ebook img

The evolution of air resonance power efficiency in the violin and its ancestors PDF

26 Pages·2015·1.9 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The evolution of air resonance power efficiency in the violin and its ancestors

Downloaded from http://rspa.royalsocietypublishing.org/ on October 30, 2015 The evolution of air resonance power efficiency in the violin rspa.royalsocietypublishing.org and its ancestors HadiT.Nia1,AnkitaD.Jain1,YumingLiu1, Research Mohammad-RezaAlam1,†,RomanBarnas2and Citethisarticle:NiaHT,JainAD,LiuY,Alam NicholasC.Makris1 M-R,BarnasR,MakrisNC.2015Theevolution ofairresonancepowerefficiencyintheviolin 1DepartmentofMechanicalEngineering,MassachusettsInstituteof anditsancestors.Proc.R.Soc.A471:20140905. Technology,77MassachusettsAvenue,Cambridge,MA02139,USA http://dx.doi.org/10.1098/rspa.2014.0905 2ViolinMaking,NorthBennetSt.School,39NorthBennetSt., Boston,MA02113,USA Received:20November2014 Accepted:13January2015 HTN,0000-0003-1970-9901 The fact that acoustic radiation from a violin at SubjectAreas: air-cavity resonance is monopolar and can be acoustics determined by pure volume change is used to help explainrelatedaspectsofviolindesignevolution.By Keywords: determining the acoustic conductance of arbitrarily violinacoustics,musicalacoustics, shaped sound holes, it is found that air flow at the perimeter rather than the broader sound-hole violinevolution,Helmholtzresonance, area dominates acoustic conductance, and coupling f-hole,soundholeevolution between compressible air within the violin and its elastic structure lowers the Helmholtz resonance Authorforcorrespondence: frequency from that found for a corresponding rigid NicholasC.Makris instrument by roughly a semitone. As a result of the former, it is found that as sound-hole geometry of e-mail:[email protected] the violin’s ancestors slowly evolved over centuries from simple circles to complex f-holes, the ratio of inefficient, acoustically inactive to total sound-hole area was decimated, roughly doubling air-resonance powerefficiency.F-holelengththenslowlyincreased byroughly30%acrosstwocenturiesintherenowned workshops of Amati, Stradivari and Guarneri, favouring instruments with higher air-resonance power, through a corresponding power increase of roughly 60%. By evolution-rate analysis, these †Presentaddress:DepartmentofMechanical changes are found to be consistent with mutations arising within the range of accidental replication Engineering,UCBerkeley,CA94720,USA. fluctuations from craftsmanship limitations with subsequent selection favouring instruments with higherair-resonancepower. Electronicsupplementarymaterialisavailable athttp://dx.doi.org/10.1098/rspa.2014.0905or viahttp://rspa.royalsocietypublishing.org. 2015TheAuthor(s)PublishedbytheRoyalSociety.Allrightsreserved. Downloaded from http://rspa.royalsocietypublishing.org/ on October 30, 2015 1. Introduction 2 Acousticradiationfromaviolinatitslowestfrequencyresonanceismonopolar[1]andcanbe determined by pure volume change [2–4]. We use this to help explain certain aspects of violin ..rsp .a designevolutionthatareimportanttoacousticradiationatitslowestfrequencyresonance.This ...ro .y l5o].wAesirtfcraevqiutyenrceysorneasonnceanhcaesisbeaelsnoekmnopwirincaalslyaiirdecnavtiifityedreassonaanncimepanodrtaHnetlmquhaolilttyzrdeissocnriamnicnea[t3o–r ......alsocie bofetawveieonlinv’isolriengsis[6te–r8[]7a–n9d].iIstfcuonrcretisopnoanlldysitmopthoertvaniotlbine’csaluosweeitstadmopmliifineasntthmeloodweeorffvreibqruaetniocny.rSainngcee .....typub mostoftheviolin’svolumeisdevotedtohousingtheaircavity,theaircavityhasanimportant ...lish effectonaviolin’sacousticperformanceatlowfrequenciesbycouplinginteriorcompressibleair ....ing.o withtheviolin’selasticstructureandairflowtotheexteriorviasoundholes. ..rg . Owing to its long-standing prominence in world culture, we find enough archaeological ...Pro .c dataexistfortheviolinanditsancestorstoquantitativelytracedesigntraitsaffectingradiated .. .R .. acousticpowerataircavityresonanceacrossmanycenturiesofpreviouslyunexplainedchange. .S .o Bycombiningarchaeologicaldatawithphysicalanalysis,itisfoundthatassoundholegeometry ...c.A