ASTROPHYSICALJOURNALINPRESS: JANUARY27,2009 PreprinttypesetusingLATEXstyleemulateapjv.26/01/00 THEEVOLUTIONOFTHESCATTEROFTHECOSMICAVERAGECOLOR-MAGNITUDERELATION: DEMONSTRATINGCONSISTENCYWITHTHEONGOINGFORMATIONOFELLIPTICALGALAXIES CHRISTINERUHLAND1,ERICF.BELL1,BORISHÄUSSLER1,2,EDWARDN.TAYLOR3,MARCOBARDEN1,4, DANIELH.MCINTOSH5,6 1Max-Planck-InstitutfürAstronomie,Königstuhl17,D-69117Heidelberg,Germany;[email protected] 2UniversityofNottingham,NottinghamNG72RDUnitedKingdom 3SterrewachtLeiden,LeidenUniversity,P.O.Box9513,NL-2300RALeiden 4InstitutfürAstro-undTeilchenphysik,UniversitätInnsbruck,Technikerstraße25/B,A-6020Innsbruck 5AstronomyDepartment,UniversityofMassachusetts,Amherst,MA01003USA 9 6DepartmentofPhysics,UniversityofMissouri-KansasCity,KansasCity,MO64110USA 0 ASTROPHYSICALJOURNALINPRESS: January27,2009 0 2 ABSTRACT n We presentfirst measurementsof the evolution of the scatter of the cosmic averageearly-typegalaxy color– a magnituderelation(CMR)fromz=1tothepresentday,findingthatitisconsistentwithmodelsinwhichgalaxies J are constantlybeingaddedto the red sequencethroughtruncationof star formationin blue cloudgalaxies. We 8 used a sample of over 700 red sequence, structurally-selected early-typegalaxies(defined to have Sérsic index 2 >2.5)withredshifts0<z<1takenfromtheExtendedChandraDeepFieldSouth(173galaxies)andtheSloan DigitalSkySurvey(550galaxies),constructingrest-frameU- V colorsaccurateto<0.04mag. Wefindthatthe ] O scatteroftheCMRofcosmicaverageearly-typegalaxiesis∼0.1maginrest-frameU- V colorat0.05<z<0.75, andsomewhathigheratz=1. Wecomparedtheseobservationswithamodelinwhichnewredsequencegalaxies C are being constantlyaddedatthe rate requiredto match the observednumberdensityevolution, andfoundthat . h this model predicts the correct CMR scatter and its evolution. Furthermore, this model predicts approximately p thecorrectnumberdensityof‘bluespheroids’—structurallyearly-typegalaxieswithbluecolors—albeitwith - considerable model dependence. Thus, we conclude that both the evolution of the number density and colors o of the early-type galaxy population paint a consistent picture in which the early-type galaxy population grows r t significantlybetweenz=1andthepresentdaythroughthequenchingofstarformationinbluecloudgalaxies. s a Subjectheadings:galaxies:evolution—galaxies:general—galaxies:ellipticalandlenticular—galaxies: [ stellarcontent—surveys 1 v 1. INTRODUCTION red sequence galaxy population (i.e., averaged over all envi- 0 ronments)buildsupinstellar massbyroughlyafactoroftwo 4 One of the best-knownand most powerfulscaling relations overtheintervalz=1toz=0throughtheadditionofnewred 3 oftheearly-type(ellipticalandlenticular)galaxypopulationis sequencegalaxies(Chenetal.2003;Belletal.2004b;Cimatti 4 the systematic reddeningof their colors with increasing lumi- 2006;Brownetal.2006a;Faberetal.2007;Scarlataetal.2007, . nosity: thecolor–magnituderelation(CMR). Theslope of the 1 although some of the papers argue for a build-up in stellar CMR is driven by a correlation between metallicity and mass 90 (Faber&Jackson1976;Kodama&Arimoto1997;Terlevichetal. mass only in galaxies with .1011M⊙). These ‘new’ red se- quence galaxies are the result of truncation of star forma- 0 1999;Trageretal.2000;Gallazzietal.2006),whilethescatter tion in some fraction of the blue cloud population (Belletal. : isdeterminedbyscatterinbothageandmetallicity,whereitis v 2007) through,e.g., galaxy-galaxymerging(Belletal. 2004b; generallythoughtthatageisthedominantdriver(Boweretal. i Faberetal. 2007; Hopkinsetal. 2007) or environmental pro- X 1992;Trageretal.2000;Gallazzietal.2006,althoughTrageretal. cesses such as strangulation or ram-pressure stripping (e.g., r 2000arguethatananticorrelationbetweenageandmetallicity Kodama&Smail2001). a keepsthescatteroftheearly-typegalaxyscalingrelationsrel- Such a scenario makes strong predictions about what the atively modest while allowing significant scatter in both age scatteroftheCMRanditsevolutionshouldbeasafunctionof and metallicity). The scatter in this correlation is relatively redshift(vanDokkum&Franx2001); tofirstorderthe scatter small(Baum1962;Visvanathan&Sandage1977;Boweretal. isexpectedtobeconstantwithredshift.Theobjectofthispaper 1992; Terlevichetal. 2001; McIntoshetal. 2005b). Because is to quantitativelytest this picture. We carefullymeasure the thecolorofstellarpopulationsisstronglyaffectedbytheirages CMRevolutionofgalaxiesselectedtohaveconcentratedlight and metallicities (Worthey 1994), this correlation is a power- profiles and red colors — taken as a proxy for the early-type fulprobeofthe formationandevolutionofthe stellar popula- galaxy population— from z=1 to the present day, and com- tions in early-type galaxies. The small intrinsic scatter found pare it to a toy modelof a growingred sequence. We use the in some clusters (as little as σU- V = 0.04mag in Virgo and SDSSforthelow-redshiftCMRmeasurement,andasampleof Coma;Boweretal.1992;Terlevichetal.2001;althoughother galaxieswith spectroscopicredshiftsandaccurateHST colors clusterscanhavescattersapproaching0.1mag;McIntoshetal. fromtheextendedChandraDeepFieldSouth(CDFShereafter) 2005b) gaveconsiderablemomentumto the notionthatearly- toprobetheCMRouttoz=1. Asitwasaprioriunclearhow type galaxiesformedthe bulk of their stars at early times and largetheCMRscattershouldhavebeen,weadoptedaconser- thattheirstellarpopulationshaveagedessentiallypassivelyto vativeapproachthatoptimizedrest-framecoloraccuracyatthe thepresentday. expense of sample size, choosing galaxies with spectroscopic In the last few years, this position has been challenged by redshifts and within relatively narrow redshift slices (to mini- evidence from deep redshift surveys