Mon.Not.R.Astron.Soc.000,1–36(2015) Printed11May2015 (MNLATEXstylefilev2.2) The evolution of the X-ray luminosity functions of unabsorbed and absorbed AGNs out to z ∼ 5 5 J. Aird1,2⋆, A. L. Coil3, A. Georgakakis4,5, K. Nandra4, G. Barro6 and 1 0 P. G. Pe´rez-Gonza´lez7 2 1InstituteofAstronomy,UniversityofCambridge,MadingleyRoad,Cambridge,CB30HA y 2DepartmentofPhysics,DurhamUniversity,Durham,DH13LE a 3CenterforAstrophysicsandSpaceSciences(CASS),DepartmentofPhysics,UniversityofCalifornia,SanDiego,CA92093,USA M 4MaxPlanckInstitutefu¨rExtraterrestrischePhysik,Giessenbachstrasse,85748Garching,Germany 5IAASARS,NationalObservatoryofAthens,GR-15236Penteli,Greece 6UniversityofCalifornia,SantaCruz,1156HighStreet,SantaCruz,CA95064,USA 8 7DepartamentodeAstrof´ısica,FacultaddeCC.F´ısicas,UniversidadComplutensedeMadrid,E-28040Madrid,Spain ] E H Accepted2015May8.Received2015May8;inoriginalform2015February24 . h p ABSTRACT - o We present new measurements of the evolution of the X-ray luminosity functions (XLFs) r of unabsorbed and absorbed Active Galactic Nuclei (AGNs) out to z ∼ 5. We construct t samplescontaining2957sourcesdetectedathard(2–7keV)X-rayenergiesand4351sources s a detectedatsoft(0.5–2keV)energiesfroma compilationof Chandrasurveyssupplemented [ bywide-areasurveysfromASCAandROSAT.We considerthehardandsoftX-raysamples separatelyandfindthattheXLFbasedoneither(initiallyneglectingabsorptioneffects)isbest 4 v describedbyanewflexiblemodelparametrizationwherethebreakluminosity,normalization 0 andfaint-endslopeallevolvewithredshift.Wethenincorporateabsorptioneffects,separately 2 modellingtheevolutionoftheXLFsofunabsorbed(20<logNH <22)andabsorbed(22< 1 logNH <24)AGNs,seekingamodelthatcanreconcileboththehard-andsoft-bandsamples. 1 We find that the absorbedAGN XLF has a lower break luminosity,a highernormalization, 0 andasteeperfaint-endslopethantheunabsorbedAGNXLFouttoz ∼ 2.Hence,absorbed 3. AGNsdominateatlowluminosities,withtheabsorbedfractionfallingrapidlyasluminosity 0 increases.Both XLFs undergostrongluminosityevolutionwhichshifts the transitionin the 5 absorbedfractiontohigherluminositiesathigherredshifts.Theevolutionintheshapeofthe 1 totalXLFisprimarilydrivenbythechangingmixofunabsorbedandabsorbedpopulations. : v Keywords: galaxies:active–galaxies:evolution–galaxies:luminosityfunction,massfunc- i X tion–X-rays:galaxies r a 1 INTRODUCTION theluminosityfunction.QuantifyingAGNobscurationalsoreveals whether SMBHsundergo significant periods of obscured growth, TheluminosityfunctionofActiveGalacticNuclei(AGNs)repre- whenthistakesplacewithinthelifetimesofAGNs,andhowitre- sentsoneofthecrucialobservationalconstraintsonthegrowthof latestothetriggeringandfuellingprocesses. supermassiveblackhole(SMBHs)overthehistoryoftheUniverse. Theshapeoftheluminosityfunctionreflectsacombinationofthe Obtainingaccuratemeasurements of theluminosityfunction underlying distribution of the SMBH masses and the distribution and revealing the extent of obscuration requires large, unbiased oftheiraccretionratesorEddingtonratios(e.g.Airdetal.2013a; samples of AGNsselected over thewidest possible range of red- Shankaretal.2013;Schulzeetal.2015).Thus,accuratemeasure- shifts and luminosities. Optical surveys, combined with follow- mentsoftheshapeandevolutionoftheluminosityfunctionprovide up spectroscopy, can efficiently cover wide areas (e.g. SDSS: crucialinsightsintothephysicalprocessesthatdriveSMBHgrowth Yorketal.2000)butarebiasedtowardsthemostluminous,unob- overcosmictime. scuredsources.Alternatively,AGNscanbeidentifiedinthemid- ManyAGNsaresurroundedbygasanddustthatcanobscure infrared(mid-IR),whichprobesthereprocessedemissionfromthe their emission at certain wavelengths. Thus, it is vital to under- dusty, obscuring material. Mid-IR selection should not be biased standAGNobscurationinordertoobtainaccuratemeasurementsof againstobscuredsources,butthecontributionofthehostgalaxyis oftensignificantatthesewavelengths, whichlimitsmid-IRselec- tiontoluminoussourceswherethegalaxylightisoverwhelmedby ⋆ [email protected] theAGN(e.g.Donleyetal.2008;Mendezetal.2013). (cid:13)c 2015RAS 2 J. Airdet al. X-ray surveys can efficiently identify AGNs over a wide tionwasneededtodescribetheevolutionoftheXLF(withsome luminosity range, including low-luminosity sources where the furthermodificationstodescribetheevolutionatz & 3,seealso host galaxy dominates at optical or infrared wavelengths (e.g. Civanoetal.2011;Hiroietal.2012). Bargeretal.2003).Nevertheless,softX-rayemission(atenergies Recently, the combination of extremely deep X-ray survey .2keV)willbeabsorbedbythesamegasanddustthatobscures data and new approaches to X-ray spectral analysis have en- the AGN at optical and UV wavelengths. Thus, soft X-ray sam- abled improved measurements of N at z ∼ 0.5 − 2 and H plesaregenerallydominatedbyunobscuredAGNs.Absorptionbi- have been used to identify sizable samples of Compton-thick asesarereducedathardX-rayenergies(∼2−10keV),exceptin AGNs (e.g. Comastrietal. 2011; Georgantopoulosetal. 2013; themostheavily-obscured,Compton-thickAGNs(equivalentline- Brightmanetal. 2014). Building on this work, Buchneretal. of-sighthydrogencolumndensitiesN & 1024 cm−2).However, (2015) used a flexible, non-parametric method to estimate the H evenCompton-thicksourcesmaystillbeidentifiedatsoftorhard spacedensitiesofAGNsasafunctionofredshift,luminosityand X-rayenergiesduetoscatteredemission,includingtheCompton- N , effectively measuring the XLF for different column densi- H scatteredemission(“reflection”)fromtheobscuringmaterialitself. ties. This work also recovered a luminosity and redshift depen- AlargenumberofdeepandwideX-raysurveyshavebeencar- denceintheevolutionofthefractionofabsorbedAGNs(although riedout,takingadvantageoftheefficiencyandpowerofX-rayse- the Compton-thick fraction was consistent with a constant value lection(seearecentreviewbyBrandt&Alexander2015).Anum- of∼ 35percent).However, adetailedcomparison ofparametric berofstudieshavemeasuredtheX-rayluminosityfunction(XLF) modelsfortheevolutionoftheXLFofAGNswasnotundertaken. ofAGNsouttohighredshiftsusingthesesamples(e.g.Uedaetal. Inthispaperweaddresssomeremainingissuesinstudiesof 2003;Bargeretal.2005;Miyajietal.2015).Thesestudiesfindthat theevolutionoftheXLFofAGNs:theshapeoftheXLFandhow AGNsareastronglyevolvingpopulation,withasharpdecreasein itevolves withredshift, theextent of anyluminosity and redshift theirnumberdensitybetweenz ∼ 1−2andtoday.BrightX-ray- dependence oftheabsorbedfraction,andtheconnectionbetween selectedAGNsarefoundtopeakinnumberdensityatz ≈2,sim- theabsorptionpropertiesandtheevolutionoftheAGNpopulation. ilartooptically-selectedQSOs.FainterAGNspeaklaterinthehis- WecombinesamplesselectedatbothhardandsoftX-rayenergies toryoftheUniverse(z ≈1)butwithamuchmilderdeclinetothe anddeterminetheunderlyingXLFanddistributionofNHthatad- presentday(e.g.Hasingeretal.2005).Thesepatternshaveledsev- equatelydescribestheobservedfluxesinbothsamples(similarto eral authors to propose a luminosity-dependent density evolution the approach of Uedaetal. 