The existence and space-time decay rates of strong solutions to Navier-Stokes Equations in weighed L∞( x γdx) L∞( x βdx) spaces | | ∩ | | D. Q. Khai, N. M. Tri Institute of Mathematics, VAST 18 Hoang Quoc Viet, 10307 Cau Giay, Hanoi, Vietnam 6 1 0 2 Abstract: In this paper, we prove some results on the existence and n space-time decay rates of global strong solutions of the Cauchy problem a for the Navier-Stokes equations in weighed L∞(Rd, x γdx) L∞(Rd, x βdx) J 7 spaces. | | ∩ | | ] P §1. Introduction A h. This paper studies the Cauchy problem of the incompressible Navier- t Stokes equations (NSE) in the whole space Rd for d 2, a ≥ m [ ∂ u = ∆u .(u u) p, t −∇ ⊗ −∇ .u = 0, 1 ∇ v u(0,x) = u , 0 3 2 which is a condensed writing for 7 1 0 1 k d, ∂ u = ∆u d ∂ (u u ) ∂ p, . ≤ ≤ t k k − l=1 l l k − k 1 d ∂ u = 0, P 0 l=1 l l 6 P1 k d, uk(0,x) = u0k. ≤ ≤ 1 : v The unknown quantities are the velocity u(t,x) = (u (t,x),...,u (t,x)) of 1 d i X the fluid element at time t and position x and the pressure p(t,x). r There is an extensive literature on the existence and decay rate of strong so- a lutionsoftheCauchyproblemforNSE.MariaE.Schonbek[1]established the decay of the homogeneous Hm norms for solutions to NSE in two dimensions. She showed that if u is a solution to NSE with an arbitrary u Hm L1(R2) 0 ∈ ∩ with m 3 then ≥ kDαuk22 ≤ Cα(t+1)−(|α|+1) andkDαuk∞ ≤ Cα(t+1)−(|α|+21) for allt ≥ 1,α ≤ m. 2Keywords: Navier-Stokes equations; space-time decay rate 3e-mail address: [email protected],[email protected] 1 Zhi-Min Chen [2] showed that if u L1(Rd) Lp(Rd),(d p < ) and 0 ∈ ∩ ≤ ∞ u + u is small enough then there is a unique solution 0 1 0 p k k k k u BC([0, );L1 Lp), which satisfies decay property ∈ ∞ ∩ suptd2 u ∞ +t12 Du ∞ +t12 D2u ∞ < . k k k k k k ∞ t>0 (cid:0) (cid:1) Kato[3] studiedstrong solutionsinthespaces Lq(Rd)by applying theLq Lp − estimates for the semigroup generated by the Stokes operator. He showed that there is T > 0 and a unique solution u, which satisfies t21(1−dq)u BC([0,T);Lq), for d q , ∈ ≤ ≤ ∞ t21(2−dq) u BC([0,T);Lq), for d q , ∇ ∈ ≤ ≤ ∞ as u Ld(Rd). He showed that T = if u is small enough. 0 ∈ ∞ 0 Ld(Rd) (cid:13) (cid:13) In 2002, Cheng He and Ling Hsiao [4] extended the results of Kato, they (cid:13) (cid:13) estimated on decay rates of higher order derivatives in time variable and space variables for the strong solution to NSE with initial data in Ld(Rd). They showed thatif u issmall enoughthenthereisaunique solution 0 Ld(Rd) u, which satisfies (cid:13) (cid:13) (cid:13) (cid:13) t12(1+|α|+2α0−dq)DαDα0u BC([0, );Lq), for q d, x t ∈ ∞ ≥ t12(2+|α|−dq)Dαp BC([0, );Lq), for q d, x ∈ ∞ ≥ where α = (α ,α ,...,α ), α = α +α +...+α and α N. Dα denotes 1 2 d | | 1 2 d 0 ∈ x ∂x|α| = ∂|α|/(∂xα11∂xα22...