that the cosmic average 1 2 Ruhlandetal. For this investigation, a sample of objects with reliable spec- troscopicredshiftswascollectedfromavarietyofsources. In- secureoruncertainspectroscopicredshiftswerecross-checked withphotometricredshiftsfromtheCOMBO-173survey.The spectroscopic selection criteria are described in the appendix andresultinafinalsampleof3440galaxieswithspectroscopic redshifts. We used3030galaxiesinwhatfollows;theremain- ing 410 objects could not be used either because they lacked datainoneormoreoftheHSTbands(211galaxies),orbecause theobjecthadahalf-lightradiussmallerthan2pixels(204ob- jects and5 objectssatisfied bothcriteria). Figure1 showsthe redshiftdistributionofthe3030useableobjects.Wechoosethe threebestpopulatedredshiftbinsofwidth∆z=0.1atz∼0.55, 0.7and1.0forouranalysis.Wemadethisselectionfortworea- sons. Firstly,thebinshavetobequitenarrowtominimizethe contributionofk-correction(thewavelengthrangeoverwhich the interpolationmust be done)uncertaintiesto the final error budget. Second,thebestpopulatedredshiftshadtobeusedin ordertoobtainsufficientlypopulatedCMDsforderivingCMR properties. InFigure1theseredshiftintervalsareindicatedby theshadedareas. Forfurtheranalysis,werejectedknownIRandX-raysources4. FIG. 1.— The distribution of the spectroscopic redshift samples for the intermediate-redshiftrange. Weusedgalaxieswithredshiftsaround0.55,0.7 IRsourceswereidentifiedbycomparisonwithMIPS24µmob- and1.0asindicatedbytheshadedareas,inordertominimizethecontribution servationsoftheCDFSfromSpitzer(Papovichetal.2004).We ofk-correctionuncertaintiestotheCMRscatter. use the 24µm band owing to its high sensitivity to obscured starformationandAGNactivity. The80%completenesslimit is 83µJy, corresponding to approximate obscured SFR limits mize k-correction uncertainties) and with color HST imaging of(5, 10, 17)M yr- 1 atredshiftsof 0.55,0.7and1.0 respec- (tominimizecolormeasurementerror). Thedataaredescribed ⊙ tively (Belletal. 2007) using a Kroupa (2001) IMF. We fur- in§2. Wedescribethek-correctionsandtheiruncertaintiesfor therexcludedgalaxiesdetectedindeepChandraimagingofthe the intermediate redshift sample in §3. We present our mea- CDFS.Thecoverageisnon-uniform,withanexposuretimeof surements of the intercepts and scatter of the CMR for color 1Msinthecentralpointing,and250ksperpointingineachof4 and structurally selected samples as a function of redshift in flankingfields. Thesedepthsaresufficienttodetectmoderate- §ti4o.nImno§d5e,lswoefcinocmrepaasriengthceoombpsleerxvietdy,rfiensuallltys tcoomsteplalrairngpoitputolaa- luminosity AGNs (L0.5- 2keV = 1041- 1042 ergs s- 1) over the wholeredshiftrangeofinterest(Lehmeretal.2005). model for the growth of the red sequence through the trunca- tion of star formation in blue cloud galaxies. We present our 2.1.1. ColorsandmagnitudesfromGEMSImages conclusions in §6. The casual reader may wish to skip to §5 As the goal of this paper was to measure the scatter of the directly. In what follows, we assume Ωm,0 =0.3, ΩΛ,0 =0.7, CMR as accurately as possible, we use high accuracy HST andH =70kms- 1Mpc- 1andauniversally-applicableKroupa 0 colors for the construction of the CMR. For all objects with (2001)stellarIMFforstellarpopulationmodeling. spectroscopicredshiftsweusedGEMSpostagestampstomea- sureaccuratemagnitudesintheF606WandF850LPpassbands. 2. DATA We used the GALAPAGOS5 software package to cut postage We use data from two differentsources, depending on red- stamps around the position of each object. Galaxy properties shift. For galaxies with 0.5<z<1, we choose to determine were adopted from a single-component Sérsic model (Sérsic accuratecolorsforgalaxieswithspectroscopicredshiftsinthe 1968) fit to the 2-D galaxy luminosity profile using the pack- HST/GEMS survey of the CDFS. This is crucial for minimiz- age GALFIT (Pengetal. 2002). We estimate colors within ingthecolormeasurementerror,placingthestrongestpossible the observed half-light radius (not the intrinsic half-light ra- constraintsontheintrinsicscatteroftheCMR.Tocomplement dius r returned from fits to the light profile); such ob- e,GALFIT this dataset at low redshift, we use a sample drawn from the servedhalf-lightradiiaresubstantiallylargerthantheintrinsic SDSSatz=0.05. half-light radii for compact galaxies. We determined the ob- served half-lightradiusby performingaperture photometryin 2.1. Intermediateredshiftdata ellipses with the position angle and axis ratio given by GAL- Fortheintermediateredshiftrange,uptoz=1,weusedata FIT, out to 10re,GALFIT on the F850LP-band image. The to- takenintheExtendedChandraDeepFieldSouth(E-CDFS).A tal magnitude was defined as the aperture magnitude within key ingredient is color HST imaging, taken from the GEMS1 10re,GALFIT. Theobservedhalf-lightradiuswasthendefinedto and GOODS2 surveys. Thesedatawereusedtoestimateaccu- 3Classifying Objects by Medium-Band Observations in 17 Filters rate galaxy colors within the half-light radius, and for selec- (Wolfetal.2003,2004) tion bygalaxystructure. A secondkeyingredient,requiredto 4LeavinginIRandX-raysourcesgivessimilarresults;weconservatively makeprecisek-corrections,isaccurateredshiftmeasurements. removesuchsourcesinordertominimizethecontributionofyoungstarsand non-stellarlighttotheCMRscatter. 1GalaxyEvolutionfromMorphologyandSEDs(Rixetal.2004) 5GalaxyAnalysisoverLargeAreas:ParameterAssessmentbyGALFITting 2GreatObservatoriesOriginsDeepSurvey(Giavaliscoetal.2004) ObjectsfromSExtractor(M.Bardenetal.inpreparation) EvolutionofEarly-typegalaxies 3 FIG. 2.—TheobservedF606W- F850LPcolorwithinthehalflightradius FIG. 3.