ooeiffgtthhetenetevhniotchleinnc’etsunatrunyrcymesCetodrreisemvsolaonlwefisltyehveelvieoosllivntoesdocfoovmtheperlBaexapreof-rqhiouodeleposfetrchieoandtt,uctrhhiaeersarfacrttoieomriozsfeiminclpeaflsfiescicciiearncluts,leaavrceoonuptseetenicniantlhgly–s ........471:2014 .0 inactivetototalsoundholeareawasdecimated,makingairresonancepowerefficiencyroughly ...905 double.Ourfindingsarealsoconsistentwithanincreasingtrendinradiatedairresonancepower havingoccurredovertheclassicalCremoneseperiodfromroughly1550(theLateRenaissance)to 1750(theLateBaroquePeriod),primarilyduetocorrespondingincreasesinf-holelength.Thisis basedupontimeseriesoff-holelengthandotherparametersthathaveanatleastornearlyfirst- order effect on temporal changes in radiated acoustic power at air cavity resonance. The time seriesareconstructedfrommeasurementsof470classicalCremoneseviolinsmadebythemaster violin-making families of Amati, Stradivari and Guarneri. By evolution rate analysis, we find thesechangestobeconsistentwithmutationsarisingwithintherangeofaccidentalreplication fluctuations from craftsmanship limitations and selection favouring instruments with higher air-resonancepower,ratherthandrasticpreconceiveddesignchanges.Unsuccessfulnineteenth centurymutationsaftertheCremoneseperiodknowntobeduetoradicaldesignpreconceptions arecorrectlyidentifiedbyevolutionrateanalysisasbeinginconsistentwithaccidentalreplication fluctuationsfromcraftsmanshiplimitationsandarequantitativelyfoundtobelessfitintermsof airresonancepowerefficiency. Measurementshaveshownthatacousticradiationfromtheviolinisomni-directionalattheair cavityresonancefrequency[1].Thesefindingsareconsistentwiththefactthattheviolinradiates soundasanacousticallycompact,monopolarsource[2–4],wheredimensionsaremuchsmaller thantheacousticwavelength,atairresonance.Thetotalacousticfieldradiatedfromamonopole sourcecanbecompletelydeterminedfromtemporalchangesinairvolumeflowfromthesource [2–4,10,11]. For the violin, the total volume flux is the sum of the air volume flux through the soundholeandthevolumefluxoftheviolinstructure.Accurateestimationofmonopoleradiation atairresonancethenonlyrequiresaccurateestimationofvolumeflowchanges[2,3,11,12]rather than more complicated shape changes of the violin [8,9,13] that do not significantly affect the totalvolumeflux.Bymodalprinciples,suchothershapechangesmayimpacthigherfrequency acoustic radiation from the violin. Structural modes describing shape changes at and near air resonance have been empirically related to measured radiation, where modes not leading to significant net volume flux, such as torsional modes, have been found to lead to insignificant radiation [8,13]. Since acoustic radiation from the violin at air resonance is monopolar [1], and socanbedeterminedfromchangesintotalvolumeflowovertime,arelativelysimpleandclear mathematicalformulationforthisradiationispossiblebyphysicallyestimatingthetotalvolume flux resulting from the corresponding violin motions that have been empirically shown [13 ] to leadtothedominantradiationatairresonance. Here we isolate the effect of sound hole geometry on acoustic radiation at air resonance by developingatheoryfortheacousticconductanceofarbitrarilyshapedsoundholes.Weusethis Downloaded from http://rspa.royalsocietypublishing.org/ on October 30, 2015 to determine limiting case changes in radiated acoustic power over time for the violin and its 3 ancestorsduetosound-holechangealone.Theselimitingcasesareextremelyusefulbecausethey haveexactsolutionsthatareonlydependentonthesimplegeometricparametersofsoundhole .rs shapeandsize,astheyvariedovertime,andarenotdependentoncomplexelasticparametersof ..pa theviolin.Wethenestimatemonopoleradiationfromtheviolinanditsancestorsatairresonance ...ro .y .a fproowmerelcahstaincgveosluatmaeirflruexsoannaanlcyesitsh.aTthfiasllelbaesttwicevenoluanmdeffloullxowanaalsyimsisilaleratdesmtpooerxapletrcetneddraasdtihaotesde .....lsocie osfmrifomamttihclhaemregseaeamirosumerearesesotudrnrivceadanllicuameierifstrriebensqygournecoanaunscgceyhest.lfeyrTmeahqpesuoeeermnaxcilatitcoertsneneos.odfEleuaxlatstisaoetnnliactscfvtrlioaoclsmuasinmcraaeilglyflCisduirseximbneussotttnriwumemsiaettheiinonatnsnt,aroounfnmafsltyeehtnseiitsnsottlfoehraeerdqrousuhegatnonhcdlyya, ............typublishing.o