∂xαdd), ∂tα0 = ∂α0/∂tα0. In 2005, Okihiro Sawada [5] obtained the decay rate of solution to NSE with initial data in H˙ d2−1(Rd). He showed that every mild solution in the class u BC([0,T);H˙ d2−1) and t12(d2−dp)u BC([0,T);H˙pd2−1), ∈ ∈ for some T > 0 and p (2, ] satisfies ∈ ∞ d d (cid:13)u(t)(cid:13)H˙qd2−1+α ≤ K1(K2α˜)α˜t−α2˜ for α > 0,q ≥ 2, and α˜ := α+ 2 − q (cid:13) (cid:13) where constants K and K depend only on d,p,M , and M with 1 2 1 2 M1 = 0<sut<pT(cid:13)u(t)(cid:13)H˙ d2−1 and M2 = 0<sut<pTtd2(12−p1)(cid:13)u(t)(cid:13)H˙pd2−1. The time-de(cid:13)cay p(cid:13)roperties are therefore well un(cid:13)derst(cid:13)ood. However, there are few results on the spatial decay properties. Farwing and Sohr [7] showed a class of weighted x α weak solutions with second derivatives in space | | 2 variables and one order derivatives in time variable in Ls([0,+ );Lq) for ∞ 1 < q < 3/2,1 < s < 2 and 0 3/q+2/s 4 α < min 1/2,3 3/q in the ≤ − ≤ { − } case of exterior domains. In [10], they also showed that there exists a class of weak solutions satisfying C(u ,f,α) if 0 α < 1, t 0 ≤ 2 |x|α2u 22 +Z |x|α2∇u 22dt ≤ C(u0,f,α′,α)tα2′−1/4 if 21 ≤ α < α′ < 1, (cid:13) (cid:13) 0 (cid:13) (cid:13) C(u ,f)(t1/4 +t1/2) if α = 1. (cid:13) (cid:13) (cid:13) (cid:13) 0 While in [11], a class of weak solutions (1+ x 2)1/4u L∞([0,+ );Lp(R3)) | | ∈ ∞ was constructed for 6/5 p < 3/2, which satisfies ≤ t |x|21u 22 +Z |x|12∇u 22dt ≤ C(u0,f)(t1/4 +t1/2). (cid:13) (cid:13) 0 (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) In 2002 Takahashi [9] studied the existence and space-time decay rates of globalstrongsolutionsoftheCauchyproblemfortheNavier-Stokesequations in the weighted L∞(Rd,(1 + x )βdx) spaces. Takahashi showed that if u 0 | | satisfies (et∆u0)(x) < δ(1+ x )−β, (et∆u0)(x) < δ(1+t)−β2, (1) | | | | | | with sufficiently small δ, then NSE has a global mild solution u such that u(x,t) C(1+ x )−β, u(x,t) C(1+t)−β2, | | ≤ | | | | ≤ where β is restricted by the condition 1 β d+1. ≤ ≤ Takahashi also showed that if u (x) c(1+ x )−β for some 0 < β d, 0 | | ≤ | | ≤ then (et∆u0)(x) c(1+ x )−β, (et∆u0)(x) c(1+t)−2β. | | ≤ | | | | ≤ In this paper, we discuss the existence and space-time decay rates of global strongsolutionsoftheCauchy problemfortheNavier-Stokes equations inthe weightedL∞(Rd, x γdx) L∞(Rd, x βdx)spaces. ThespacesL∞(Rd, x γdx) | | ∩ | | | | ∩ L∞(Rd, x βdx) are more general than the spaces L∞(Rd,(1 + x )βdx). | | | | In particular, L∞(Rd, x γdx) L∞(Rd, x βdx) = L∞(Rd,(1+ x )βdx) when | | ∩ | | | | γ = 0, and so this result improves the previous one. The content of this paper is as follows: in Section 2, we state our main 3 theorems after introducing some notations. In Section 3, we first prove the