—Anassessmentofthek-correctionuncertaintiesthroughcompar- plottedasafunctionofredshift. Theredsequenceandbluecloudareclearly isonoftheobservedF775Wmagnitudeofthosesamplegalaxiesthatoverlap visible. Thecutbetween thetwopopulations is schematically indicated by withtheGOODSfieldandtheF775WmagnitudepredictedusingInterRestus- thedashedline(thiscutisonlyforillustrationpurposesandnotusedinwhat ingonlytheredshift,F606WandF850LPmagnitudesasinput.Inthisplotwe followsforanyanalysis;theactualredshiftandmagnitude-dependentcutsare showthedifferencebetweenmeasuredandcalculatedmagnitudeinF775Was giveninSec. 4.1).Thegrayshadedareasshowthethreeredshiftrangesused afunctionofredshift.ThediamondsymbolsindicateredobjectswithaSérsic inthispaper. indexn>2.5.Theoutlieratz∼0.1isacompositemergingsystemwithboth adust-reddenedandabluecomponent;suchacompositesystemistoocom- plicatedtobedescribedbythesimpletemplatesusedhere. Thelongdashed lineshowsthemeanofthesevaluesandtheshortdashedlinesshowtheRMS bethesemi-majoraxisoftheellipsewithinwhichhalfoftheto- areaaroundthemeanvalue(bothvaluesarearound0.03). Therandomerror tallightinF850LPwascontained. Inordertodetermineaccu- servesasanapproximationofthek-correctionuncertainty. rateF606W- F850LPcolors,theF606W-imagewasconvolved withadifferencePSF,determinedfromthePSFs(Jahnkeetal. 2004)inF606WandF850LP(thePSFcorrectionwasaccurate samemethodweusefortheintermediateredshiftdata;seeSec- towithin1partinamillionintermsoftotalfluxonapixel-by- tion3).Rest-framemagnitudeswerecalculatedbyk-correcting pixelbasis;seeHäußler2007section4.2.2fordetails),andthe Sérsic modelmagnitudes(Blantonetal. 2003) from the NYU flux in F606W within the F850LP half-lightellipse was mea- VAGC;suchmagnitudesareclosertothetotalmagnitudesthan sured. Figure 2 shows the distribution of the measuredcolors PetrosianorModelmagnitudes.Theformalrandomerrorinthe against redshift. Uncertainties in the measured fluxes include finalU- V coloris<0.02magfromphotometricerror,withan contributionsfromPoissonuncertainty,readnoise, anduncer- estimated calibrationerrorof <0.04mag(assuming0.01mag tainty from inaccuraciesin the assumed sky level (this contri- calibration errors in g and r bands); random errors in MV are butionisequaltothehalf-lightareainpixelstimestheskylevel ∼0.1mag,dominatedbysystematicerrorsinhowonedefines uncertaintyincountsperpixel).Typicalvaluesforuncertainties skylevelsandtotalmagnitude. inthedeterminedmagnitudesarearound0.007(slightlyhigher 3. K-CORRECTIONS forhighredshiftsandlowerforsmallerredshifts). Tocomparemeasurementsinaredshift-independentmanner, 2.2. Thelow-redshiftsamplefromtheSloanDigitalSky we k-correctthe observedframe measurementsinto restframe Survey properties(throughoutthispaperweuseMV,rest and(U- V)rest althoughourconclusionsdonotdependonthischoice). Todo InordertoexplorethescatteroftheCMRatlowredshift,we soweusetheIDLimplementedrestframeinterpolationcodeIn- useasampleofgalaxiesdrawnfromtheSloanDigitalSkySur- terRestbyENT(http://www.strw.leidenuniv.nl/∼ent/InterRest; vey (SDSS) Data Release 4 (Adelman-McCarthy 2006). We this work is based on an earlier version of the code). To de- choose a sample of galaxies from the publicly-available New rive the redshift-dependent transformation between observed York University Value-Added Galaxy Catalog (NYU VAGC; and rest-frame colors (the algorithm is described in more de- Blantonetal. 2005) in a very narrow redshift range 0.0495< tailin AppendixC of Rudnicketal. 2003), InterRestuses ob- z<0.0505(2053galaxies). To maximize the accuracyof the served SEDs from a set of template galaxies: four empirical colorinformation,weadoptcolorsderivedfrom‘Model’mag- modelspectra from Colemanetal. (1980), and one additional nitudes — such magnitudes use the best-fit de Vaucouleurs starbursttemplatefromKinneyetal.(1996);thisisasubsetof or exponential models in the r-band as a kernel for measur- thedefaulttemplatesetwhichisusedtoavoiddegeneraciesin ing fluxes in ugiz6. We k-correct the observed-frame ugriz colorspace. model colors to rest-frame U - V color using InterRest (the These k-corrections were tested in two ways. Firstly, one 6Wealsousedaperturemagnitudeswithapertureradii5<r/arcsec<10, can use the k-correction routine to predict a F775W magni- findingsimilarorlargerCMRscatter. tude for galaxies in GOODS (where one has F606W, F775W 4 Ruhlandetal. andF850LP).WeshowsuchacomparisoninFig.3,whereone ourresultsremainunchangedifthesesystemsarenotexcluded can see that the k-corrections give a scatter of ∼0.03 and an fromouranalysis). TheseobjectsareshownintheCMDswith equal amount of mean color offset. Secondly, we can com- asterisks (X-ray) and diamonds(IR). The objects which qual- pare the final rest-frame colors to the results of independent ified as red sequencegalaxiesafter these selection criteria are k-correctioncodes. Comparisonto(loweraccuracy)COMBO- shown in black with error bars in the CMDs (number of RS 17 colors shows a scatter of 0.12 magnitudes and an offset galaxiesintheredshiftbins:563/38/102/31). of 0.06mag, and comparison to a stellar population model- derived k-correction by EFB and BH shows measurement-to- 4.2. FittingtheRedSequence measurement scatter of less than 0.02 mag but overall rest- ThegoalofthispaperistomeasuretheinterceptoftheCMR frame color offsets of ∼0.1mag (this results primarily from at a fiducial magnitude and its scatter, and to show the evo- a difference between the 4000Å break structure of the stellar lution of both the CMR intercept and scatter as a function of population models and the observed ones used by InterRest). redshift(see Figure 4). The interceptis the color value of the We conclude that the k-corrections of the HST-derived colors relationmeasuredataspecificmagnitude(eitherthesamemag- areaccuratetoafewhundredthsofamagnitude(randomerror; nitudevalueatallredshifts,orusingavariablemagnitudethat thiscontributestothescatterontheCMR;Tayloretal.,2009, attempts to account for the evolution of the population). The submitted),withpossibleoverallsystematicsof.0.1mag(af- scatteriscalculatedusingtheIDLroutinerobust_sigma,which fectingprimarilythezero-pointoftheCMR).Weassumethek- givesanoutlier-resistantestimateofthedispersionofthecolor correctionerrorstoscalewiththewavelengthrangeoverwhich distribution using the median absolute deviation as an initial theinterpolationisdone. estimateandthenweightspointsusingTukey’sBiweightasan robust estimator (this is the usual approach employed in this 4. RESULTS field; e.g., Boweretal. 