withinaquarterofasemitoneoraPythagoreancomma[14].Thisindicatesthatrigidanalysismay ...rg notbesufficientforsomefine-tunedmusicalapplications. ...Pro .c While Helmholtz resonance theory for rigid vessels [3–5] has been experimentally verified ...R .. for simple cavity shapes and elliptical or simple circular sound holes (e.g. [15–18]) as in the ..So guitar,ithasnotbeenpreviouslyverifiedfortheviolinduetolackofamodelfortheacoustic ...c.A .4 rc[1eo9lna]dt,erudacttihanensrtcretuhmoafnetnfhutesn[df5-a,h9mo,2lee0n.,2tPa1al],rphahmayveseitcelaerldfiftotoramrneusdulanlttesiotiwnnscoorthnkasaitsnhtaeanlvotegwybietaehpncpldraoesvasicechlaoelpsHetdeolmfvoihrootlhilntezmvreioosoldinnelalaninncdge ........71:20140 .9 theory [3–5] even for rigid vessels. Here it is found both experimentally and theoretically that ..05 whenviolinplatesarerigidlyclamped,theair-cavityresonancefrequencystillfollowstheclassic rigid body dependence on cavity volume and sound hole conductance of Helmholtz resonator theory [3–5]. It is also found that when the plate clamps are removed, air-cavity resonance frequency is reduced by a percentage predicted by elastic volume flux analysis, roughly a semitone.Discussionsonthedependenceofairresonancefrequency,andconsequentlyacoustic conductance, on sound hole geometry have typically focused on variations in sound hole area (e.g.[22–25]).Thefluid-dynamictheorydevelopedhereshowsthattheconductanceofarbitrarily shapedsoundholesisinfactproportionaltothesoundholeperimeterlengthandnotthearea. Thisisverifiedbytheoreticalproof,experimentalmeasurementandnumericalcomputation.This perimeterdependenceisfoundtobeofcriticalimportanceinexplainingthephysicsofair-flow through f-holes and sound radiation from a violin at air resonance. It is also found to have significantlyimpactedviolinevolution. 2. Determiningtheacousticconductanceofarbitrarilyshapedsoundholes SoundholeconductanceC[3,4]isrelatedtoairvolumeflowthroughthesoundholeby m¨air(t)=C(cid:2)P(t), (2.1) where(cid:2)P(t)isthepressuredifferenceacrossthehole-bearingwall,formonopolarsoundsources [2–4] like the violin at the air resonance frequency, and m˙air(t) is mass flow rate through the sound hole [2], which is the product of air volume flow rate and air density, at time t . The acousticpressurefieldradiatedfromasoundholeofdimensionsmuchsmallerthantheacoustic wavelengthisproportionaltothemassflowrate’stemporalderivative[2–4],andconsequently thetemporalderivativeoftheairvolumeflowrateandconductanceviaequation(2.1).Analytic solutions for conductance exist for the special cases of circular and elliptical sound holes [3,4], where conductance equals diameter in the former, but are not available for general sound holeshapes. A theoretical method for determining the acoustic conductance of an arbitrarily shaped soundholeisdescribedhere.Acousticconductanceisdeterminedbysolvingamixedboundary value problem [2–4,26] for approximately incompressible fluid flow through a sound hole. This approach is used to theoretically prove that conductance is approximately the product of soundholeperimeterlengthLandadimensionlessshapefactorα in§3.Itisthennumerically Downloaded from http://rspa.royalsocietypublishing.org/ on October 30, 2015 implementedin§§4and5toquantitativelyanalysetheevolutionofviolinpowerefficiencyatair 4 resonance.Itisexperimentallyverifiedforvarioussoundholeshapes,includingtheviolinf-hole, in§§4,5and7.Theapproachdescribedhereisforsoundholedimensionssmallcomparedwith .rs theacousticwavelength,asistypicalattheairresonancefrequencyofmanymusicalinstruments, ..pa includingthoseintheviolin,lute,guitar,harpandharpsichordfamilies. ....roy [2–A4,2ss6u]misintogsirorlovteatLioanpalalcfleu’sideqfluoawtiownitihnvtehleocuitpyppeortheanltfiapllφan(xe,ya,bzo),vtehaebhoourinzdoanrtyalvwalaulelwpriothbltehme ......alsocie bwapoaupllrn,odcaoacrrhyreecssopinnofidnnidtiiitnoyng.sTtothhezaentro(oir)nmφoar=lmfl1auloivdveefllrootcwhiteyv,seuoalnnuod=cnidt(y∂∂iihφnit)ohφlreovauapgnehirstthuheresesaionsuttnhhdeehdwoisaltelal,ins(ciei)f∂roφm/∂nth=eo0poenn(2itn.h2ge) ..................typublishing.orgPro .c .. andtheconductanceCis .R (cid:2)(cid:2) ...S