some estimates concerning the heat semigroup with the Helmholtz-Leray projection and some auxiliary lemmas. Finally, in Section 4, we will give the proof of the main theorems. §2. Statement of the results Now, for T > 0, we say that u is a mild solution of NSE on [0,T] cor- responding to a divergence-free initial datum u when u solves the integral 0 equation t u = et∆u e(t−τ)∆P . u(τ,.) u(τ,.) dτ. 0 −Z ∇ ⊗ 0 (cid:0) (cid:1) Above we have used the following notation: for a tensor F = (F ) we define ij thevector .F by( .F) = d ∂ F andfortwovectorsuandv,wedefine ∇ ∇ i j=1 j ij their tensor product (u v) P= u v . The operator P is the Helmholtz-Leray ij i j ⊗ projection onto the divergence-free fields (Pf) = f + R R f , j j j k k X 1≤k≤d where R is the Riesz transforms defined as j ∂ iξ j j R = i.e. R g(ξ) = gˆ(ξ). j j √ ∆ ξ − d | | The heat kernel et∆ is defined as et∆u(x) = ((4πt)−d/2e−|.|2/4t u)(x). ∗ For a space of functions defined on Rd, say E(Rd), we will abbreviate it as E and we do not distinguish between the vector-valued and scalar-value spaces of functions. Throughout the paper, we sometimes use the notation A . B as an equivalent to A CB with a uniform constant C. The ≤ notation A B means that A . B and B . A. Let β 0, we define the ≃ ≥ space L∞( x βdx) := L∞(Rd, x βdx) which is made up by the measurable | | | | functions u such that u := esssup x β u(x) < + . L∞(|x|βdx) | | | | ∞ (cid:13) (cid:13) x∈Rd (cid:13) (cid:13) Now we can state our result 4 Theorem 1. Assume that d 1, and 0 γ 1 β < d. Then for all ≥ ≤ ≤ ≤ f L∞( x γdx) L∞( x βdx) we have ∈ | | ∩ | | sup x γ˜t21(γ−γ˜) + x αt12(1−α) + x β˜t21(β−β˜) et∆f | | | | | | | | x∈Rd,t>0(cid:0) (cid:1) . f + f L∞(|x|γdx) L∞(|x|βdx) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) for 0 γ˜ γ,0 α 1, and 0 β˜ β. ≤ ≤ ≤ ≤ ≤ ≤ Theorem 2. Let 0 γ 1 β < d be fixed, then for all γ˜,α, and β˜ ≤ ≤ ≤ satisfying ˜ ˜ ˜ ˜ 0 γ˜ γ,β 0,β 2 < β β,0 < α < 1, and β β 1 < α < d β, ≤ ≤ ≥ − ≤ − − − there exists a positive constant δ such that for all u L∞( x γdx) γ,γ˜,α,β,β˜,d 0 ∈ | | ∩ L∞( x βdx) with div(u ) = 0 satisfying 0 | | sup |x|γ˜t21(γ−γ˜) +|x|αt21(1−α) +|x|β˜t12(β−β˜) |et∆u0| ≤ δγ,γ˜,α,β,β˜,d, (2) x∈Rd,t>0(cid:0) (cid:1) NSE has a global mild solution u on (0, ) Rd such that ∞ × sup x γ +tγ2 + x β +tβ2 u(x,t) < + . (3) | | | | | | ∞ x∈Rd,t>0(cid:0) (cid:1) Remark 1. Our result improves the previous result for L∞(Rd,(1+ x )βdx). | | This space, studied in [9], is a particular case of the space L∞( x γdx) | | ∩ L∞( x βdx) when γ = 0. Furthermore, we prove that Takahashi’s result | | holds true under a much weaker condition on the initial data. Indeed, from Lemma 4 and Theorem 1, it is easily seen that the condition (2) of Theorem 2 is weaker than the