1992; McIntoshetal. 2005b). We fit In this section we present our analysis of the red sequence a simple linear functionto the distributionof colorsand mag- CMR scatter and its evolution. First, we explainthe selection nitudes of the non-star-formingearly-type galaxies under two criteria appliedforred sequencegalaxies, then we discuss the assumptions: actualmeasurementofthescatteroftheredsequenceatdiffer- entredshifts0.05≤z≤1.05.Withourprecisemagnitudesand 1. Wefitthedatapointsineachredshiftbinseparately. colors we have produced color-magnitude diagrams (CMDs) 2. Wechoosetoholdtheslopefixedatallredshifts≥0.5 forfourredshiftintervalsandplottheminFigure4. tothevaluemeasuredatz=0.05fromtheSDSS. 4.1. SelectionofRedSequenceGalaxies The slope of the two methods are in some cases very differ- ent, but as the SDSS sample has many more objects and a Our selection criteria take care to choose only non-star- larger dynamic range, this fit is much more reliable than the forming,early-typegalaxiesrepresentingtheredsequenceand fitsfortheotherbins. Furthersupportforthisassumedslopeis torejectbluegalaxies,galaxieswithdiskstructure,andgalax- ieswithongoingstarformationand/orAGNactivity. given by the best populated GEMS bin around z=0.7, which shows nearly the same slope. We note that the determina- First,weappliedacolorcuttoexcludegalaxieswithobvious tionofthe interceptandscatter arenotsensitiveto ourchoice signsofstarformationfromthesample. Forthiswemadeuse of fitting method (Table 1)7. The histogram of color offsets of the bimodality of the color distribution which is visible in fromtheCMRwithredshift-independentslopeisshowninthe theCMDsatallredshifts(Figure4). Thecolorcutwaschosen inset panels of Fig. 4 for early-type galaxies (black) and for tofallintothegapbetweenblueandredobjects(seealsohis- all galaxies (gray). As the observed scatter contains contri- tograms in Fig. 4). We used a tilted cut with the same slope butionsfromintrinsicscatterandmeasurementuncertaintywe for all samples. As the mean colorsof the populationsevolve estimate the intrinsic color scatter by subtracting the random with redshift we take this into account by allowing the cut to color uncertainties in quadrature. The color uncertainties for evolvecorrespondingly. Thecutappliedherecanbedescribed as(U- V) >- 0.085·M - 0.65- 0.5·z.Smallchangesin thelow redshiftgalaxieswereestimated byscalingthe Model rest V,rest u- r color uncertainties8 by d(U- V) /d(u- r), and adding thepositionsofthecutsdonotinfluencethegeneralresults. In rest in quadrature a small empirically-determined0.015 mag con- thediagramsthecutismadevisiblebydifferentshadesofgray. tribution accounting for real scatter in U- V at a given u- r: The lightgraypointsare objectsbluerthen the colorcriterion whereas the dark gray and black points indicate object on the δ(U- V)2 =(cid:2)δ(u- r)·d(U- V)/d(u- r)(cid:3)2+0.0152. If not fur- redsideofthecut. therspecifiedwerefertotheintrinsicscatterhereafter. A second selection criterion was applied to clean the sam- The colorintercepts(U- V) of the fitted CMR at a fixed rest ple of structurally late-type galaxies. For this the Sérsic in- M =- 22 are shown as a function of redshift in Figure 5. V,rest dexofthegalaxyis used(forthe GEMS galaxies, thisismea- The solid errorbarsdenote the formal error in the mean inter- suredusingGALFIT,whilefortheSDSSgalaxiesweadoptthe cept, calculated using bootstrapping, although recall that the Sérsic fits from Blantonetal. 2005). To be treated as part of actual,primarilysystematic,uncertaintyinthegalaxycolorsis the red sequence a Sérsic index of n>2.5 is required. This 7FurthermoretheeffectofexcludingIRandX-raydetectionsfromthered cut successfully weeds out edge-on spirals from the sample sequenceisquitesmallanddoesnotaffectourresults. Theeffectontheinter- (McIntoshetal.2005a). Theseobjectsareshownasdarkgray ceptsisaround1%. ThevaluesforintrinsicscatterwouldbeabitlargerifIR points. RegardlessofcolorandSérsicindexwerejectgalaxies andX-raysourcesareincludedinthesample,changingforz=0.55from0.128 with X-ray or 24µm detections (for the CDFS data only; the to0.138,forz=0.7from0.126to0.133andforz=1.0from0.207to0.216. SDSS sample we use lacks such information) as their colors 8RecallthatU- VisestimatedfromtheugrizModelcolorsusingInterRest. Ourchoiceofscalingfromu- runcertaintyisreasonable: u,gandrarethe maybe substantiallyaffectedbyUV-brightyoungstellar pop- maindeterminatsofU- V,wheregandrarerelativelywell-measuredandthe ulationsand/oranaccretingsupermassiveblackhole(although ubanduncertaintyisfactorsofseverallarger. EvolutionofEarly-typegalaxies 5 FIG. 4.