wrohbeursetbSoiusntdhaerysoeulenmdehnotlmeeatrheoad. FtorosmolvtChe=ethb12eoustSnadutenadrdybSo,inutnedgraarlyfvoarlmueulpartioobnle[m27f]o,rwφeadnedveolbo(t2pa.i3na) .............oc.A471:20140 .9 the exact solution for the normal velocity un(x,y,z) on the opening from which conductance is ..05 thendetermined[3,4].Thismethodisfoundtobeeffectiveforarbitrarysoundholeshapesand multiple sound holes. In the limit as the separation between multiple sound holes approaches infinity,thetotalconductanceequalsthesumoftheconductancesoftheindividualsoundholes. Whentheseparationbetweensoundholesissmall,thetotalconductanceissmallerthanthesum oftheconductancesofindividualsoundholes.FortypicalCremoneseviolins,theconductance theorydevelopedhereshowsthattheinteractionoftwof-holesreducesthetotalconductanceby roughly7%fromthesumofconductancesofindividualf-holes.Thisleadstoaroughly4%change inairresonancefrequency,whichisasignificantfractionofasemitone,andaroughly15%change inradiatedacousticpoweratairresonance.Theconductanceformulationofequation(2.3)isfor wallthickness,hsh,asymptoticallysmallnearthesoundhole,hsh(cid:2)L,whichisgenerallythecase fortheviolinanditsancestorsaswellasguitars,lutesandmanyotherinstruments.Theeffectof finitewallthicknessonCcanbeincludedbyuseofRayleigh’sformulation[3],whichbecomes negligibleforsufficientlythinwallthicknessatthesoundhole. Forthespecialcaseofanellipse,bothperimeterlength[28]andRayleigh’sanalyticsolution fortheconductanceofanellipse[3]aredirectlyproportionaltotheellipse’smajorradius,and so are proportional to each other for a fixed eccentricity. In the elliptical case, for example, the eccentricity determines the constant of proportionality, i.e. the shape factor α, between the conductanceandtheperimeterlength.Withonlytheellipsesolutionavailable,Rayleighobserved thatsoundholeconductance‘Cvariesasthelineardimension’[3]ofthesoundhole,buthedid notsupplyageneralproofordescribethephysicalmechanismsleadingtothisdimensionality. 3. Theoreticalproofofthelinearproportionalityofconductanceonsoundhole perimeterlength Here the conductance of a sound hole is proved to be linearly proportional to sound hole perimeter length for L(cid:3)hsh. Total sound hole area S in equation (2.3) can be subdivided into N elemental areas s, which share a common vertex inside S, such that the total sound hole j conductancefromequation(2.3)is (cid:2)(cid:2) (cid:2)N 1 C= un(x,y)dS, (3.1) 2 j=1 sj Downloaded from http://rspa.royalsocietypublishing.org/ on October 30, 2015 (cid:3) whereS= Nj=1sj,withsjcontainingapiece-wisesmoothboundaryelementljofthesoundhole 5 perimeter.UsingStokestheorem,theintegralinequation(3.1)canbewrittenas (cid:2)(cid:2) (cid:3) .rs sjun(x,y)dS= LjAdx+Bdy, (3.2) .....pa.roy .a wainlohteTnegrghreealLjbbajleonisudstinhnyde(cid:4)ga=utroly0atarcvilatabynlouabuetentphddreaeofirpbyneleecrmiodmnotefnooteurlrjrφsooo(ffxttt,hhhyeae,tzse)oelquehmunaadsetnihaotoansllpe(a3.erA.ce2ia)allorsecjfdaeaaluntccduoer∂oseBrtdo/thi∂naxat−teun∂s(yAxs/,t∂ye,ymz=()xu(cid:4)hn,ay(xs(cid:4)),ayw).iwtheaxk(cid:4), .............lsocietypublish (cid:2)(cid:2) un(x,y)dS=(cid:2) A(cid:4)dx(cid:4)+(cid:2) A(cid:4)dx(cid:4)+B(cid:4)dy(cid:4), (3.3) ......ing.org sj lj (cid:2)lj ....Pro cwohrnereer flLjo=wljs+olu(cid:2)tiloj,n∂[B2(cid:4)9/]∂xw(cid:4)i−th∂A−(cid:4)0/.∂5y<(cid:4)=βu<n0(y.(cid:4)T)haennduA(cid:4)n=(yb(cid:4))+=(aa(/y((cid:4)β)β+f1ro)(cid:4))m(y(cid:4))tβh+e1twhriethe-dBi(cid:4)m=e0nsoiornaanl ......c.R.So arbitrary constant is a solution to ∂B(cid:4)/∂x(cid:4)−∂A(cid:4)/∂y(cid:4)=un(y(cid:4)), and so ljA(cid:4)dx(cid:4)=blj where a and ....c.A4 barTehceonn,sftraonmts.equations(3.1)and(3.3) .......71:2014 C=1(cid:2)N bl + 1(cid:2)N (cid:2) A(cid:4)dx(cid:4)+B(cid:4)dy(cid:4), (3.4) ....0905 j 2 j=1 2(cid:4)j=1 (cid:2)lj (cid:5)(cid:6) (cid:7) =0 where the second term vanishes since the total contribution from the edges of s other than l j j canceloutfromStokestheorem.Then,theconductanceCofthesoundhole C=1bL=αL (3.5) 2 isproportionaltothesoundholeperimeterlengthL,bdependsontheshapeofthesoundhole andα=b/2istheshapefactor. 