condition (1). Remark 2. We invoke Theorem 1 to deduce that if u L∞( x γdx) 0 ∈ | | ∩ L∞( x βdx) and u + u is small enough then the | | 0 L∞(|x|γdx) 0 L∞(|x|βdx) (cid:13) (cid:13) (cid:13) (cid:13) condition (2) of Theorem 2 is valid. (cid:13) (cid:13) (cid:13) (cid:13) Theorem 3. Let 1 β < d be fixed, then for all α satisfying 0 < α < 1, there ≤ exists a positive constant δ such that for all u L∞( x dx) L∞( x βdx) α,d 0 ∈ | | ∩ | | with div(u ) = 0 satisfying 0 sup x αt21(1−α) et∆u0 δα,d, (4) | | | | ≤ x∈Rd,t>0 NSE has a global mild solution u on (0, ) Rd such that ∞ × 1 sup x +t2 u(x,t) < + | | | | ∞ x∈Rd,t>0(cid:0) (cid:1) 5 and sup x β u(x,t) < + , for all T (0, ). | | | | ∞ ∈ ∞ x∈Rd,0<t<T Remark 3. We invoke Theorem 1 to deduce that if u L∞( x dx) and 0 ∈ | | u is small enough then the condition (4) of Theorem 3 is valid. 0 L∞(|x|dx) (cid:13) (cid:13) (cid:13) (cid:13) §3. Some auxiliary results In this section we establish some auxiliary lemmas. We first prove a version of Young’s inequality type for convolutions in L∞( x βdx) spaces. | | Lemma 1. Assume that d 1,0 < α < d,0 < β < d and α+β > d. Then ≥ for all f L∞( x αdx) and for all g L∞( x βdx) we have ∈ | | ∈ | | f g . f g . ∗ L∞(|x|α+β−ddx) L∞(|x|αdx) L∞(|x|βdx) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) Proof. Since f g isbilinear onL∞( x αdx) L∞( x βdx), wemay assume ∗ | | × | | f = g = 1. We have L∞(|x|αdx) L∞(|x|βdx) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (f g)(x) = f(x y)g(y)dy = + + = I +I +I . ∗ ZRd − Z|y|<|x| Z|x|<|y|<3|x| Z|y|>3|x| 1 2 3 2 2 2 2 From f(x) x −α, and g(x) x −β, | | ≤ | | | | ≤ | | we get dy 2α dy 1 I . | 1| ≤ Z|y|<|x2| |x−y|α|y|β ≤ |x|α Z|y|<|x2| |y|β ≃ |x|α+β−d dy 2β dy 1 I . | 2| ≤ Z|x2|<|y|<3|2x| |x−y|α|y|β ≤ |x|β Z|y|<5|2x| |y|α ≃ |x|α+β−d dy dy 1 I 3α . | 3| ≤ Z|y|>3|2x| |x−y|α|y|β ≤ Z|y|>3|2x| |y|α|y|β ≃ |x|α+β−d We thus obtain 1 (f g)(x) . . | ∗ | x α+β−d | | The proof Lemma 1 is complete. WenowdeducetheL∞( x γdx) L∞( x βdx)estimatefortheheatsemigroup. | | − | | 6 Lemma 2. Assume that d 1 and 0 γ β < d. Then for all ≥ ≤ ≤ f L∞( x βdx) we have ∈ | | et∆f . t−21(β−γ) f , for t > 0. (5) L∞(|x|γdx) L∞(|x|βdx) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) Proof. We have (et∆f)(x) = 1 E x−y f(y)dy, where E(x) = (4π)−d2e−|x4|2. ZRd td/2 (cid:0) √t (cid:1) Recall the simate t−d2e−|x4|t2 . x −αt−12(d−α), for 0 α d. (6) | | ≤ ≤ We first consider the case 0 < γ < β. From the inequality (6) and Lemma 1, we have f (et∆f)(x) . (cid:13) (cid:13)L∞(|x|βdx) dy . t−12(β−γ) x −γ f . | | ZRd t12(β−(cid:13)γ) x(cid:13) y γ+d−β y β | | (cid:13) (cid:13)L∞(|x|βdx) | − | | | (cid:13) (cid:13) This proves (5). We consider the case 0 = γ < β. Applying Proposition 2.4 (b) in ([6], pp. 20) and note