—U- V restframecoloragainstMV forfourdifferentredshiftbins. Thelightgraypointsareobjectsbelowatiltedcut,dividingblueandredobjects. Thiscuthasafixedslopeandaredshift-dependentintercept.DependingontheSérsicindextheredobjectsaredividedinadarkgray(n<2.5)andablacksample (n>2.5;witherrorbarsforthethreeintermediateredshiftbins);then>2.5redgalaxiesareretainedinouranalysis. IndependentofcolorandSérsicindexIR (diamonds)andX-ray(asterisks)detectionsarerejectedfromtheredsequencesample. Thedashedlinesarefitstotheredsequencesamplesforthethreeredshift binswithz≥0.5. Inthez=0.05panelthefitisshownasasolidline(thepositionofthisfitisshownintheotherpanelsasthedottedline). Alinewiththesame slopeisshiftedtothemeancolorvalueofthethreeotherpanels(solidline). Usingthese‘fits’wecalculatedinterceptsatMV =- 22. Thesmallhistogramsshow thecolordistributionmeasuredasanoffsetfromtherelation. Thecompletedistributionisshowninlightgray,whereastheredsequence(theblackpointsinthe CMDs)isshowninblack. Thedashedverticallineshowstheinterceptofthefit(dashedlineintheCMDs)atamagnitudevalueof- 22. Thesolidverticalline showsthemeaninterceptswiththeCMRscatter(RMS)markedbythedottedverticallines.Thedash-dottedlinesshowtheCMRinterceptatz=0.05.Overplotted isaGaussianwithmeanandσdefinedbythemeancolorandRMSoftheredsequencesample. ∼0.1mag.Thedotted‘errorbars’showourmeasurementofthe mentsfrom other studies (Blanton2006; Franzettietal. 2007; CMRscatter,calculatedastheresistantdispersionofthecolor Cooletal.2006)areshowninthisplottogetherwithourdata. offsets of the early-type galaxies from the CMR. The results In the case of Blanton (2006) and Cooletal. (2006), we have are tabulated in Table 1. For comparison, intercept measure- k-corrected their values to rest-frame U - V color using the 6 Ruhlandetal. TABLE1 Fit Fixedslope measured intrinsic measured intrinsic slope intercept scatter scatter slope intercept scatter scatter z=0.05 - 0.087±0.006 1.457±0.005 0.124 0.117 - 0.087 1.457±0.005 0.124 0.117 z=0.55 - 0.015±0.028 1.206±0.021 0.126 0.124 1.248±0.022 0.130 0.129 z=0.70 - 0.066±0.014 1.178±0.010 0.127 0.127 1.184±0.011 0.126 0.126 z=1.00 0.010±0.047 1.097±0.041 0.210 0.206 1.103±0.036 0.212 0.208 Note.—Colorintercepts(atMV,rest=- 22)andscatterin(U- V)rest measuredwithtwodifferentmethods.‘Fixedslope’meansthattheslopeoftheCMRisfixed tothez=0.05valueforallredshifts(solidlinesinFig.4),whileinthe‘Fit’columnstheredsequenceisfittedforeachbin(dashedlinesinFig.4). thatsubtractioninquadratureoftheindividualgalaxymeasure- menterrorsfromtheCMRscatteryieldsalmostunchangedre- sults,evenforthelowredshiftSDSSsample(wherethescatter coulddecrease to ∼0.09mag). This shows thatwe measured a real scatter in the relation and not only a spread caused by measurementuncertainties. Inparticular,oneshouldnotethat fortheSDSS,spectralanalysisofthedriversoftheCMRscat- terhavedemonstratedclearspectraldifferencesbetweenearly- typegalaxiesofagivenmagnitudeattheredsideandblueside of the CMR (Gallazzietal. 2006; Cooletal. 2006), demon- stratingthatthebulkoftheCMRscatterisintrinsic. 5. INTERPRETATION In the last sections, we described our measurements of the CMRinterceptandscatterforcosmicaverageearly-typegalax- ies at four redshifts between 1.0 and 0.05. We find a slowly- evolving mean color, and an almost non-evolving scatter of ∼0.1mag in U-V rest-frame color. In this section, we build some intuition about possible interpretation of this result us- ing stellar population synthesis modeling. We show first the evolutionofsinglebursts,orpopulationsofgalaxieswhosestar FIG.5.—CMRinterceptsinU- Vasafunctionofredshift.Thesmallsolid formationistruncatedataparticulartime,in§5.1and5.2.Note errorbarsdenotethestandarddeviationofallinterceptvaluescalculatedwith thatthepurposehereisnottotest‘monolithiccollapse’models thebootstrapmethod. The‘errorbars’withdottedlinesindicatetheresistant (thosemodelsarealreadyruledoutbytheobservedbuildupof dispersionofthecoloroffsetsfromthebest-fitCMR(i.e.,thescatterofthe thered sequencepopulation),ratheritis toestablish the basic CMR).Theothersymbolsshowmeasurements oftheCMRintercepts from otherpapers,asexplainedinthelegend.ThemeasurementsfromBlantonand modelingredients.In§5.3and5.4weaskandanswerasimple CoolweretransformedintoU- Vrest usingkcorrect. Theerrorbarsreflectthe question(similarinspirittovanDokkum&Franx2001):ifthe uncertaintiesintroducedbythistreatment. redsequenceformsthroughongoingandcontinioustruncation of star formation in previously star-forming systems, can one simultaneouslyreproducethe build-upof red sequence galax- kcorrect software package, written by M. Blanton. We made iesandthescatteroftheCMR? surethatthereisnosignificantdifference(.0.03mag)between therest-framecolorsderivedwithkcorrectandInterRest. 5.1. Theevolutionofsinglebursts We find that the intercept of the color-magnitude relation evolves by ∼0.3 mag in U- V color between z=1 and z= To get our bearings, we focus first on the evolution of the 0.05,inroughagreementwithpreviousstudies(e.g.Belletal. CMR intercept using single bursts of star formation. In what 2004a;Franzettietal.2007;Blanton2006;Tayloretal.2008), follows, we use the stellar populationmodel PÉGASE 10 (Ver- although recall that systematic errors in the intercepts of the sion 2.0, see Fioc&Rocca-Volmerange1997, forthe descrip- CMR are significant, ∼ 0.1 mag in U - V rest-frame color. tionofanearlierversionofthemodel)topredicttheevolution Moreimportantly,we finda scatter ofσU- V ∼0.1mag(Table ofgalaxycolorsandabsolutemagnitudesasafunctionofred- 1) at all z<0.75; the scatter at z=1 appearsto be somewhat shift. larger(beingconsistentwith Tayloretal.2008). Thesevalues The resultsare showninFigure6 forthreedifferentforma- aresomewhatlargerthanthescattermeasuredforlocalgalaxy tion redshifts and for various metallicities. One can see that clusters(0.04<σU- V <0.1,wherethescatterappearstovary the evolutionof the interceptof the CMR followsroughlythe fromcluster to cluster; e.g. McIntoshetal. 