2014, cf. the X-ray spectral analysis (LDDE) parametrization to describe the evolution of the XLF of usedinBuchneretal.2015). AGNs(e.g.Miyajietal.2000;Uedaetal.2003).Inthismodelthe In Section 2 we describe our datasets that we use to define XLFismodifiedbydifferingdegreesofdensityevolutionthatvary largesamplesofX-raysourcesselectedinthehard(2–7keV)and withluminosityandredshift.ThisresultsinanXLFthatchanges soft(0.5–2keV)energybands.Wealsocompiledeepoptical,near- shapeovercosmictime. infraredandmid-infraredimagingacrossourfieldsthatweuseto In Airdetal. (2010, hereafter A10) we challenged this evo- robustly identify counterparts to our X-ray sources and calculate lutionary model with a detailed study of the hard-band XLF that photometricredshifts.InSection3,wedescribeourBayesiansta- carefully accounted for numerous uncertainties and biases that tistical technique that allows us to incorporate a range of X-ray weregenerallynotincludedinpriormeasurements.Theseincluded spectralshapesandaccount fortheeffectsofabsorption.Wealso fluxmeasurement errors, Eddingtonbias, incompleteness ofopti- introduce an approach to account for the contribution from nor- calidentifications,andtheuncertaintyinphotometricredshiftesti- mal,X-raydetectedgalaxiesonourmeasurements.Wethenpresent mates.Athighredshifts(z ∼ 2−3)weadoptedarest-frameUV measurementsoftheXLFbasedonourhardandsoftsamplesin- colourpre-selectiontechnique(Airdetal.2008).Byperforminga dividually(Section4),introducing anew flexibleparametrization robustmodelcomparisonbasedonBayesianstatisticaltechniques, of the XLF. We show that significant discrepancies between the wefoundthattheevolutionoftheXLFcouldbedescribedbyasim- measurementsatallredshiftswarrant thefurtherconsideration of plermodelinwhichtheXLFretainsthesameshapeatallredshifts absorption effects. In Section 5 we separately model the XLF of but evolves in both luminosity and density (see also Assefetal. unabsorbed and absorbed AGNs (including a contribution from 2011;Rossetal.2013). Compton-thick sources) and show how the combination of these While A10 presented a number of important advances, ab- populations can simulataneously account for both our hard- and sorptioneffectswerenotexplored.Otherstudieshaveattemptedto soft-bandsamples. OurresultsplaceconstraintsonthetotalXLF measurethedistributionofabsorptioncolumndensitiesandpresent ofAGNsandtheabsorbedfractionasafunctionofluminosityand absorption-correctedmeasurementsoftheXLF.Uedaetal.(2003) redshift.InSection6wecompareourresultstopriorworkanddis- foundthatthefractionofabsorbedAGNs(thosewithN > 1022 cussthewiderimplicationsofourfindings.Section7summarizes H cm−2)wasstronglydependentonluminosity,decreasingathigher ourpaperandoverallconclusions. luminosities. Later studies found that the fraction of absorbed Giventhelengthofthispaper,acasualreadermaywishtoskip AGNsdependsonbothluminosityand redshift,dropping athigh toSection4.4,Section5andthediscussioninSection6(andfocus luminosities but increasing (at a given luminosity) to higher red- onFigures7,8,and9).WeadoptaflatcosmologywithΩΛ =0.7 shifts (e.g. LaFrancaetal. 2005; Hasinger 2008). The extent of andh=0.7throughoutthispaper. anyredshiftevolutionhasbeenamatterofdebate(seeAkylasetal. 2006;Dwelly&Page2006),potentiallyduetodifficultiesregard- ing the selection functions for absorbed and unabsorbed sources. 2 DATA RecentworkbyUedaetal.(2014)re-examinedtheevolutionofthe XLFandthedistributionofN (the“N -function”)usingalarge ToconstraintheevolutionoftheXLFwerequirelargesamplesof H H compilation of both soft and hard X-ray surveys and found that X-ray selected AGNs. By selecting samples in both the hard (> both a luminosity and redshift dependence of the absorbed frac- 2keV) andsoft (0.5–2keV) observed energy bands, wecanalso tion were required. They also found that an LDDE parametriza- constrainthedistributionofN andcorrectfortheseeffectsonthe H (cid:13)c 2015RAS,MNRAS000,1–36 The evolutionoftheXLFs ofunabsorbedand absorbedAGNs 3 XLF.InthispaperwecombinealargenumberofChandraX-ray conversion factor scalesdirectlywiththecount rate;inSection3 surveysalongwithlargerareasurveysfromASCAandROSAT.We belowwedescribeourproceduretoconvertbetweenthecountrate givefurtherdetailsofourdatasetsbelow.Table1summarizesthe and intrinsic quantities (such as luminosity), which allows for a differentsurveysandprovidesthenumber ofhardandsoftX-ray morecomplexX-rayspectrumandaccountsforuncertaintiesinthis selectedsourcesfromeach. conversionfactor.Thesensitivitymapcalculationislimitedtothe footprintofthemultiwavelengthphotometryforeachfield.Figure 1showsthecorrespondingareacurvesforeachofourX-rayfields. 2.1 ChandraX-raydata We note that previously published X-ray source catalogues, In this paper we use Chandra X-ray observations from five dis- oftenincludingmutiwavelengthcounterpartinformation,areavail- tinctpartsofthesky:theChandraDeepField-South(CDFS),Chan- ablefor theall of our Chandra fields(e.g. Alexanderetal. 2003; draDeepField-North(CDFN),ExtendedGrothStrip(EGS),COS- Gouldingetal.2012;Brandetal.2006).AdoptingourownX-ray MOS,andBootesfields. reductions and source detection procedures ensures wecanaccu- IntheCDFSfieldweidentifytwodifferent“surveys”:1)the rately determine the sensitivity in a consistent manner, which is seriesofobservationsthathavetargetedthecentral∼0.07deg2of essential for our Bayesian analysis of the XLF. Our catalogues thefieldandreachatotalcombinedexposure timeof ∼4Ms(the contain∼ 10−25per cent fewersources thanXueetal.(2011) CDFS-4Mssurvey,Xueetal.2011);and2)theseriesoffour250ks and Puccettietal. (2009) in the CDFS-4Ms and C-COSMOS ar- observations that surround the central area (the Extended-CDFS, eas,mainlyduetoourstricter(i.e.lower)falseprobabilitythresh- orE-CDFSsurvey, Lehmeretal.2005).TheX-raydatareduction old.Thus,ourcataloguesaremoreconservative. andsourcedetectionprocedureswerecarriedoutindependentlyfor eachofthesesurveys.Tocombinethetwosurveys,wedefineacen- 2.2 Multiwavelengthcounterpartsandphotometry tralregionwheretheCDFS-4Mssurveytakesprecedence,roughly corresponding to the area within ∼ 9′ of the center of the field. IneachofourChandrafields,weidentifymultiwavelengthcoun- OutsidethiscentralregionweadoptthesourcesdetectedintheE- terpartstoourX-raysourcesusingthelikelihoodratio(LR)method CDFSsurveyonly.Thisprocedureensureswehaveawell-defined (e.g. Ciliegietal. 2003; Brusaetal. 2007; Civanoetal. 2012), samplewherewecanaccuratelydeterminethesensitivity. matchingtomultipleoptical,near-IRandmid-IRbandstoensure IntheEGSfieldwealsoidentifytwodistinctsurveys:1)the a high completeness and reliability. We also compile multiwave- series of eight pointings that reach a nominal depth of ∼200ks lengthphotometryfromalargernumberofbands,whichweuseto and were presented in Lairdetal. (2009), which we refer to as calculatephotometricredshifts(seeSection2.6below). the AEGIS-XW(ide) survey; and 2) the AEGIS-XD(eep) survey (Nandraetal. 