,T βˆ,T the following inequality holds B(u,v) C u v , (13) (cid:13) (cid:13)Kββˆ,T ≤ (cid:13) (cid:13)Kα1,T(cid:13) (cid:13)Kββ˜,T (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) where C is a positive constant independent of T. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.