4. Evolution of sound hole shape from the tenth to the eighteenth centuries anditseffectonradiatedairresonancepoweroftheviolinanditseuropean ancestors Upper and lower limiting cases are determined by exact solutions for the changes in radiated acousticpowerovertimeduesolelytochangesinthepurelygeometricparameterofsoundhole shape for the violinand its ancestors (figure1a, electronic supplementarymaterial, §§1 and 2). These are compared with the radiated power changes over time at air resonance from elastic volumefluxanalysis(§9andelectronicsupplementarymaterial,§§3and4)(figure1a).Toisolate theeffectofsoundholegeometryinfigure1a–c,allcaseshaveconstantforcingamplitudeover time, are normalized to the circular sound hole case, and have all other parameters including sound-hole area and air cavity volume fixed over time. So, the basic question is, for the same areaofmaterialcutfromaninstrumenttomakeasoundhole,whatistheisolatedeffectofthe shapeofthissoundholeontheairresonancefrequencyandtheacousticpowerradiatedatthis resonancefrequency? Theupperlimitingcasecorrespondstotheradiatedpowerchangeofaninfiniterigidsound holebearingwall,wheretheexactanalyticalsolutionfortotalpowerinafrequencyband(cid:2)f is givenby (cid:2) 1 |(cid:2)P˜(f)|2 Wwall= d f C2 (4.1) T (cid:2)f πρaircair Downloaded from http://rspa.royalsocietypublishing.org/ on October 30, 2015 (a) 140 6 elastic instrument % radiated power change at air resonance 11864220000000 rinigfiidn iitne swtraulmlent CCC112.7 ........................rspa.royalsocietypublishing.o 0 ..rg . (b) 111...232500 ce frequency .............Proc.R.Soc.A4 11..1150 ed air resonan ...........71:20140905 elastic instrument 1.05 aliz rigid instrument m 1.00 nor (c) 3.0 L) Cce ()ngth ( 22..62 perimeter length ne conductaerimeter l 11..84 conductance p 1.0 i ii iii iv v vi century: 10th 12th–13th 13th 15th–16th 16th–17th 16th–18th Figure1.Acousticair-resonancepowerefficiencygrowsassoundholeshapeevolvesovercenturiesthroughtheviolin’s Europeanancestorstotheviolin.(a)Changeinradiatedacousticair-resonancepowerforanelasticinstrumentWair-elastic (equation(4.5)),rigidinstrumentWair-rigid(equation(4.2))andinfiniterigidsoundholebearingwallWwall(equation(4.1)) asafunctionofsoundholeshape,wherepercentagechangeismeasuredfromthecircularsoundholeshape.(b)Air-resonance frequencyforelasticinstrumentfair-elastic(equation(4.4))andrigidinstrumentfair-rigid(equation(4.3))asafunctionofsound holeshape,normalizedbyfair-elasticforthecircularopening(i).(c)ConductanceC (equation(2.3))andperimeterlengthLfor differentsoundholeshapesoffixedsound-holearea,normalizedtobeunityforthecircularopening(i).Shapeoverlapoccurred betweennearbycenturies.Onlysoundholeshapeischangedandallotherparametersareheldfixedandequaltothoseofthe 1703‘Emiliani’Stradivariviolin[30].Theconductanceofthetwointeractingsoundholesforeachinstrumentisdeterminedfrom equation(2.3).Datasourcesareprovidedintheelectronicsupplementarymaterial,§5. Downloaded from http://rspa.royalsocietypublishing.org/ on October 30, 2015 asshownintheelectronicsupplementarymaterial,§1,where(cid:2)P˜(f)isthefrequencyspectrumof 7 thetime-varyingpressuredifference(cid:2)P(t)acrosstheholebearingwall,where(cid:2)P(t)⇔(cid:2)P˜(f)are aFourierTransformpair[31],Tistheaveragingtime,ρairisairdensity,cairisthesoundspeedin .rs airandonlyCchangeswithsound-holeshapeinfigure1. ..pa Thelowerlimitingcasecorrespondstotheradiatedpowerchangeofarigidinstrumentwith ....roy .a abasnoduwniddthhoaleroaunnddtahireHcaevlimtyhowlthzerreesothneanecxea[c3t–5so]lfuretiqounenfocyr itshe total power in the half-power .....lsocie Wair-rigid=ηrigidC, (4.2) ........typublish where the exact form of ηrigid is given and shown to be approximately independent of sound ......ing.org hcoorlreessphoapned,incgonrdiguidctainnscteruamndenctaHvietlymvhoollutzmreesionntahneceel[e3c–t5r]ofnriecqsuuepnpcyleimsentary material, §2. The .....Proc .. .R fair-rigid=c2aπir (cid:8)VC(cid:9)1/2, (4.3) ........Soc.A4 whereVisaircavityvolume,andonlyCchangeswithsound-holeshapeinfigure1. .......71:2014 Inthecaseofelasticvolumefluxanalysis(§9andelectronicsupplementarymaterial,§§3and ..09 4),derivedfromclassicalCremoneseviolinmeasurements,theairresonancefrequencyfair-elastic ..05 isfoundtobeapproximately fair-elastic≈κV−0.6(hback)0.1(htop)0.01(ha)0.2C0.5 (4.4) andthetotalpowerinthehalf-powerbandwidthabouttheairresonancefrequencyisfoundto