2015) which took three of the original 200ks to a depthof∼ 800ks. Weadopt thedeeper AEGIS-XDobservations 2.2.1 CDFS,CDFNandEGS whenavailable. In three of our fields—the CDFS, CDFN and EGS—we identify In each of the remaining fields we adopt data from a sin- counterparts and extract the multiwavelength photometry using a gle Chandra survey: the 2Ms survey in CDFN (Alexanderetal. custom version of the Rainbow Cosmological Surveys Database1 2003); the ∼160ks C-COSMOS observations (Elvisetal. 2009; (Pe´rez-Gonza´lezetal. 2005, 2008; Barroetal. 2011a,b), which Puccettietal. 2009); and the 5ks XBootes survey (Murrayetal. provides a compilation of the various photometric datasets. Ap- 2005). pendix A lists all the different photometric imaging datasets for TheX-raydatafromallofoursurveyswerereducedwithour eachfieldthatareusedinthispaper.Wenotethatfullcoverageof ownpipelineprocedure,whichisdescribedindetailbyLairdetal. the entire field is not always available in each photometric band. (2009)andNandraetal.(2015).Weperformedpointsourcedetec- All the images are registered to a common astrometric reference tion using the procedure described by Lairdetal. (2009) and ap- frameandphotometryisperformedinconsistentaperturestopro- pliedafalsePoissonprobabilitythresholdof< 4×10−6 togen- duce spectral energy distributionsthat span fromthe UV tomid- eratecatalogues ofdetected sourcesinthesoft(0.5–2keV), hard IR.TheX-raysourcematchingprocedureisdescribedindetailin (2–7 keV), full (0.5–7 keV) or ultrahard (4–7 keV) observed en- Nandraetal.(2015),butwebrieflysummarisethemethodhere. ergybands.Wecombinedthesourcelistsineachbandtocreatea First,wererantheRainbow photometric code, extracting all merged catalogue, which is used in the counterpart identification potentialcounterpartswithin3.5′′ oftheX-raypositionsinanyof proceduredescribedinSection2.2below. thebandscoveredbyRainbow(usinginitialSExtractorcatalogues Forthe5ksXBootessurveyweappliedastricterfalseprob- in each of the bands). The counterparts were then cross-matched abilitycut(< 10−8)inadditiontoarequirementof> 5totalde- using a 2′′ search radius to create a single multiband catalogue. tectedcountsineachband.Thiscutreducesthesamplesizebutap- Weobtained consistent photometry by applying a singleaperture pliesaneffectiveX-rayfluxlimitthathelpsraisethecompleteness acrossallopticalandnear-IRbands.WealsoextractedIRACpho- of the spectroscopic follow-up in this field. In this field, we also tometry,applyingtheproceduredescribedinPe´rez-Gonza´lezetal. restrictouranalysistothe∼7.1deg2 oftheBootesfieldthatcor- (2008) and Barroetal. (2011a) to deblend the IRAC photometry respondstothe15standardsub-fieldsoftheAGESspectroscopic whenasingleIRACsourceisassociatedwithmultipleoptical/near- survey(Kochaneketal.2012).Thiscutalsoensureswehaveahigh IRcounterparts. spectroscopiccompleteness(seeSection2.5below). Next,wecalculatedtheLRforallcandidatecounterpartsde- We determined X-ray sensitivity maps and area curves for tected in the IRAC 3.6µm band and determined an LR threshold each band as described in Georgakakisetal. (2008), accounting that maximises the sum of the completeness and reliability (see forthestricterfalseprobabilitycutandminimumcountsrequire- Luoetal. 2010). A candidate counterpart that exceeded this LR ment for the XBootes survey. We convert the sensitivity maps to areacurvesasafunctionoffluxbyassumingafixedX-rayspectral slopeofΓ = 1.4.Wenotethatthefluxcalculatedwiththisfixed 1 https://rainbowx.fis.ucm.es (cid:13)c 2015RAS,MNRAS000,1–36 4 J. Airdet al. Table1.DetailsoftheX-raysurveysusedinthispaper. Field Survey RA Dec X-ray Survey Softband Hardband exposure area NX Nctrprt Nspec−z NX Nctrprt Nspec−z (J2000) (J2000) (deg2) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) CDFS CDFS-4Ms 03:32:27.2 -27:47:55 4Ms 0.075 413 397(96.1%) 240(58%) 283 273(97%) 155(55%) CDFS ECDFS 03:32:27.2 -27:47:55 250ks 0.181 334 328(98.2%) 115(34%) 273 268(98%) 101(37%) CDFN CDFN 12:36:49.3 +62:13:19 2Ms 0.112 384 363(94.5%) 242(63%) 286 273(96%) 176(62%) EGS AEGIS-XD 14:19:20.8 +52:50:03 800ks 0.260 698 673(96.4%) 295(42%) 552 539(98%) 233(42%) EGS AEGIS-XW 14:17:15.0 +52:25:31 200ks 0.204 334 332(99.4%) 130(39%) 274 274(100%) 110(40%) COSMOS C-COSMOS 10:00:20.3 +02:11:20 160ks 0.984 1213 1195(98.5%) 694(57%) 889 877(99%) 530(60%) Bootes XBootes 14:31:28.3 +34:28:07 5ks 7.124 754 744(98.7%) 566(75%) 257 255(99%) 196(76%) ... ALSS 13:14:00 +31:30:00 ... 5.800 ... ... ... 34 34(100%) 33(97%) ... AMSS ... ... ... 81.77 ... ... ... 109 109(100%) 107(98%) ... ROSAT ... ... ... 20391 221 221(100%) 221(100%) ... ... ... Total 4351 4253 2503 2957 2902 1641 Column(1)nameofthefield;(2)nameofX-raysurveyprogrammewithinthisfield;(3,4)approximatecenterofthesurvey;(5)nominalX-rayexposure time;(6)totalareacoveredbyboththeX-raydataandtheopticalorinfraredimaging,excludingareasclosetobrightstars;(7)numberofX-raysources detectedinthesoft(0.5–2keV)energyband;(8)number(andfraction)ofthesoftX-raysourcesthatareassociatedwitharobustmultiwavelength counterpart;(9)number(andfraction)ofthesoftX-raysourcesthathaveaspectroscopicredshift;(10)numberofX-raysourcesdetectedinthehard(2–7 keV)energyband;(11)number(andfraction)ofthehardX-raysourcesthatareassociatedwitharobustmultiwavelengthcounterpart;(12)number(and fraction)ofthehardX-raysourcesthathaveaspectroscopicredshift. thresholdwasdeemedasecurecounterpart(takingthecounterpart secure associations are considered. For 1499 of the 1526 secure withthehighest LRvalueincasesof > 1securecandidate). We counterparts, we end up with both a Subaru i+ and S-COSMOS then repeated the entire LR matching process for the bands indi- counterpart. For these sources we obtain photometry in up to 18 cated inthe tablein Appendix A, retainingany additional secure broad-bandfiltersspanningfromtheUVtonear-IR,aswellas15 counterparts identified in these bands. This procedure enables us intermediate- or narrow-band optical filters, from the Subaru i+ toidentifysecurecounterpartsforahighfraction(> 90%)ofthe catalogue(see Ilbertetal.2009;McCrackenetal.2010).Thepho- X-raysourcesintheCDFS,CDFNandEGSfields(seeTable1). tometrywasextractedin3′′diameteraperturesfromPSF-matched Thevastmajority(∼ 92%) ofthesecurecounterpartswereiden- images. Wealso adopt IRAC photometry in the 3.6, 4.5, 5.8 and tifiedinthe(deblended) IRAC3.6µmcatalogue. Matchingtothe 8.0µmbands fromthe S-COSMOScatalogue, applying theaper- additionalbandsallowsustoidentifycounterpartswhentheIRAC turecorrectionsgiveninIlbertetal.(2009). candidate is faint, blended, or non-existent. No additional cross- In27caseswehaveani+ counterpart butdonot findanS- matchingisrequiredasthefullmultibandphotometryisprovided COSMOScounterpart,eitherduetothelimiteddepthoftheIRAC throughmatchedaperturesforallsourcesintheRainbowdatabase. imagingor because thei+ sourceisblended at theIRACresolu- tion. For these sources we simply ignore the IRAC bands in our photometricredshiftestimates(seeSection2.6below). 