2005b)9. We note trendsexpectedforthepassivereddeningandfadingofancient stellar populations. In the contextof single bursts, the rate of 9Thepossible trend towards abluer CMRintercept atverylarge cluster- changeoftheCMRinterceptwithredshiftisrelatedprimarily centricradii,arguablyanenvironmentaleffect,wouldalsoincreasethescatter ofthecosmicaverageCMRrelativetotheclusterCMR(e.g.,Terlevichetal. 10Projetd’EtudedesGAlaxiesparSynthèseEvolutive 2001;Pimbbletetal.2002). EvolutionofEarly-typegalaxies 7 FIG.6.—Theevolutioninrest-framecolorofsingle-burststellarpopulationsformedatthreedifferentredshifts,andwithdifferentmetallicities(whereZ=0.02is solarmetallicity). Theasterisksdenotethemeasuredinterceptsfromourpaper;thegrayasterisksarethesameasinFig.5,whereastheblackasterisksshowcolor interceptsmeasuredataredshift-dependentabsolutemagnitude(tocompensateforfadingofstellarpopulationsasthegalaxypopulationages;onecanthinkofthis asmeasuringtheinterceptatapproximatelyconstantstellarmass).Theothergraysymbolsshowdatafromotherpapers,measuredinasimilarfashiontoourgray datapoints(seethelegendsofFig.5or7). to formation history, whereas the overallinterceptis sensitive primarilytometallicity,withsomesensitivitytoage. Tocompensateforthepassivefadingoftheearly-typepop- ulation, we also measure the CMR intercept at a redshift- dependentabsolutemagnitude(blackasterisksinFigure6).We choose to adopta modelwith metallicityZ =0.008and a for- mationredshiftof2toestimatetheevolutionoftheluminosity ofanearly-typegalaxyasafunctionofredshift11,andusethis tocalculatetheabsolutemagnitudevaluesatwhichwemeasure the interceptof the CMR (these absolute magnitudesare - 22, - 21.5,- 21.3,and- 20.8atz=1.0,0.75,0.55and0.05respec- tively). Onecanthinkoftheseinterceptsasbeingmeasuredat a given, redshift-independent,stellar mass. Because these in- terceptsreflecttheevolutionatagivenstellarmass,wechoose tofocusonthesevaluesinwhatfollows,asamoreintuitivere- flectionofthelikelyevolutionofthecolorofagivengalaxy(or amass/metallicitybinintheevolvinggalaxypopulation). 5.2. Theevolutionofgalaxieswithtruncatedstarformation Motivated by the observational evidence for truncation of star formationin blue sequencegalaxies, leadingto the ongo- ingbuild-upoftheredsequencegalaxiesatredshiftsz<1(e.g. FIG. 7.—Theredshiftevolutionofrest-framecolorfordifferenttruncation Belletal.2004b;Borchetal.2006;Belletal.2007),westudy times.Foralllines,starformationstartsatz=2andthedifferentlinesdenote theevolutionofthecolorsofgalaxieswhosestarformationhas avarietyofdifferenttruncationredshifts(fromlefttoright:0.2to1.2insteps of0.2).Thetinyblackdotsonthelinesindicatethepointontheevolutionary been truncatedat a variety of redshifts z.1. The purpose of trackagalaxyhasreached0.5,1and2Gyr,respectively,afterthetruncation this section is to get a feeling for the ingredients used for the ofstarformation(aslabeledonthesecondlinefromtheright). Thesymbols modelingofthe CMR evolutiondescribedin the nextsection. arethesameasinFigures5and6. Figure7showstherest-framecolorevolutionofa stellarpop- ulation which formsstars at a constantrate fromz =2 to the f truncation redshift z . We plot the evolution of seven dif- in steps of 0.2. A general feature of such truncation models trunc ferent truncation histories which all have a constant metallic- is a period of relatively rapid evolution onto the red sequence ity of Z =0.02. The rightmost track has a truncation redshift (timescales.1Gyr,ascanbeseeninFig.7andBlanton2006; very close to the formation redshift of the model, namely at Schweizer&Seitzer1992),andthenrelativelyslowsubsequent z=1.95. The other lines show the evolution of galaxies with fadingandreddeningofthepopulation. smallertruncationredshifts(fromlefttoright)from0.2to1.2 5.3. ExpectationsfortheScatterMeasurement 11Thechoicebetweentheformationredshiftsintherangeshownintheplot doesnothaveagreatinfluenceontheresults;tochoosezf =3insteadwould WiththeseSFmodelingingredientsinplace,wearenowina leadtoinaslightlysmallerevolutioninmagnitudes,buttheresultingdifference positiontoaskwhattheevolutionoftheinterceptandscatterof ininterceptsissmallerthan0.02forallredshifts. Adifferentchoiceinmetal- theCMRcantellusabouttheevolutionoftheearly-typegalaxy licityhasalsoonlyverysmalleffects. TochooseZ=0.02(solarmetallicity) population. Obviously,wewillbeunabletoaddressthisissue wouldchangetheresultsevenlessthanthechangeofformationredshift. 8 Ruhlandetal. FIG.8.—Theintegratednumberoftruncated(pre-redsequence)galaxiesas FIG. 10.—Colorsofindividualgalaxiescalculatedinthesamewayasfor afunctionofcosmicage(tgal,trunc=13.5Gyristhepresentday). Assuming Figure9butassumingascatterinmetallicity. Thelinesshowthemeanvalue thataftertruncationofstarformationgalaxiesfadeontotheredsequencein1 incolorandthescatterofthecolordistribution. Recallthatwehaveuseda Gyr,onereproduces(byconstruction)theobservedevolutioninstellarmass redshift-dependent luminositycutasdescribedinSection5.1tomeasurethe densityontheredsequence(insetpanel). intercepts. completely, as we have seen that many factors influence the isusedtoestimatethetruncationratebyshiftingthetimeaxis colorsandmagnitudesofgalaxies:whenstarformationstarted, by- 1Gyr-approximatelythetimetakentoreddenenoughto metallicity,when(if!) starformationends,andwhetherornot satisfyourredsequencecut(followingBlanton2006;seealso thereisanyresidualstarformation. Fig. 7). In this way, we have a truncation rate history that is Instead,welimitourselvestoonewell-definedquestion.Re- consistentwithBorchetal.(2006)andcanbeusedtoestimate cent observations have measured a significant increase in the the evolution of the CMR scatter. To describe the truncation total stellar mass in the red sequence galaxy population since rateforepochsnotcoveredbyBorchetal.(2006),wechooseto z = 1 (Chenetal. 2003; Belletal. 2004b; Bundyetal. 