beapproximately Wair-elastic≈βV−0.8(hback)0.6(htop)−0.2(ha)−0.9C1.7, (4.5) where κ and β are empirically determined constants, hback, htop and ha are, respectively, the back plate thickness, top plate thickness and mean air-cavity height, which are all assumed constantovertime,andonlyCchangesovertimeinfigure1a–btoisolatetheeffectofsound-hole shapechange. Thepowerchangecurvesinfigure1acanbedistinguishedbytheirdependenciesonsound hole conductance (figure 1c), where the upper limiting case has power change proportional to C2 (equation(4.1)),thelowerlimitingcasetoC(equation(4.2))andtheelasticinstrumentcase toC1.7 (equation(4.5)).TheexpecteddependenciesonsoundholeconductanceareintheC1–C2 range,withelasticanalysisfallingroughlyinthemiddleofthelimitingcasesdeterminedbyexact analyticsolutions. When compared to theexact solutions of thelimitingcases, elastic analysis, which involves more parameters (§9), still yields a similar increasing trend in power change over time due to geometric changes in sound hole shape alone (figure 1a). The elastic instrument dependence follows a trend that is roughly the average of the upper and lower limiting cases (figure 1a). Ifonlysoundholeshapevaried,theseresultsareconsistentwithroughlyadoublingofpower as sound hole geometry of the violin’s prominent European ancestors slowly evolved over the centuries from simple circular openings of tenth century medieval fitheles to complex f-holes thatcharacterizeclassicalsixteenth–eighteenthcenturyCremoneseviolinsofthelateRenaissance andBaroqueperiod(figure1(i)–(vi)).Thisdoubling(figure1a)isduetoagradualmorphingto more slender shapes that enables sound hole conductance to increase by roughly 50% through triplicationofperimeterlengthforthesamesoundholearea(figure1c). The rigid instrument resonance frequency fair-rigid (equation (4.3)) follows a similar dependenceonsoundholeshapeasthatofelasticanalysisbutoffsetbyroughly6%(figure1b), Downloaded from http://rspa.royalsocietypublishing.org/ on October 30, 2015 which will be experimentally confirmed in §§5 and 7. While this may seem to be a small 8 inconsistency, 6% corresponds to roughly a semitone [14], which suggests that idealized rigid instrumentanalysismaylacktheaccuracyneededforsomefine-tunedmusicalpitchestimates. .rs Theresultingairresonancepowerandfrequencydependenciesshowninfigure1a–bindicate ..pa thatlinearscalingofaviolin,orrelatedinstrument,bypuredilationwillnotleadtoaninstrument ...ro .y .a wsuigthgelsintseathraptrohpisotrotriiocnvalioslcinalifnagmiinlyrdeseosniganncmeafyreqhuaevnecdyeovrelpoopwedervaiat aairreclaavtiitvyelryessoonpahnicseti.caTtheids .....lsocie ctnhoornnoTnluhiengecehteaexrdthpoeltpaotsniomatuhtiineozdanftaihfocootnrletphh,oraiowstcdetashinrsee.dcatwlcyohupysrtvoicipoolsirontuiofrancmealialtyomspsooluiutnundddehh,oovlleieaepvteeormliumptieootrnearlolccechnuagrntrhgedeLsisnineinaratiimtrhaefltoealwiyr ............typublishing.o resonance frequency, rather than area, as proved in §3. The reason for this dependence can ...rg be seen by examining the normal velocity field exiting the sound hole for the violin and its ...Pro .c prominent European ancestors (figure 2, §2). Beginning with the Medieval fithele of the tenth ...R .. century,whichcontemporaryimageryshowstohaveasimplecircularsoundhole[33,34],most ..So acoustic flux is found to be concentrated in a narrow region near the perimeter or outer edge ...c.A .4 oathnfetihnleecnohgmothplerse(csfiasgliebulreoefl2acamo)m.inTpahrreissflsucioaidnn,rbareothuuegnrhdtleyhrasantoqpoudroaprbtayegrnawtoitnaignvgetlhetnrhogautthga,hirisaflsloaawrngseatcchoorumosutpigcahrreatdhye,wbhietochlaeuthasees ........71:20140 .9 hole dimension near air resonance frequency. The circular sound hole’s interior then becomes ..05 increasingly inactive as radial distance from the edge increases (figure 2a), following fluid dynamical principles for flow near wall edges [29], and consequently increasingly inefficient for acoustic radiation. Our findings from the archaeological record (figure 1(i)–(vi)) indicate that the ratio of inefficient to total sound-hole area was gradually reduced over the centuries by increasing aspect ratio and geometric