2.2.2 COSMOS In 23 cases, we identify an S-COSMOS counterpart, but no Subarui+source.Forthesesourcesweextractedphotometryin3′′ IntheCOSMOSfield,whichisnotcurrentlyincludedintheRain- diameteraperturesattheS-COSMOSpositioninthePSF-matched bow surveys database, we matched directly between our X-ray imagesfor all theUV tonear-IRbands, generally obtaining only sourcelistsandtwomultiwavelengthcatalogues:1)theCOSMOS upperlimitsfortheseopticallyfaintsources. IntermediateandBroadBandPhotometryCatalogue20082,which is based on detection in the deep Subaru i+ imaging of the en- tire COSMOS field (Capaketal. 2007); and 2) the S-COSMOS IRAC 3.6µm based catalogue (Sandersetal. 2007). Unlike the 2.2.3 Bootes Rainbow catalogues,theS-COSMOSIRAC3.6µmcataloguehas FortheBootesfield,wecompiledmultiwavelengthcataloguesfrom notbeendeblended.Thus,wefirstidentifiedsecurematches(using the NOAO Deep-Wide Field Survey (Jannuzi&Dey 1999) DR3, theLRmethod)fromthehigher-resolutionSubarui+ catalogues. SDSSDR9(Ahnetal.2012),GALEXGR73,FLAMINGOSEx- Wefoundsecurecounterpartsfor1348ofthe1621X-raysources tragalacticSurvey(Elstonetal.2006),andtheSpitzerDeep-Wide (83 per cent) in our overall C-COSMOScatalogue. Next, weap- FieldSurvey(Ashbyetal.2009).WeusetheLRmethodtomatch pliedtheLRmethodtomatchbetweentheX-rayandS-COSMOS ourX-raycataloguestotheappropriateselectionbandforeachof catalogues.Weidentifiedsecurecounterpartsforanadditional178 these surveys, assigning secure matches from the surveys in the sources,takingouroverallcompletenessto94percent. order of priority indicated in the table in Appendix A. The vast Finally, we cross-matched between our secure positions and majority of our secure matches are identified in the NDWFS I theoriginalcatalogues,againusingtheLRmethodtoensureonly 2 http://irsa.ipac.caltech.edu/data/COSMOS/datasets.html 3 http://galex.stsci.edu/GR6/ (cid:13)c 2015RAS,MNRAS000,1–36 The evolutionoftheXLFs ofunabsorbedand absorbedAGNs 5 brightendoftheXLFrequiressamplesofhigherluminosityX-ray 104 ROSAT sources identified from larger-area surveys. We thus supplement our samplewithsources fromlarge-areasurveys carriedout with Bootes COSMOS ASCA(inthehardband)andROSAT(inthesoftband). EGS For our large-area hard-band sample, we include the 34 102 CDFN sources from the ASCA Large Sky Survey (ALSS: Uedaetal. 2] CDFS 1999), which covers a contiguous area of 5.8 deg2 near the eg north Galactic pole. We adopt the optical identifications from d [ Akiyamaetal.(2000):2sourcesareopticallyidentifiedasgalaxy a Are 100 clusters,1isastar,1sourceremainsunidentifiedandtheremain- ing30areassociatedwithAGNs,allofwhichhavespectroscopic redshifts.WealsoselectsourcesfromtheASCAMediumSensitiv- itySurvey (AMSS, Uedaetal. 2001), which combines data from 10-2 a large number of ASCA observations at high Galactic latitudes Soft (0.5-2 keV) overanarea∼82deg2.WeincludesourcesfromtheAMSSnsub- sample,selectedinthehard(2–10keV)band,withopticalidentifi- -17 -16 -15 -14 -13 -12 -11 cations presented by Akiyamaetal. (2003). The sample includes logf0.5−2keV [erg s−1 cm−2] 87 X-ray sources and has 100 per cent spectroscopic complete- ness. We include additional sources with from the AMSSs sub- 104 AMSS Hard (2-10 keV) sample(Ueda&Akiyama,privatecommunication),whichincludes 20 AGN;2 sources in thissample remainunidentified. Weadopt ALSS Bootes areacurvesfromtheALSSandAMSSfromAkiyamaetal.(2003) COSMOS andUedaetal.(2003)respectively. 102 EGS For our soft band sample we combine samples from the CDFN 2] CDFS ROSAT bright survey (Fischeretal. 1998; Schwopeetal. 2000) g e and the Selected-Area–North survey (SA–N: Appenzelleretal. d [ 1998), removing duplicate sources. We include sources with sig- a Are 100 nificantdetectionsinthe0.5–2keVbandandadopttheunabsorbed fluxestimates(correctedforGalacticabsorption).Wecutoursam- pleat fluxlimitsof f0.5−2keV > 3.6×10−12 ergs−1cm−2 for the RBS sample and f0.5−2keV > 1×10−12 ergs−1cm−2 for 10-2 theSA–Nsample.Thesehighfluxlimitsensureoursourcesalllie wellabovethesensitivitylimitsofthesurveys,allowingustoadopt simplesensitivitycurvesthatcorrespondtotheentireareaofeach -17 -16 -15 -14 -13 -12 -11 surveyandcutoffsharplyateachofthefluxlimits(seeFigure1). logf2−10keV [erg s−1 cm−2] All thesources above these fluxlimitshave spectroscopic classi- ficationsand weidentifyatotalof221 AGNswithspectroscopic Figure1.X-rayareacurves(sensitiveareaversusX-rayflux)foreachof redshifts(excludingBLLactypeobjects). oursurveysinthesoftandhardbands.Theblack lineindicates thetotal Wenotethat,incontrasttoourChandrafields,ourareacurves areacurveforourstudy.Welimitoursensitivityanalysistotheareafalling forourlarge-areasurveysdonotaccountforthePoissonnatureof within the footprint of our multiwavelength photometry, excluding areas thedetection. Aswerestrictthe samples fromthelarge-area sur- closetobrightstars.TheROSATareacurveincludestheROSATbrightsur- veys tohighly significant detections, thissimplificationwill have veyandSA–Nsurvey(seeSection2.3).TheEGSareacurveincludesboth aminimaleffectonourXLFmeasurements.However,differences theAEGIS-XD800ksdataandtheadditionalareaat200ksfromAEGIS- XW.TheCDFSareacurvecombinestheCDFS4Msdatawiththeflanking intheassumedspectralshapecanhaveasignificantimpactonthe 250ksdatafromtheE-CDFS.Theseareacurvesassumeasingle,fixedcon- estimate of a flux and thus the assumed sensitivity. Uncertainties versionfactorbetweentheX-raycountrateandflux,correspondingtoan inthespectralshapeandtheresultingdifferencesinsensitivityare X-rayspectrumwithaphotonindexΓ=1.4andGalacticabsorptiononly; accountedforbyourBayesianmethodologydescribedbelow. theeffectofdifferentX-rayspectralshapes—andtheresultinguncertainties intheconversionfactors—areaccountedforinourBayesianmethodology describedinSection3. 2.4 Identificationandmaskingofstars Bright stars can contaminate our photometry, leading to issues band.Weidentifysecurecounterpartsfor95.8percent ofour X- withcounterpart identificationand photometric redshift estimates raysources. Finally,wecross-matchedbetweentheoriginalcata- intheseregions.Wehavethereforemaskedoutareasclosetobright loguesandoursecurecounterpartpositions,againapplyingtheLR stars from all of our Chandra fields in a consistent manner. We method, toidentifycommon sources. Thecombined surveyspro- searchedforstarsbrighterthanV =15intheHSTGuideStarCat- videphotometryinupto17differentbands(seeAppendixA). alog2.3(Laskeretal.2008).Wemaskedallareaswithinaradius, r,givenby 2.3 Large-areasurveys r=(16−V)×6′′ (1) CombiningourfiveChandrafieldsprovidesasampleofover4000 whereV istheV-bandmagnitudefromtheGuideStarCatalog.We soft band detections and over 2800 hard band detections from setamaximummaskingradiusof40′′.WehaveremovedanyX- a total area of ∼ 9 deg2. However, to accurately constrain the raysourceswithinthisradiusfromoursamples(whichcaninclude (cid:13)c 2015RAS,MNRAS000,1–36 6 J. Airdet al. thestaritselforanearbysource).Wealsoexcludedtheseregions 1 gives the number of X-ray sources in our hard- and soft-band whencalculatingtheX-raysensitivityandareacurves. selectedsampleswithreliablespectroscopicredshifts. Wehavealsoidentifiedstarswithfaintermagnitudesthatare detected at X-ray wavelengths and removed them from our sam- ples. In the fields with Rainbow coverage (CDFS, CDFN, EGS) 2.6 Photometricredshifts starswereidentifiedbyarangeofcolourandmorphologycriteria, The levels of spectroscopic completeness vary over our Chandra asdescribed inBarroetal.