that x −β Lβd,∞ | | ∈ . |et∆f(x)| . t−d2(cid:13)E(cid:0)√t(cid:1)(cid:13)Ld−dβ,1(cid:13)f(cid:13)Lβd,∞ . t−β2(cid:13)E(cid:13)Ld−dβ,1(cid:13)f(cid:13)L∞(|x|βdx). (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) This proves (5). Suppose finally that 0 γ = β. We have ≤ 1 x y E − f(y)dy = + = I +I . ZRd td/2 (cid:0) √t (cid:1) Z|y|<|x| Z|y|>|x| 1 2 2 2 From the inequality (6), we have I . f x y −d y −βdy | 1| (cid:13) (cid:13)L∞(|x|βdx)Z|y|<|x| | − | | | ≤ (cid:13) (cid:13) 2 x f | | −d y −βdy f x −β. (cid:13) (cid:13)L∞(|x|βdx)(cid:0) 2 (cid:1) Z|y|<|x| | | ≃ (cid:13) (cid:13)L∞(|x|βdx)| | (cid:13) (cid:13) 2 (cid:13) (cid:13) 1 x y I f E − y −βdy | 2| ≤ (cid:13) (cid:13)L∞(|x|βdx)Z|y|>|x| td/2 (cid:0) √t (cid:1)| | ≤ (cid:13) (cid:13) 2 x 1 y f | | −β E dy = C f x −β, (cid:13) (cid:13)L∞(|x|βdx)(cid:0) 2 (cid:1) Zy∈Rd td/2 (cid:0)√t(cid:1) (cid:13) (cid:13)L∞(|x|βdx)| | (cid:13) (cid:13) (cid:13) (cid:13) 7 where C = 2β E(y)dy < + . Z ∞ y∈Rd Therefore, et∆f(x) . f x −β. | | L∞(|x|βdx)| | (cid:13) (cid:13) The proof of Lemma 2 is complete.(cid:13) (cid:13) We now deduce the L∞( x γdx) L∞( x βdx) estimate for the operator | | − | | et∆P . Asshownin[6], thekernel functionF ofet∆P satisfiesthefollowing t ∇ ∇ inequalities x 1 Ft(x) = t−d+21F , F(x) . , (7) √t | | (1+ x )d+1 (cid:0) (cid:1) | | Ft(x) . x −αt−21(d+1−α), for 0 α d+1. (8) | | | | ≤ ≤ By using the inequalities (7) and (8) and arguing as in the proof of Lemma 2, we can easily prove the following lemma. Lemma 3. Assume that d 1 and 0 γ β < d. Then for all ≥ ≤ ≤ f L∞( x βdx) we have ∈ | | et∆P .f . t−21(β+1−γ) f , for t > 0. ∇ L∞(|x|γdx) L∞(|x|βdx) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) Lemma 4. Let 0 γ < β d. Assume that f ′(Rd) and satisfies the ≤ ≤ ∈ S following inequality sup x γ + x β (et∆f)(x) = C < + , (9) | | | | | | ∞ x∈Rd,t>0(cid:0) (cid:1) then f L∞( x γdx) L∞( x βdx) ∈ | | ∩ | | and esssup x γ + x β f(x) C. (10) | | | | | | ≤ x∈Rd (cid:0) (cid:1) Proof. Since 1 Lβd,∞ Lγd,∞ and Lβd,∞ Lγd,∞ Lq for all q |x|γ+|x|β ∈ ∩ ∩ ⊂ satisfying d < q < d, it follows that et∆f L∞(0, ;Lq) for all q d, d , β γ ∈ ∞ ∈ β γ by a compactness theorem in Banach space, there exists a sequence t (cid:0)whic(cid:1)h k converges to 0 such that etk∆f converges weakly to f′ in Lq with f′ Lq. ∈ Since et∆ is a continuous semigroup on ′(Rd), it follows that f = f′ Lq. S ∈ Since et∆ is a continuous semigroup on Lq(Rd),(1 q < ), we get ≤ ∞ d d lim etk∆f f = 0, for q , . k→∞(cid:13) − (cid:13)Lq ∈ (cid:0)β γ(cid:1) (cid:13) (cid:13) 8 Therefore, there exists a subsequence t of the sequence t such that kj k lim(etkj∆f)(x) = f(x) for almost everywhere x Rd. (11) j→∞ ∈ The inequality (10) is deduced from equalities (9) and (11). Remark 4. We invoke Lemma 4 for γ = 0 and Lemma 2 for γ = β to deduce that the condition (1) of Takahashi on the initial data is equivalent to the condition u δ. 0 L∞((1+|x|)βdx) ≤ (cid:13) (cid:13) Lemma 5. Let γ,θ R an(cid:13)d t(cid:13)> 0, then ∈ (a) If θ < 1 then t 1 2 2 (t τ)−γτ−θdτ = Ct1−γ−θ, where C = (1 τ)−γτ−θdτ < . Z − Z − ∞ 0 0 (b) If γ < 1 then t 1 (t τ)−γτ−θdτ = Ct1−γ−θ, where C = (1 τ)−γτ−θdτ < . Zt − Z1 − ∞ 2 2 (c) If γ < 1 and θ < 1 then t 1 (t τ)−γτ−θdτ = Ct1−γ−θ, where C = (1 τ)−γτ−θdτ < . Z − Z − ∞ 0 0 The proof of this lemma is elementary and may be omitted. Let us recall the following result on solutions of a quadratic equation in Banach spaces (Theorem 22.4 in [6], p. 227). Theorem 4. Let E be a Banach space, and B : E E E be a continuous × → bilinear map such that there exists η > 0 so that B(x,y) η x y , k k ≤ k kk k for all x and y in E. Then for any fixed y E such that y 1 , the ∈ k k ≤ 4η equation x = y B(x,x) has a unique solution x E satisfying x 1 . − ∈ k k ≤ 2η §4. Proofs of Theorems 1, 2, and 3 In this section we will give the proofs of Theorems 1, 2, and 3. We now need eight more lemmas. In order to proceed, we define an auxiliary space 9 Kβ . Let α,β, and T be such that 0 α β < d,0 < T + , we define α,T ≤ ≤ ≤ ∞ theauxiliaryspaceKβ whichismadeupbythemeasurablefunctionsu(t,x) α,T such that esssup x αt21(β−α) u(x,t) < + . | | | | ∞ x∈Rd,0<t<T The auxiliary space Kβ is equipped with the norm α,T u := esssup x αt12(β−α) u(x,t) . Kβ | | | | (cid:13) (cid:13) α,T x∈Rd,0<t<T (cid:13) (cid:13) We rewrite Lemma 2 as follows Lemma 6. Assume that d 1 and 0 α β < d. Then for all ≥ ≤ ≤ f L∞( x βdx) we have et∆f Kβ and et∆f C f , ∈ | | ∈ α,T Kβ ≤ L∞(|x|βdx) (cid:13) (cid:13) α,T (cid:13) (cid:13) where C is a positive constant independent of T. (cid:13) (cid:13) (cid:13) (cid:13) Lemma 7. Assume that d 1 and 0 α β < d. Then ≥ ≤ ≤ Kβ Kβ Kβ . α,T ⊂ β,T ∩ 0,T The proof of this lemma is elementary and may be omitted. Lemma 8. Assume that d 1,T < + , and 0 α β β˜ < d. Then ≥ ∞ ≤ ≤ ≤ Kβ Kβ˜ . α,T ⊂ α,T The proof of this lemma is elementary and may be omitted. In the following lemmas a particular attention will be devoted to the study of the bilinear operator B(u,v)(t) defined by t B(u,v)(t) = e(t−τ)∆P . u(τ) v(τ) dτ. (12) Z ∇ ⊗ 0 (cid:0) (cid:1) Lemma 9. Let β,β˜,βˆ, and α be such that ˜ ˜ ˜ ˜ 0 β < d,β > β 2,0 β β,0 < α < 1,β β 1 < α < d β, ≤ − ≤ ≤ − − − ˆ ˜ ˆ ˜ 0 β β, and α+β 1 < β α+β. ≤ ≤ − ≤ Then the bilinear operator B is continuous from K1 Kβ into Kβ and α,T × β˜,T βˆ,T the following inequality holds B(u,v) C u v , (13) (cid:13) (cid:13)Kββˆ,T ≤ (cid:13) (cid:13)Kα1,T(cid:13) (cid:13)Kββ˜,T (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) where C is a positive constant independent of T. 10