complexity, as exhibited by the introduction of semi- circular sound holes [34–36] in twelfth–thirteenth century lyras (figure 2b), and then c-holes [33,36] inthirteenth–sixteenthcenturyMedieval and Renaissance rebecs (figure2c–d). Through this series of shape changes alone, sound hole perimeter length gradually grew, providing greater conductance, greater air volume and mass flow rates over time and higher radiated powerforthesamesoundholeareaattheairresonancefrequency.Theintertwinedevolutionary trends of decreasing acoustically inactive sound-hole area by increasing sound hole perimeter length and conductance to increase radiated power efficiency continued with the addition of taper, circular end nobs and central cusps in vihuela de arcos and viols [33,35,37] of the fifteenth–seventeenth centuries (figure 2e), and the classical Cremonese f-holes [33–35,38,39 ] of thesixteenth–eighteenthcenturies(figure2f). Inthiscontext,aninstructiveexperimentalverificationofthesoundholeconductancetheory used here is provided in figure 2g, for annular sound holes of varying thickness, where the dominant mass flow is found to be concentrated near the outer perimeter, which has the most impactonsoundholeconductance,resonancefrequencyandradiatedpower.Arelatedfinding is that the purely circular sound holes of classical guitars and the intricate sound hole rosettes of lutes (figure 2h) and other instruments such as harpsichords, which have complex interior structureswithinacircularperimeter,havenegligiblydifferentresonancefrequencies(withina quarter tone) and air resonance powers (within roughly 10%) for fixed outer perimeter length. Thissupportsassertionsthattheinteriorrosettesoftheseinstrumentfamiliesservedprimarily decorative purposes [32,40–42] and hence did not evolve to maximize air resonance power efficiency. The lute in fact became effectively extinct, perhaps partly due to its relatively low radiatedpower.Thisoccurredastheviolin’sprominencerose,atleastpartiallybecauseitsgreater radiatedpowerenabledittoprojectsoundmoreeffectivelyasinstrumentensemblesandvenue sizeshistoricallyincreased. The gradual nature of sound hole shape changes from the tenth to the sixteenth century in the violin’s ancestors to the violin is consistent with incremental mutation from generation to generationofinstruments.Thesteadygrowthofpowerefficiencyacrossthecenturiesisconsistent withaselectionprocessfavouringinstrumentswithhigherpowerefficiencyatairresonance. Downloaded from http://rspa.royalsocietypublishing.org/ on October 30, 2015 (a) (b) (c) 9 .rs .p .a ...ro .y .a .....lsocie 15 .....typub (d) (e ) f) 10021.....28406( normalized flow velocity ..............................lishing.orgProc.R.Soc.A471:2014 .0 .9 0 ..05 (g) (h) 1.0 20/12 0 ffmalized frequency /CCconductance /0PPadiated power /00000....9876 CPff ssdesiiixmmmpueuurlllaiaamtttiiioooennnnt 2222––––4268////11112222 or r 2–10/12 n 0.5 D 2–12/12 0 0.2 0.4 0.6 0.8 1.0 diameter ratio d/D Figure2.Soundholeshapeevolutiondrivenbymaximizationofefficientflownearouterperimeter,minimizationofinactive sound-holeareaandconsequentmaximizationofacousticconductance.Normalairvelocityfieldu (x,y,z)(equation(2.2)) n through(a)–(f)soundholes(i)–(vi)offigure1and(h)aluterosetteknownasthe‘WarwickFrei’[32]estimatedforaninfinite rigidsoundholebearingwallatair-resonancefrequenciesbyboundaryelementmethodin§2.(g)Experimentalverificationand illustrationofthesoundholeconductancetheoryforannularsoundholes.Dashedhorizontallinesindicateequaltemperament semitonefactors.Theresonancefrequency,conductanceandradiatedpowerofacircularsoundholearerepresentedbyf ,C 0 0 andP ,respectively.Velocitiesin(a)–(f)and(h)arenormalizedbytheaverageair-flowvelocitythroughthecircularsound 0 hole(a). Downloaded from http://rspa.royalsocietypublishing.org/ on October 30, 2015 5. Time-series analysis over the classical Cremonese period (sixteenth to 10 eighteenthcenturies) .rs OvertheclassicalCremoneseperiod,exactsolutionsforupper(∼C2,equation(4.1))andlower ..pa (∼C1,equation(4.2))limitingcasesonradiatedacousticpowerchangeovertime(figure3)due ....roy .a