(2011a).In theCOSMOSand Bootes surveysfrom∼35percent(inourECDFSarea)to∼75percent fieldswe applied a single colour criterion based on the region of (intheBootesfield).FortheremainingX-raysourceswemustre- colour-colourspaceoccupiedbystarsinIlbertetal.(2009), sorttophotometricredshiftestimates,whicharedeterminedbyfit- R−[3.6]<3.0×(R−I)−1.2 (2) tingasetoftemplatespectratotheobservedspectralenergydistri- butions(SEDs)ofoursources.Suchredshiftscanbehighlyuncer- where [3.6] is the magnitude in the IRAC 3.6µm imaging, R is tain,particularlywhenconsideringfaintX-raysources.Akeyad- themagnitudeintheSubarur+orNDWFSRfilter,andI isthe vantageofourBayesiananalysis(seeSection3)isthatweareable magnitudeintheSubarui+orNDWFSI filter.Forallfields,we toaccountfortheuncertaintiesinphotometricredshiftsbyadopting alsorequiredthattheX-raysourcesexhibitalowX-ray-to-optical probabilitydistributionsfortheredshift,p(z),ratherthanasingle fluxratio,logf /f <−1,wheretheratioiscalculatedas X opt redshiftestimate.Wethusrequirethatourphoto-zapproachrecov- f I ersap(z)distribution that accurately reflectstheuncertainties in logfX =logf0.5−2keV+5.4+ 2.5. (3) ourredshiftestimates. opt We calculate photometric redshifts using the EaZY photo-z ThiscutensuresthatwedonotexcludebrightQSOsfromoursam- code(Brammeretal.2008).WeuseEaZY intwo-templatemode, plethatmaysatisfytheotherstellarcriteria.Whenaspectroscopic allowing for combinations of a galaxy and AGN template. For classificationisavailable(seeSection2.5)thisover-ridesourpho- the galaxy templates we adopt the “pegase13” template set pro- tometricclassification.Ofthe50spectroscopicallyclassifiedstars vided with EaZY. This template set consists of 259 synthetic inourfiveChandrafields,40(80percent)werealsoidentifiedby galaxy templates drawn from the range of parameters described ourphotometricprocedure. byGrazianetal.(2006).Additional“star-forminganddusty”tem- plates are included by applying the Calzettietal. (2000) red- 2.5 Spectroscopicredshifts dening law for a range of different extinctions to a subset of the galaxy templates. We adopt seven AGN templates from the AllofourChandrasurveyshavebeenthesubjectofintensespec- Salvatoetal. (2009) template set4, namely the Sey 1.8, Sey 2, troscopiccampaigns.These campaigns include large-scalefollow- Mrk231, pl TQSO1, pl QSOH, pl QSO and the S0-10 QSO2-90 up of the general galaxy population, in addition to those directly hybridtemplate.WealsoincludetheType-2“Torus”templatefrom targetingX-raysources. the Pollettaetal. (2007) library5, which isnot included in the fi- IntheCDF-Swefirstsearchedforspectroscopicredshiftsin nalSalvatoetal.(2009)set.Wenotethatsomeofthesetemplates the catalogue of Xueetal. (2011). The majority of the spectro- will include host galaxy contributions (particularly the Sey 1.8, scopicredshiftsforourCDFS-4Mssurveyaretakenfromthiscata- Sey2,Mrk231andS0-10 QSO2-90templates).Thisisnotama- logue,aswellassomeofourECDFSsurvey(intheareathatover- jorissueaswewanttodeterminethedistributionofpossiblered- laps withthe 4Ms data). Wealso searched for spectroscopic red- shifts, rather than perform an accurate host-AGN decomposition. shiftsfromtheArizonaCDFSEnvironmentSurvey(Cooperetal. Thetwo-templatemodeinEaZY allowsanypossiblecombination 2012),thespectroscopicsub-sampleofsourcesfromtheMUSYC ofoneofourAGNtemplatesandoneofourgalaxytemplatesand sample(Cardamoneetal.2010b),andPRIMUS(Coiletal.2011). thusallowsforalargeamount of flexibilityinthefittedtemplate In the CDF-N we used spectroscopic redshifts from DEEP3 SEDs. (Cooperetal.2011)aswellasthesurveysofTrouilleetal.(2008); AnotheradvantageoftheEaZYphoto-zcodeisthatitallows Bargeretal. (2008); Reddyetal. (2006); Wirthetal. (2004); for the inclusion of a “template error function”. This feature ac- Cowieetal.(2004)andSteideletal.(2003). counts for additional uncertainty in the template SED as a func- IntheEGSwecompiledspectroscopicredshiftsfromanum- tionof(rest-frame)wavelengthandthusallowsforthefactthatour ber of surveys including DEEP2, DEEP3, the Canada-France templatesetmaynotaccuratelyrepresentthetruediversityofSED Redshift Survey and MMT follow-up of X-ray sources. See shapes.ThisuncertaintyinthetruerangeoftemplateSEDsispar- Nandraetal.(2015)andreferencesthereinforfulldetails. ticularlyusefulasourobservedSEDsextendintotheUVandmid- InCOSMOSweinitiallysearchedforspectroscopicredshifts IR,wherethetemplatesarepoorlycalibrated,especiallyforAGNs. of X-ray sources in the C-COSMOS catalogue of Civanoetal. Inaddition,astheopticalemissionfroman(unobscured)AGNcan (2012).Wealsosearchforadditionalspectroscopicredshiftsfrom varyontimescalesofmonths-to-years,ourobservedSEDsmaynot the bright zCOSMOS survey catalogue (Lillyetal. 2009) and bewell-matchedbyasingleunderlyingtemplate.Thetemplateer- PRIMUS(Coiletal.2011). rorfunctioncanalsoallowforanyoverallcalibrationuncertainties InBootesweadoptspectroscopicredshiftsfromtheAGNand in the diverse sets of photometric observations used to construct GalaxyEvolutionSurvey(Kochaneketal.2012).Forallfieldswe ourobservedSEDs.Wederiveatemplateerrorfunctiononafield- alsosearchedforspectroscopicredshiftsfromtheSloanDigitalSky by-field basis—to ensure that it represents the calibration uncer- Survey(SDSS:Yorketal.2000). taintiesinagiven dataset—usingthebasicprocedure laidout in Wematchedthespectroscopiccataloguestothesecurecoun- Brammeretal.