2005; modelthetruncationrateasaconstantlyincreasingfunctionof Brownetal.2006b;Borchetal.2006;Faberetal.2007). This timefromz ∼5.5untilz =0.9.Theinfluenceofthischoice f trunc evolution manifests itself primarily in terms of an increasing ontheresultsisnegligible. Theresultingnumberoftruncated space density of red sequence galaxies at . L∗ (Borchetal. (pre-redsequence)galaxies–theintegralofthetruncationrate 2006;Faberetal.2007),andismostnaturallyinterpretedasbe- –asafunctionofcosmicepochisalsogiveninFig.8. ingfedbythetruncationorquenchingofstarformationinmas- The next step is to build a more realistic truncation model sive blue galaxies (Belletal. 2004b, 2007; Faberetal. 2007). (c.f. Fig. 7): insteadofchoosingoneparticulartruncationtime Insuchascenario,oneexpectsasignificantscatterintheCMR, asin§5.2,weinsteaddrawtruncationtimesfromthetruncation because of the constantflow of recently star-forminggalaxies time distribution in Fig. 8. We choose 12 ‘observation’ red- onto the red sequence. Here, we will predict the CMR scat- shiftsbetweenz=0andz=1.1;ateachwedraw1000galaxies terimpliedbyaconstantlygrowingredsequence,andcompare fromthistruncation13historyshowninFig.8resultinginsam- this predicted scatter with the observations. Such an exercise plesofgalaxieswithdifferenttruncationredshifts,butthesame wascarriedoutbyvanDokkum&Franx(2001)forearly-type formationredshiftz =3forallgalaxies14.Duetothisvariety start galaxiesinclusters;here,weextendtheirworktoacosmicav- oftruncationredshiftsthegalaxiesinthesamplesexperienced erageenvironment. periodsofpassiveevolutionofdifferentlength.Thisthengives Our first ingredient is a toy model for the build up in the a distribution of galaxy colors at each redshift of interest; for number of red sequence galaxies as a function of time. We displaypurposesinFigs.9and10wehaveaddedasmallran- assumei)thatthegrowthinthetotalmassontheredsequence dom offset in redshift. We assume no ongoing low-level star is driven entirely by adding blue galaxies that have had their formationinredsequencegalaxies;whilepotentiallyunrealis- SF recentlytruncated,andii)redsequencegalaxiesare added tic,itallowsustoestimatetheexpectedscatterfromtruncation at all stellar masses equally12. We describe the evolution of 13Theresultsofthispaperdonotchangesignificantlyifaburstofstarforma- the number of red sequence galaxies with a simple linear fit tionoccursbeforetruncation,asmightbeexpectedinagas-richgalaxymerger. (in redshift) as shown in the small panel of Fig. 8, compared 14Notethatthischoiceofzstart differsfromzf insection5.1. Incontrastto with the measurements of the integrated stellar mass density thisformerzf,whichwasusedtosimulatethepassiveevolutionafteraninitial ofBorchetal.(2006). Wethendeterminethederivativeofthis starburst,zstartindicatesthestartingpointofalongerperiodofstarformation. relationtogetthechangeinstellarmassdensitywithtime.This 12In fact the CMR scatter and mass build-up are both measured at ∼ 1011M⊙,reducingtheimportanceofthisassumption. EvolutionofEarly-typegalaxies 9 FIG.9.—ColorsofindividualgalaxiescalculatedusingthetruncationhistoryshowninFig.8usingonefixedmetallicityforeachplot.Thecolorsweremeasured forcertainredshiftvaluesandareshownherespreadoutinredshifttoillustratethedensityincolorspace.Themetallicitiesarefromlefttoright0.008,0.02(solar) and0.05.Thereisabimodalityatsomeredshifts,asaresultofkinksintheevolutionarytracksatsomevaluesofage/metallicity. TABLE2 Fit Fixedslope Simulation measured intrinsic measured intrinsic scatter scatter scatter scatter z=0.05 0.124 0.117 0.124 0.117 0.115 z=0.55 0.126 0.124 0.130 0.129 0.126 z=0.70 0.127 0.127 0.126 0.126 0.132 z=1.00 0.210 0.206 0.212 0.208 0.167 Note. —Forbettercomparisonthemeasurementvaluesforthemeasuredandintrinsicredsequencescatterarepresentedheretogetherwiththevaluesforthe simulatedscatter. Inordertoseparatebetweentheeffectsofageandmetallicity scatterontheCMRscatter,wefirstconsidertheeffectsoffor- mationhistoryaloneinFig.9. Onecanseeaconsiderablecolor scatterfromtheongoingaccretionofrecently-truncatedgalax- ies,alongwithsomelow-levelbimodalitiescausedbykinksin the time evolution of colors for some metallicities (see, e.g., Fig. 6). For solar metallicity Z =0.02 the color evolution is smooth, giving no ’pile-ups’in colorspace. The stronginflu- enceofmetallicityonthecoloroftheredsequencecanalsobe seeninthisplot. In Fig. 10, we show our expectation for the evolution of the CMR intercept and scatter as a function of redshift. We havedrawngalaxiesfromalog-normaldistributioninmetallic- itywithmean[Fe/H]=- 0.12andscatter0.1dexwhichisheld constant over redshift (Fig. 11)16. This distribution was cho- sen to approximately match the observed CMR intercept and scatter, but it is interesting to note that this value of metallic- ity scatter is consistent with the estimated intrinsic scatter in metallicityofpresent-dayearly-typegalaxiesof∼0.1dexfrom withthisapproach.Suchanargumenthasmerit,butwouldneglect(aswealso have)theinfluenceofanyage/metallicityanti-correlationontheCMRscatter FIG.11.—MetallicitydistributionforthemodeledgalaxysampleinFigure (asobservedbye.g.Trageretal.2000) 10.Themeanvaluehlog10Z/Z⊙iis- 0.12andstandarddeviationis0.1.Solar 16Our assumption of a redshift-independent scatter is clearly an over- metallicityistakentobe0.02. simplification;yet,inthecontextofourmodelinwhicheachgalaxyhasitsown singlemetallicityitisadefensibleone. Inreality,themetallicitymayevolve ifthereisanylowlevelresidualstarformationinearly-typegalaxies(indeed, alone15. ifthere is anage-metallicity relation in thestars in anindividual galaxy, its light-weighted agecanevolveasthegalaxyagesevenintheabsenceofstar 15OnecouldarguewewillestimatelowerlimitstothescatteroftheCMR formation). 