cpthouonrsteerloydl,teoatelvlramortiihnaeteirdonpfsarorianmmtheetleaesrgsteicothmvaoenlturfim-chepolaflerualmxeneegtsetthrimoaafretfi-oahngoal(ei∼nleChn1e.g7ldt,hefiq(fixuegadutirooenv4e(cr4).t5ai)mr)ee(c,fiogimnucprleuard3ei)dn.gAwtsihthae ..........lsocietypub forcing. Similar increasing trends are found for all cases (figure 3). So, elastic analysis, which ...lish ifinxveodlveexscmepotrfeoprafr-ahmoleetelersng(§t9h,ienlefictgruonreic3s,usptipllleymieelndtsarsyimmilaatrertiraeln,d§§s3aasnedxa4c)tasllooluftwiohnischbaarseedheoldn ....ing.o ..rg purWeleyngeexotmeesttrimicavtieotlihnepcahraanmgeetienrsa.cousticradiatedpowerovertime(figure4a)asafunctionof .....Proc .. thetemporalvariationsofsixparameters(figures4cand5)thathaveanatleastornearlyfirst- ..R. .S oanrdaelyrseisfffeocrtcoonnstetamnptoforarclicnhgaonvgeerstiinmrea.dTihaetesdepaacroaumsteicteprsowareermaetaasiurrceadvfitryomre4so7n0aenxctea,nbtyclaeslasisctaicl .....oc.A4 Cmreeamnotnoepseavnidolbinasc.kThpelayteartehiacikrnceasvsietys v(fiogluumree5(bfi,gc)u,rwe5haic),hwahffiechctamffeacstssesaiarncdavsittyiffcnoemssperse;spsiloante; .......71:2014 thicknessatthef-holes(figure5e),whichaffectsacousticconductance[3];meanair-cavityheight ..09 (figure 5d), which affects overall stiffnesses and f-hole length (figure 4c), which affects acoustic ..05 conductance.Theempiricallyobservedmodalmotionsthatgeneratetheeffectivelymonopolar acousticradiationatairresonance[8,13],purelythroughchangesinvolumeflux,aredescribed byphysicalanalysisinvolvingthesemeasuredparametersin§9.Increasingsoundholelength, forexample,increasesconductanceandmassflow,butitalsoincreasesradiationdamping.This lowerstheresonancemaximabutincreasespeakbandwidthsufficientlytoincreasetotalpower integratedoverthespectralpeak(electronicsupplementarymaterial,§§2and4).Bymakingthe back plate thicker and denser than the top plate, back plate motion and body volume change arereduced.Thisleadstolesscoherentcancellationbetweenmassoutflowfromthesoundhole and violin body contraction, and consequently higher radiated power at air resonance. This is because at the air resonance frequency the top and back plates move towards each other, air cavityvolumedecreases,forcingairvolumeoutofthesoundholesothatpositivemassoutflow fromthesoundholeisthenpartiallycancelled bynegativemassoutflowfromtheviolinbody contraction,intheobservedomnidirectionalormonopolarradiation(electronicsupplementary material,§4).Keepingthetopplatelighter,ontheotherhand,enablesittobemoreresponsiveto directforcingatthebridgeanddrivemoreairmassthroughthesoundhole.Forfixedaircavity volume,increasingmeanaircavityheightincreasesstiffness.Reducingtopplatethicknessatthe f-holesreducesairflowresistanceandsoincreasesconductance. Bycomparisonoffigures3and4a,wefindthatestimatedpowerchangesduetothetemporal variationsofallsixparameters(figure4a)primarilyfollowtheestimatedpowervariationsdue totheisolatedtemporaleffectsoff-holelengthvariationalone(figure3).Thiscanalsobeseen by noting that the total change in radiated power over the Cremonese period estimated from elastic volume flux analysis with all six parameters is roughly 60±10% (figure 4a), and that the conductance contribution via C1.7∝L1.7 from f-hole length changes alone of roughly 30% F (electronicsupplementarymaterial,equation(S18))leadstoasimilar58±5%powerchangeover theCremoneseperiod(figure3),withaverysimilartrend.Wefindthattheseresultsareconsistent withaselectionprocessfavouringinstrumentswithhigheracousticpoweratairresonanceduring the classical Cremonese period. The increases in estimated power and measured f-hole length over the classical Cremonese period are found to be relatively steady and gradual beginning from the Nicolo Amati period until the Guarneri period. During the Guarneri period more dramaticincreasesinbothoccurred.Byexaminingindividualcontributionsofthesixparameters (figure6a),itisagainfoundthattemporalchangesinestimatedacousticpoweraredominatedby temporalchangesinf-holelength.Thenextlargestcontributiontoestimatedpowercomesfrom clearincreasesinbackplatethicknessduringtheStradivariandGuarneriperiods,whichisstill

Description:
Acoustic radiation from a violin at its lowest frequency resonance is . by theoretical proof, experimental measurement and numerical computation.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.