(2008).First,weattempttofittheobservedSEDs terpartsofourX-raysourcesusinga2′′searchradius,correctedfor anyoverallastrometricoffset,andrepeatedthematchingwitha1′′ radius.Weonlyadoptthosespectroscopicredshiftsthatareflagged 4 http://www.mpe.mpg.de/∼mara/PHOTOZ XCOSMOS/ ashigh-quality, reliableredshiftsintheoriginal catalogues.Table 5 http://www.iasf-milano.inaf.it/∼polletta/templates/swire templates.html (cid:13)c 2015RAS,MNRAS000,1–36 The evolutionoftheXLFs ofunabsorbedand absorbedAGNs 7 5 CDFS CDFN EGS 4 3 t o h p z 2 n =405 n =280 n =491 1 zspec zspec zspec σ =0.055 σ =0.064 σ =0.058 NMAD NMAD NMAD f =14.8% f =12.5% f =15.9% outlier outlier outlier f =4.0% f =4.6% f =4.7% 0 catastrophic catastrophic catastrophic 5 COSMOS BOOTES 4 3 2 n =805 n =609 1 zspec zspec σ =0.045 σ =0.150 NMAD NMAD f =14.2% f =35.5% outlier outlier f =6.3% f =1.1% 0 catastrophic catastrophic 0 1 2 3 4 5 0 1 2 3 4 5 zspec Figure2.Comparisonofphotometricredshifts(zphot)andspectroscopicredshifts(zspec)forourfiveChandrafields.Weplotthemeanofthep(z)distribution asthebestestimateofthephotometricredshifts(blackcircles);errorbarsindicatethe95percentcentralconfidenceinterval.Thedashedlineindicatesa1:1 relation, whereas thedotted lines correspond to∆z/(1+zzspec) = ±0.15(sources wherethebestestimate ofthephoto-z lies outside this rangeare flaggedasoutliers).InthelegendforeachpanelwegivethenumberofX-raysourceswithreliablespectroscopicredshifts(nzspec),theaccuracybasedon thenormalizedmedianabsolutedeviation(σNMAD),thefractionofoutliers(foutlier)andthefractionofcatastrophicfailures(fcatastrophic);seetextfor details.Wehighlightcatastrophicfailureswitharedtriangle.Overfourofourfields(CDFS,CDFN,EGSandCOSMOS)weobtainaconsistentaccuracyof σNMAD ≈0.05,with∼15percentoutliersand∼5percentcatastrophicfailures.IntheBootesfield—ourlargestarea,shallowestfield—wehavepoorer accuracyandahigheroutlierfraction,reflectingthemorelimitedphotometricimaginginthisfield.Whileourphoto-zhaveapooreraccuracy(σNMAD)and ahigheroutlierratethaninsomepriorworks,wechoosetoadoptourestimatesastheyhavebeencalculated inaconsistentmanneracrossallfiveofour Chandrafieldsandhaverepresentativeerrorsthatwecanfullytrackviathep(z)inourBayesianmethodology(seetextforfurtherdiscussion). withour templates, fixing the redshift at the spectroscopic value, survey areas (AEGIS-XD,CDFS-4Ms), where thebest photome- whereavailable.Wethencalculate tryisavailable,withthelarger-areashallowsurveys(AEGIS-XW, ∆fj = FjF−jTj (4) tErCosDcoFpSi)c.rWedeshinifctluidnethaellseXp-rlaoytssaonudrcdeos wnoitthapaphlyigha-nqyuacluittsybsapseecd- ontheestimatedqualityofthephoto-z.Thus,weincludesources where Fj indicates the observed flux in a filter for source j, and with extremely broad p(z) distributions, which are often flagged Tj isthefluxfromthebest-fittingtemplate.Wecalculate∆fj as asunreliableandexcludedwhenassessingthesuccessofphoto-z function of rest-frame wavelength for all sources and filters and techniques. takethemedianofevery400individual measurementsacrossthe In each panel of Figure 2 we present a number of summary rest-framewavelengthrange.Wesubtractthemedianphotometric statistics: error, in quadrature, to estimate the contribution from “template error” to the uncertainty as a function of rest-frame wavelength. (i) σ : the accuracy based on the normalized me- NMAD Thevalueofthetemplateerroristypicallyaround10percent(in dian absolute deviation between the best photo-z and flux)butvariesbetween∼4percentand∼20percentdepending the spectroscopic value, defined as σ = 1.48 × NMAD onthewavelengthandthedatainagivenfield. median(|z −z |/(1+z )). phot spec spec In Figure 2 we compare our photo-z estimates for X-ray (ii) f : the fraction of outliers, defined as the fraction of outlier sources to secure spectroscopic redshifts across our 5 Chandra sourceswhere|z −z |/(1+z )>0.15; phot spec spec fields.ThepanelsfortheEGSandCDFSfieldscombinethedeep (iii) f :thecatastrophicoutlierrate,calculatedasthe catastrophic (cid:13)c 2015RAS,MNRAS000,1–36 8 J. Airdet al. p(z)throughthefinalXLF)theremaybeapreferredredshiftso- 250 lution.Thelackofamultiwavelengthcounterpartcouldimplythat Spec-z ahighredshiftsolutionshouldbegivenhigheraprioripreference Photo-z best forsuchsources, thusour approach isconservative. Thereisalso Photo-z p(z) 200 apossibilitythattheseX-raysourceslackcounterpartsastheyare spurious detections, corresponding to positive fluctuations in the background count rate.Ouranalysisaccounts forthePoissonna- 150 er tureoftheX-raydetectionandthusallowsforthispossibility. b m Other estimates of photometric redshifts are available for u N 100 X-ray sources in many of our fields (e.g. Bargeretal. 2003; Cardamoneetal. 2010a; Hsuetal. 2014). Many of these studies take additional steps to improve the quality of the photo-z esti- 50 mates. These steps can include optimizing the template set (e.g. Luoetal.2010),attemptingtocorrecttheobservedphotometryfor variability (e.g. Salvatoetal. 2009), or applying priors based on 0 the source morphology and X-ray flux (e.g. Salvatoetal. 2011). 0.0 0.5 1 .0 2.0 3.0 5.0 1 0.0 These studies often achieve a higher accuracy and lower outlier Redshift (z) ratethanourownphoto-zanalysis.However,theseadditionalsteps canleadtounderestimatesofthetrueuncertaintiesinthephoto-z. Figure3.RedshiftdistributionofX-raysourcesinourfiveChandrafields Conversely,weretainalargesetofpossibletemplatestoensurewe withhigh-qualityspectroscopicredshifts(blacksolidline)andthosewhere producep(z)distributionsthataccountforthelargeuncertaintiesin weadoptphotometricredshifts.Thebluedashedlineindicatesthedistribu- theredshiftandtemplatedegeneracies.Whilewehavehigherout- tionofthe“best”photo-zestimates(meanofthep(z)distribution),whereas lierrates,ourfractionofcatastrophicfailuresremains.5percent, theorangedottedlineshowsthedistributionobtainedbycombiningthein- indicatingthatourp(z)distributionsarerepresentingtheuncertain- dividualp(z)distributions. ties. Thenominalerrors(i.e.the68percentconfidenceintervals) on our photo-z are also comparable to the residuals between our bestphoto-z estimateandtheavailablespectroscopicredshifts,in fractionofsourceswherelessthan5percentoftheintegrated contrasttomostpreviousworkwhereerrorsmaybeunderestimated p(z)lieswithin−0.15<(z−z )/z <+0.15. spec spec byafactor∼2−6(e.g.Luoetal.2010;Hsuetal.2014).Further- Over fourof ourfields(CDFS,CDFN,EGSandCOSMOS) more,werequirethefullp(z)distribution,whichmostpriorstudies weobtainaconsistentaccuracyofσ ≈0.06,with∼15per donotprovide. Wethuschoosetouseourownphotometricred- NMAD cent outliers. Our approach ensures we assign anappropriate un- shifts:our poorer accuracy andhigher outlier ratesareaccounted certainty, traced by the p(z),tothe bulk of our sources and only for and compensated by our Bayesian analysis that incorporates ∼ 5per cent of sources arethus flagged ascatastrophic failures. thefullp(z)information. In the Bootes field—our largest area, shallowest field—we have poorer accuracyandamuchhigher outlierfraction,reflectingthe morelimitedphotometricimaginginthisfield.However,thecatas- 3 BAYESIANMETHODOLOGY trophic outlier fraction is only ∼ 1 per cent, indicating that this Inthispaper weexpand ontheBayesianmethodology developed additionaluncertaintyisrepresentedbyourp(z)distributions.We byA10,incorporatingthedistributionofX-rayabsorptionproper- alsonotethatinthisfieldwehavethehighestspectroscopiccom- tiesandaccounting for theeffectsontheinferredshape andevo- pleteness(∼75percent)andsoonlyusephotometricredshiftsfor lutionoftheXLF.Ourmethodalsoaccountsfortheuncertaintyin arelativelysmallfractionofthesourcesinoureventualanalysisof themeasuredX-rayflux(duetophotoncountingstatistics),uncer- theXLF;whenwedoresorttoaphotometricredshiftweaccount