10 Ruhlandetal. Gallazzietal. (2006). We show the mean and scatter (calcu- theimplicationsofthegrowthoftheredsequencethroughthe lated with the same estimation algorithm as the scatter in the truncation of star formation in blue galaxies. Here we have observed relations) of the distribution as solid lines. The re- shownthatsuchamodelreproducessimultaneouslytheevolu- sulting distribution agrees well with the scatter measurements tionoftheinterceptandscatterofthecolor-magnituderelation at the redshifts 0.05, 0.55 and 0.7. At z=1.0, the measured since z=1 and the blue spheroid fraction at intermediate red- scatterexceedsthemodelprediction(allowingformorescatter shift. Suchananalysislendsconsiderableweighttothenotion in star formationhistories). Theresultsarepresentedin Table that the early-type galaxy population has grown considerably 2. between redshift one and the present day through the trunca- Itisinterestingtocompareourresultswithasimilaranalysis tionofstarformationinbluegalaxies(throughmergersorsome ofearly-typegalaxiesinclusterscarriedoutbyvanDokkum&Franxotherphysicalprocess). (2001). Theyuse asimilar modelofaconstantly-growingred sequencetopredictboththemass-to-lightratioandcolorevolu- 6. DISCUSSIONANDCONCLUSIONS tion(andscatter)oftheearly-typegalaxypopulation,findinga The evolution of the scatter of the red sequence is an im- relativelyslowcolorevolutionandarelativelyconstantscatter. portantsourceofinformationabouttheevolutionaryhistoryof Our results are in qualitative accord with their results for the the red sequence/early-type galaxy population. In this paper, cluster early-type galaxy population, but are representative of weconstructedhigh-accuracycolor–magnituderelationsatfour thecosmic-averagedearly-typegalaxypopulationandarecon- differentredshiftrangesusingaccuratecolorandspectroscopic strained to reproduce the observed build-up of the early-type redshiftinformation. We useda sampleofover3000galaxies galaxypopulation. in the CDFS, in conjunction with a local reference sample of galaxiesfromtheSDSS,tounderstandtheredshiftevolutionof 5.4. BlueSpheroids CMR scatter. We used images from the GEMS survey taken Sofar,wehavemadenoparticularassumptiononthemech- with the ACS onboard HST to provide both high-resolution anism by which galaxies quench their star formation and join morphologies(to classify galaxies as early-type) and to mea- theredsequence.Inthissection,weexplorearathermorespe- sureaccuratecolorswithinthehalf-lightradius.Inordertocal- cificscenario:galaxiesstructurallytransformintoanearly-type culateaccuratek-correctionstorest-framepassbands,weused galaxy (e.g., through galaxy merging) before reddening on to spectroscopicredshiftscompiledfromavarietyofsources. At the red sequence. Such a scenario predicts that there should allredshifts,weapplyastructureandcolorcuttoisolateearly- be a non-negligiblepopulationof blue spheroids– i.e., galax- type red-sequence galaxies; at intermediate redshift we were iesthatarestructurallyearly-typebuthavebluecolors. Inthis able also to excise star-forming galaxies and AGN from the context,wepresentarangeofpredictionsfortheirabundance, sampleusingX-rayand24µminformation. requiring that blue spheroids i) have colors at least 0.25 mag Theresultingscatterofthecolormagnituderelationis∼0.1 bluer inU- V than the locus of red sequence galaxies at that mag in U - V color at z = 0.05, 0.55 and 0.7, and some- redshift,andii)areatleastagiventimet fromthetrun- what higher at z = 1.0. This scatter is comparable to those recognize cation (or spheroid creation) event. This latter criterion is in- troduced to allow for a delay t between the event that recognize truncatedstarformation(e.g. agalaxymerger)andthegalaxy becomingrecognizablyearlytype;inwhatfollowsweexplore the range0≤t ≤0.4 Gyr, motivatedby simulationsof recognize galaxymergers.Theratioofbluespheroidstothetotalnumber ofspheroidalgalaxies(redandbluespheroids)N /(N +N ) BS RS BS ismeasuredasafunctionofredshiftandisshowninFig. 12for 3differentvaluesoft . recognize TherearetwokeypointstotakeawayfromFig.12. First,the predicted blue spheroid fraction depends sensitively on one’s choice of t (and therefore, also, details of the star for- recognize mation history and dust content of the galaxy)17. Second, despite this uncertainty, the range in model prediction is in reasonable agreement with observed blue spheroid fractions (e.g. N /(N +N )∼0.06atz∼0.6fromHäußler200718). BS RS BS ThefractionobservedbyBamfordetal.(2008)fortherelevant mass range is slightly higher than in our models, but as they usedadifferentmethodthesevaluesmightnotbedirectlycom- parable. Recallthatthistoymodelwasconstructedtoexplore 17In fact, for long trecognize, the blue spheroid fraction decreases towards higherredshiftbecausetrecognizebecomescomparabletothetimetakentotran- sitionbetweenthebluecloudandredsequence. 18Herewearecomparingwiththebluespheroidfractionofrelativelymas- FIG. 12.—The predicted ratio ofblue spheroids to the total number of sivespheroidalgalaxies,whichhaveamassrangeconsistentwithourredse- spheroids as a function of redshift for ourtoy model for the growth ofthe quencegalaxies(seeHäußler2007,Fig.4.13).AsHäußler2007(seeparagraph redsequence. Thethreecurvesshowtheeffectofthreedifferentchoicesfor 4.5.1)foundmanyoftheworksquotingahigherbluespheroidfractionarein- trecognize,thetimetakenforagalaxytobecomerecognizablyearlytypeafter cludinglow-mass/low-densityobjectsthatcanneverturnintoapresent-day theeventthattruncatesstarformation.DespitethedependenceofNBS/(NRS+ bulge-dominatedredsequencegalaxy(e.g.,Abrahametal.1999;Schadeetal. NBS)ontrecognize,itisremarkablethatthepredictedbluespheroidfractionis 1999;Imetal.2002). intherangeoftheobservations(e.g.Häußleretal.2007).