taintiesintheredshift(forsourceswithphotometricredshiftsorno forthelargeuncertaintyintheredshift. counterparts),uncertaintiesintheX-rayspectralshape,andthere- In Figure 3 weplot the distributionof redshift estimatesfor sultinguncertaintyintheX-rayluminosityforanindividualsource. sourcesinourChandrafieldswherewehaveaspectroscopicred- Ourmethodologyisdescribedbelow. shiftandthosewhereweadopt thephotometricredshiftinforma- tion.Generallythesourceswithphotometricredshiftslieathigher redshifts, a consequence of spectroscopic follow-up programmes 3.1 Probabilitydistributionfunctionforasinglesource beingbiasedtowardsopticallybrightsources.Wealsoshowthein- For a single source in either our hard- or soft-band sample we tegratedcontributionfromthep(z)ofallthephoto-zsources.The canderivetheprobabilitydistributionfunctionforz,L andN integratedp(z)isskewedtowardslowerredshifts.Thisskewisdue X H based on our observed data for that source alone, which is given to the possibility that many potential high-redshift sources could actuallylieatlowerredshifts,whichisreflectedbytheirp(z)and byp(z,LX,NH | Di)whereDi indicatestheobserveddatafrom sourceiinoursample.Thisfunctionisnormalizedsuchthat mustbeaccountedforinmeasurementsoftheXLF. A small fraction of our X-raysources (< 2 per cent) lacka dz dlogLX dlogNH p(z,LX,NH |Di)=1. (5) multiwavelengthcounterpart,precludingaphotometricredshiftes- Z Z Z timate.Weretainthesesourcesinouranalysis,ensuringcomplete- Wecanre-writetheprobabilitydistributionfunctionas nessofoursample,butadoptap(z)thatisconstantinlog(1+z) over our allowed redshift range (0 < z < 10). Thisreflects our p(z,LX,NH |Di)=p(z|di)p(LX,NH |z,Ti,bi) (6) lack of a priori knowledge of the redshift; the X-ray flux infor- where di indicates the multiwavelength data used to estimatethe mationisretainedandthusaposteriori(afterfoldingtheconstant redshiftandTiandbicorrespondtotheX-raydataforthissource: (cid:13)c 2015RAS,MNRAS000,1–36 The evolutionoftheXLFs ofunabsorbedand absorbedAGNs 9 tion of this power-law, f , is allowed to emerge as an unab- scatt sorbedcomponent that isthought tobescattered intotheline-of- sightbyionizedgasinthevicinityoftheAGN.Wealsoincludea contributiondue toCompton reflectionfromcold, optically thick matter, which gives rise to a characteristic “hump” in the X-ray spectrum at ∼ 30 keV. Such a reflection component is expected duetoreprocessingoftheprimaryX-rayemissionbyasurround- ing, dusty torus or an accretion disc. Weadopt thepexrav model (Magdziarz&Zdziarski 1995), which is based on Monte-Carlo simulationsofComptonreflectionfromacold,opticallythickslab ofmaterial.Weassumetheincidentpower-lawhasthesameshape asthedirectlytransmittedcomponent.Wefixtheinclinationangle to30◦asarepresentativevalueandallowtheintensitytobesetby thenormalization,R,relativetothatexpectedfromaslabsubtend- ing a solid angle of 2π (which is allowed to vary between 0 and 2, spanning the extreme cases of no reflection up to an effective 4π solidanglecoverage).Weabsorbthereflectioncomponent by thesamecolumn density seenbythe primaryemission. Thisisa Figure4.OurassumedX-rayspectralmodelforanAGN.Weassumethe intrinsic X-ray spectrum is a power law with photon index Γ = 1.9± goodassumptionwhenthereflectionarisesfromtheaccretiondisc 0.2(purple line). The observed spectrum is absorbed bythe intervening andalsoprovidesreasonableagreementwiththeshapeandinten- column density, fixed at NH = 5×1022 cm−2 for this example (red sityofthereflectioncomponent basedonsophisticatedmodelsof dashed line). Wealso allow for a fraction (fscatt ≈ 2 per cent) of the toroidal obscurers (e.g Brightman&Nandra 2011a). All compo- intrinsicpower-lawtobescattered,unabsorbed,intotheline-of-sight(blue nents aresubjected to Galacticabsorption, withcolumn densities dot-dashed line). Inaddition, weallow for acomponent from Compton- determinedfromDickey&Lockman(1990)viatheHEASOFTNH reflectionfromcold,opticallythickmatter(suchasatorusoraccretiondisc) tool.InXSPECterminology,ourmodelisdescribedby thatleads tothecharacteristic humpathighenergies (greendottedline). Theblacklineindicatesthetotalobservedspectrum,whilethegreyregion wabs∗ (1−constant)∗zwabs∗cabs∗zpowerlw∗zhighect indicatesthe95percentconfidenceintervalonthespectrum,allowingfor +constant∗zpowerlw therangeofpossiblespectralparameters(seeSection3.1,Table2). (cid:2) +zwabs∗pexrav (8) wheretheconstantcorrespondsto(cid:3)thescatteredfraction,f .We thetotalobservedX-raycountsinthegivenbandandtheestimated scatt note that more physically motivated models could be adopted to backgroundrespectively. describetheX-rayspectrum,self-consistentlymodelingtheemis- Ourknowledgeofzisbasedoneitheraspectroscopicredshift, sion, reflection and absorption due to the accretion disc or torus inwhichcaseweassumep(z | di)isdescribedbyaδ-functionat (e.g.Ross&Fabian2005;Brightman&Nandra2011a).However, thespectroscopicvalue,oraphotometricredshift,whenp(z | di) Buchneretal. (2014) found that more simplistic models such as isgivenbythep(z)fromourphotometricredshiftfittingdescribed ours are generally sufficient to reproduce the observed spectral inSection 2.6above. For the small fraction of sources wherewe shapeofindividual,distantAGNs,especiallyconsideringouranal- were unable to identify amultiwavelength counterpart—and thus ysisusesbroad-bandfluxesratherthanperformingadetailedX-ray havenoredshiftinformation—weadoptap(z)distributionwitha spectralanalysis. constantdensityinlog(1+z)over0<z<10. TodescribeourX-rayspectralmodelrequiresthreeadditional TheobservedX-raydatacanbedescribedbyaPoissonpro- parameters—thephotonindex,Γ,thescatteredfraction,f ,and cess.Thus,thelikelihoodofobservingTi countsfromasourceis therelativenormalizationofthereflectioncomponent, Rs—catwthich givenby weintroduceas“nuisance”parameters(collectivelydesignatedby L(Ti |ci,bi)= (ciT+i!bi)e−(ci+bi) (7) (ξξ))i,nzo,uLrXBaanydesNianH,anwaelycsains.dFeotreramgiinveenthseetexopfescpteecdtrcaolupnatraramtee,tecris, andthuslinktheprobabilitydistributionfunctionforL ,N and where ci is the X-ray count rate from source i in the observed ξtothePoissonlikelihoodgiveninEquation7above.TXhus,H energy band and we have assumed that the expected background countrate,bi,iswelldetermined.Theuncertaintyinciisfullyde- p(LX,NH,ξ|z,Ti,bi)∝L Ti|ci(z,LX,NH,ξ),bi π ξ scribedbythePoissonlikelihoodgiveninEquation7.However,to (9) (cid:0) (cid:1) (cid:0) (cid:1) convertfromacountrate,ci,toanestimateofLX andNH (given whereci(z,LX,NH,ξ)istheexpectedcountrateforasourcewith z)wemustassumeamodelfortheX-rayspectralshapeandfold redshiftz,luminosityL ,absorptioncolumn N ,andadditional X H thismodelthroughtheappropriateinstrumentalresponse. spectral parameters ξ based on our X-ray spectral model, folded Figure4showsanexampleofourX-rayspectralmodel.We throughtheappropriateinstrumentalresponseforsourcei. assumetheintrinsicX-raycontinuumisdescribedbyapowerlaw Apriori,thespectralparametersξforagivensourcearenot with photon index Γ and a high energy cut-off (we fix the fold- wellknown;π ξ denotesthepriordistributionthatweadoptfor ing energy at 300 keV, although this has a negligible impact on ourspectralparameters,whichdescribestherangeofpossibleval- (cid:0) (cid:1) thelowerenergiesweobserve).Theobservedspectrumisattenu- uesandthusencapsulatestheuncertaintyinX-rayspectralshape. atedalongtheline-of-sightbytheinterveningcolumndensity,N . Weassumethephotonindex,Γ,isdrawnfromaGaussiandistribu- H We include both photoelectric absorption (using the wabs model tionwithameanof1.9andstandarddeviationof0.2(correspond- in XSPEC)and Compton-scattering (via cabs), which suppresses ing to the observed distribution of intrinsic photon indices in X- thecontinuumfurtherforCompton-thickcolumndensities.Afrac- rayspectralstudiesofnearbyAGNs,e.g.Nandraetal.2007).We (cid:13)c 2015RAS,MNRAS000,1–36 10 J. Airdet al. orsoft-bandsamplesasindependentdetections.Thus,theonlyX- Table2.PriorsonthespectralparametersforanindividualX-rayAGN,ξ. raydataweuseforanindividualsourceisthedetectedcounts(and theexpected background), whichasdescribed above doesnot al- Parameter Priortype Priorspecification low usto constrain thevalue of N for anindividual source. In- H Γ Gaussian 1.9±0.2a stead,ourapproach(seeSections3.2below)involvesdetermining logfscatt lognormal −1.73±0.8b the overall distribution of X-ray luminosities and absorption col- R constant 0–2 umn densities (given by the XLAF) that correctly describes both ourhard-andsoft-bandsamples.Usingthismethod,certainvalues aBasedonobserveddistributionfromNandraetal.(2007). of L and N may be disfavored a posteriori (after performing bBasedonobserveddistributionfromWinteretal.(2009). X H our full analysis of the overall sample). For example, higher val- ues of L may be disfavored a posteriori based on the shape of X assume the scattered fraction, fscatt, is drawn from a lognormal theXLF(thatgenerallyshowshigherLXsourcesshouldberarer). distributionwithmean of 2per cent and scatter of 0.8 dexbased Conversely, lower values of NH may be disfavoredif our overall ontheobserved distributionofpartialcoveringfactorsofsources XLAFrequiresalargefractionofabsorbedsources. intheSwift/BATsamplefromWinteretal.(2009).Forthereflec- Nevertheless,itisworthnotingthatamoresophisticatedanal- tion strength, R, we assume a uniform distribution in the range ysiscouldplaceconstraintsonthevalueofNH (orindeedanyof 0 < R < 2.Wethusallowforalargeuncertaintyinthestrength theotherspectralparameters)foranindividualsourcebeforeper- ofthereflectioncomponent,whichisreasonabletoencapsulateun- forming fits to the overall samples. We could combine the infor- certaintiesinthegeometryoftheaccretiondiscand/ortoruswith mationonthecounts inboththehardandsoftbands foranindi- oursimplifiedmodelingofthereflection.Table2summarizesthis vidual source to place constraints on the underlying X-ray spec- priorinformation.ThecolouredlinesinFigure4showeachcom- trum,basedonthishardnessratioinformation(e.g.Hasinger2008; ponent evaluatedatthepriormeanofthespectralparametersand Xueetal. 2010). Alternatively, the full X-ray spectrum could be theblacklinecorrespondstothetotalobservedspectrumforthese extracted for a source and fitted with our spectral model or any values.Thegreyregionindicatesthe95percentconfidenceinterval other well-motivated model (e.g. Tozzietal. 2006; Buchneretal. onthetotalobservedspectrum,adoptingourpriordistributionsfor 2014).However,accuratelyincorporatingthisinformationintoour thespectralparameters.Wenotethatthelargeuncertaintiesinthe Bayesian analysis—and fullypropagating theuncertainties inthe scatteredfraction,fscatt,leadtolargeuncertaintiesinthespectrum estimated spectral parameters, LX and NH—isbeyond the scope atsofterenergiesformoderatelyandheavilyabsorbedsourcesand ofthispaper. thusleadstolargeuncertaintiesintheintrinsicL . X ToobtaintheprobabilitydistributionfunctionforL andN X H 3.2 Thelikelihoodfunctionfortheoverallsample only(foragivenzandourobservedX-raydata),wemustmarginal- izeoverthenuisancespectralparameters.Thus, Here,wedescribehowwecombinetheindividualprobabilitydis- tribution functions for each source in our sample with a given p(LX,NH |z,Ti,bi)= dξp(LX,NH,ξ|z,Ti,bi). (10) model of the XLAF to construct the likelihood function for our Z overallsample. In Figure 5 we show an example of p(LX,NH | z,Ti,bi) for a FollowingA10(seealsoLoredo2004),weassumeourindi- sourcedetectedinthehardband(left)andasourcedetectedinthe vidualsourcesareeffectivelyPoissonpointsdrawnfromadistribu- softband(right)withChandra.Inbothcaseswefixz=1.0andas- tiondescribedbytheXLAFandtheoverallsampleselectionfunc- sumeTi =30totalobservedcountswithanexpectedbackground tion.Theexpectednumber ofsourcesinour hard-band sampleis of bi = 5.0 counts. We restrict the possible column densities to givenby 20<logN (cm−2)<26.Theshadingandcontoursindicatethe H dV rangeofpossiblevaluesofLXandNHforeachsource.Detection Nhard(Θ) = dlogLX dlogNH dzdz dξ (11) in a single, broad energy band does not place constraints on the Z Z Z Z vpaolsuseibolefvNaHlu,ebsuotfwLeXaraendabhleowtothpilsacdeepceonndstsraoinntNsoHn.Fthoerrtahneghearodf ψ(LX,z,NH |Θ)π(ξ)NfieldsAj(LX,z,NH,ξ) band example, we can constrain LX to within ∼ 0.25 dex, pro- (cid:20) Xj=1 (cid:21) videdtheabsorptioncolumn isNH . 1023 cm−2.Ifthecolumn whereψ(LX,z,NH |Θ)istheXLAF—thedifferentialco-moving densityishigher,thenthesameobservedcountsmustcorrespondto numberdensityofAGNsperlogarithmicintervalinL andN — X H ahighervalueofLX.Forasourcedetectedinthesoftband,absorp- andisdescribedbyamodelwithagivensetofparameters,Θ.We tcimon−2ef)f.eActtscoarluemapnpdaernesnittifeosrNloHw&er2co×lu1m0n23dcemns−it2ie(sat(Nz=H &1.01)0th22e tnioatlecoth-matotvhiengXnLuFm,bφe(rLdXe,nzsity| oΘf)AG≡NsddΦpl(eoLgrXLlo,Xzg)ar(iit.hem. tihceindteifrfvearlenin- observedfluxinthe0.5–2keVbandisdominatedbythescattered L ),canberecoveredfromthefullXLAFbyintegratingoverN . X H componentonly;theintrinsicluminosityispoorlyconstrainedbut Thus, mustbeafactor∼30greaterthanifthesourcehadalowerN . H Wenotethattheeffectofabsorptionontheobservedcounts φ(L ,z|Θ)= dlogN ψ(L ,z,N |Θ). (12) X H X H in the hard or soft energy bands will vary significantly with red- Z shift.Forexample,atz ∼3,wheretheobserved0.5–2keVenergy Weinvestigateand compare various different parametrizations of band probes rest-frame energies ∼ 2−8keV, the inferred L is theXLAF(ortheXLFdirectly),whicharedescribedinSections4 X onlyaffectedforcolumndensities& 1023 cm−2.Theseredshift- and5below. dependent effectsarefullyaccountedforinourcalculationofthe The distribution of possible spectral parameters is given by expectedcounts,ci(z,LX,NH,ξ),usingourX-rayspectralmodel. π(ξ),theprioronΓ,fscatt andRthatwedescribeinSection3.1 Fortheanalysisinthispaper,wetreateachsourceinourhard- above. dV isthedifferentialcomovingvolumeperunitarea,asa dz (cid:13)c 2015RAS,MNRAS000,1–36
Description: