ebook img

the evolution of agriculture in insects PDF

38 Pages·2005·0.45 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview the evolution of agriculture in insects

20Oct2005 12:41 AR ANRV259-ES36-24.tex XMLPublishSM(2004/02/24) P1:OJO 10.1146/annurev.ecolsys.36.102003.152626 Annu.Rev.Ecol.Evol.Syst.2005.36:563–95 doi:10.1146/annurev.ecolsys.36.102003.152626 Copyright(cid:1)c 2005byAnnualReviews.Allrightsreserved FirstpublishedonlineasaReviewinAdvanceonAugust19,2005 T E A I HE VOLUTION OF GRICULTURE IN NSECTS Ulrich G. Mueller,1,2 Nicole M. Gerardo,1,2,3 Duur K. Aanen,4 Diana L. Six,5 and Ted R. Schultz6 1SectionofIntegrativeBiology,UniversityofTexasatAustin,Austin,Texas78712; g or email:[email protected] ws. 2SmithsonianTropicalResearchInstitute,Apartado2072,Balboa,RepublicofPanama vie 3DepartmentofEcologyandEvolutionaryBiology,UniversityofArizona,Tucson, e alr Arizona85721-0088;email:[email protected] nuy. 4DepartmentofPopulationBiology,BiologicalInstitute,UniversityofCopenhagen, nals.anuse onl 25D10e0paCrotmpeennhtaogfeEnc,oDsyesntmemarakn;demCaoinl:[email protected],kUniversityofMontana, ournal Missoula,Montana59812;email:[email protected] m arjerso 6DepartmentofEntomology,NationalMuseumofNaturalHistory, ded fro5. For p Semmaitihl:[email protected],dWuashington,DistrictofColumbia20013-7012; a0 nlo14/ w1/ Don 1 KeyWords Attini,Macrotermitinae,mutualism,symbiosis,Xyleborini 63-595. Austin o a■ntsA,bosntcreacitn teArmgriitceusl,tuarnedhsaesveevnoltvimedesinidneapmenbdreonstilaybienetthlerse.eAinlstheoctugohrdtehres:seonincseeicnt st. 2005.36:5y of Texas - faafaarsrremmcrleeeomrrnsagalaerkrnmeaeborianlnytoisocsoniummslteiualsrawerw,sasyewulslgi.tqghLueionsittneitgnhd-getieifcrfroemnnreevcnselttrosgfnearaonnlmtdme,veoionanlcoumhctiuooolstntthu.ercAera,lsplienrpse,rsmoecpanloantsngyaaslmtpleyeotchraieaeclirwropcasrsuyolsbmtiltveahmaneryyss ol. Syversit fordiseasecontrol,butinsectfarmershaveevolvedacombinationofstrategiestoman- EvUni agecropdiseases:They(a)sequestertheirgardensfromtheenvironment;(b)monitor Ecol. by aglalrydeancsceisnstepnospivuellayt,iocno-nletrvoelllirnegsepravtohiorsgeonfsgeeanrelyticianlldyisveaarsieaboluetbcruelatikvsa;rs(,c)evoecncawsihoinle- v. propagatingclonalmonoculturesacrossmanyfarmergenerations;and(d)manage,in e R u. additiontotheprimarycultivars,anarrayof“auxiliary”microbesprovidingdisease nn suppressionandotherservices.Ratherthangrowingasinglecultivarsolelyfornutri- A tion,insectfarmersappeartocultivate,andpossibly“artificiallyselect”for,integrated crop-microbeconsortia.Indeed,cropdomesticationinthecontextofcoevolvingand codomesticatedmicrobialconsortiamayexplainthe50-millionyearoldagricultural successofinsectfarmers. 1.INTRODUCTION The cultivation of crops for nourishment has evolved only a few times in the animal kingdom. The most prominent and unambiguous examples include the fungus-growing ants, the fungus-growing termites, the ambrosia beetles and, of 1543-592X/05/1215-0563$20.00 563 20Oct2005 12:41 AR ANRV259-ES36-24.tex XMLPublishSM(2004/02/24) P1:OJO 564 MUELLERETAL. course,humans.Forhumans,whostartedthetransitionfromanancestralhunter- gathererexistencetofarmingonlyabout10,000yearsago(Diamond1997,Smith 1998), sustainable, high-yield agriculture has become critical for survival in a globaleconomywithprojectedfoodshortages,anddiverseresearchprogramsare currentlydevotedtotheoptimizationofagriculturalproductivityinthecontextof growingenvironmentalchallenges(Greenetal.2005).Agriculturalprogresshas beenachievedbyhumansthroughacombinationofinsight,creativeplanning,and a fair share of contingency and luck (Diamond 1997, Schultz et al. 2005, Smith 1998).However,humanshavesofarnotexaminednonhumanagriculturalsystems, org suchasthefungus-growinginsects,forpossibleinsightstoimproveagricultural ws. strategies. e vi This lack of an applied interest in insect agriculture probably derives from a e alr general perception that human agricultural systems (based largely on plant cul- als.annuse only. tbiavsaetidono)nffuunncgtiuosnciunltiavaftuinodna).mHeonwtaellvyerd,ihffuemreanntsmhaanvneelreathrnanedinmseuccthsoyfstpermacsti(caalll nu ournal valuethroughthecloseexaminationofadaptivefeaturesofotherorganisms(in- arjso cludinginsects),andcomparableproblemssuchascropdiseasesaffectallfarmers d from For per roergoatrhdelerwssisoef).thBeeircapuhsyeloogfentheeticunpiovseirtsioalnistyoorfthcorsoepodfistehaesirescrionpbso(tphlahnut,mfaunngaunsd, ade05. insectagriculture,itmaybefruitfultoexaminetheshort-termandlong-termsolu- nlo14/ tionsthathaveevolvedconvergentlyininsectagricultureforpossibleapplication w1/ Don 1 to human agriculture (Denison et al. 2003). Such a synthesis is the goal of this 3-595. ustin o review. 6A 005.36:5Texas - 1D.1efi.BnienhgavAigorriaclualntudreNutritionalElements st. 2y of Sysit Insectfungicultureandhumanfarmingsharethedefiningfeaturesofagriculture ol. ver (see Table 1): (a) habitual planting (“inoculation”) of sessile (nonmobile) cul- EvUni tivars in particular habitats or on particular substrates, including the seeding of col. by new gardens with crop propagules (seeds, cuttings, or inocula) that are selected E v. bythefarmersfrommature(“ripe”)gardensandtransferredtonovelgardens;(b) e u. R cultivationaimedattheimprovementofgrowthconditionsforthecrop(e.g.,ma- nn nuring;regulationoftemperature,moisture,orhumidity),orprotectionofthecrop A againstherbivores/fungivores,parasites,ordiseases;(c)harvestingofthecultivar for food; and (d) obligate (in insects) or effectively obligate (in humans) nutri- tionaldependencyonthecrop.Obligatedependenciesoftheinsectfarmerscanbe readilydemonstratedbyexperimentalremovaloftheircultivatedcrops,resulting in reduced reproductive output, increased mortality, or even the certain death of thecultivar-deprivedinsect(Francke-Grosmann1967,Grasse´ 1959,Norris1972, Sands1956,Weber1972).Ourdefinitionofagriculturedoesnotrequireconscious intentinplantingandharvesting.Consciousplanning,learning,andteachinghave clearly accelerated the development of complex agriculture in humans, but pre- sumablynotininsects(Schultzetal.2005). 20Oct2005 12:41 AR ANRV259-ES36-24.tex XMLPublishSM(2004/02/24) P1:OJO EVOLUTIONOFAGRICULTUREININSECTS 565 e Humans Facultativ Present Present Absent Present Present Present Present Present 1Absent Social Present Present Present sia 2unal o m r b m m o a c nualreviews.orgy. urein: Xyleborinebeetles Obligate Present Present Present Present Present Unknown Unknown Unknown Unknown Subsocialor Present Unknown Absent als.anse onl ricult Annu. Rev. Ecol. Evol. Syst. 2005.36:563-595. Downloaded from arjournby University of Texas - Austin on 11/14/05. For personal u TABLE1Agriculturalbehaviorsoffarmingants,termites,beetles,andhumans Ag MacrotermitineAgriculturalbehaviorAttineantstermites DependencyoncropforfoodObligateObligate Engineeringofoptimalgrowthconditionsforcrop(e.g.,PresentPresentsubstratepreparation;moistureorhumidityregulation) PlantingofcroponimprovedsubstratePresentPresent Intensive,continuousmonitoringofgrowthanddiseasePresentPresentstatusofallcrops SustainableharvestingofcropforfoodPresentPresent ProtectionofcropfromdiseasesandconsumersPresentPresent WeedingofalienorganismsinvadingthegardenPresentPresent UseofchemicalherbicidestocombatpestsPresentUnknown UseofmicrobialsymbiontsfornutrientprocurementforPresentUnknownthecrop Useofdisease-suppressantmicrobesforbiologicalPresentUnknownpestcontrolSocialityStrictlyeusocialStrictlyeusocial TaskpartitioninginagriculturalprocessesPresentUnknown ApplicationofartificialselectionforcropimprovementUnknown,butantsUnknownexertsymbiontchoice LearningandculturaltransmissionofagriculturalAbsentAbsentinnovations 1SeeSection7forsomerecentlydiscoveredmicrobeswithpotentialdisease-suppressantproperties. 2Oneambrosiabeetlespeciesiseusocial,allotherspeciesappeartobesubsocialorcommunal(seetext). 20Oct2005 12:41 AR ANRV259-ES36-24.tex XMLPublishSM(2004/02/24) P1:OJO 566 MUELLERETAL. Werestrictourreviewtoant,termite,andbeetlefungiculturists.Casesanalo- goustohumananimalhusbandry,suchasthetendingbyantsofhemipteraninsects (e.g.,aphids,treehoppers;Ho¨lldobler&Wilson1990),arebeyondthescopeofthis review.Wealsoexcludecasesthatfailtomeetallfouroftherequirementsofagri- cultureasdefinedabove,including,e.g.,theantLasiusfuliginosus,whichpromotes fungalgrowthinthewallsofitsnest,becausethefungusisapparentlynotgrownfor foodbutinsteadforstrengtheningthewalls(Maschwitz&Ho¨lldobler1970)orfor antibioticprotectionofthewalls(Mueller2002).Onthesamegrounds,weexclude a number of possible cases of incipient agriculture. For example, Littoria snails org may“protofarm”fungibycreatingplantwoundsthatbecomeinfectedwithfungal ws. growththatispartofthesnails’diet,butthesnailsdonotactivelyinoculatethe e vi plantwoundsorotherwisegardenthefungi(Sillimanetal.2003).Manymoresuch e alr protofarmingspeciesprobablyawaitdiscovery,particularlyamonginvertebrates, als.annuse only. atlneds)apllroofbathbelyknooriwgniniantseedctfraogmriccuoltmurpiasrtsab(fleunpgruosto-gargorwiciunlgtuarnatlsa,ntecremstioterss,(aMndueblelee-r nu ournal et al. 2001, Schultz et al. 2005). Comparison of these protofarming insects with arjso “primitive”humanagricultureexceedsthescopeofthisreview. m er d froFor p de5. 1.2.ACoevolutionaryApproachto a0 nlo14/ UnderstandingAgriculture w1/ o1 3-595. Dustin on Wbyetwheillnauntariltyizoenaalgraincdultbuerheaavsioartaylpceroitfesritarosnugmcmoeavroizluetdioanbaoryvei,ntienrawcthioicnh,dneafitunreadl 6A selection acts upon both farmers and crops as reciprocally interdependent lin- 005.36:5Texas - eaaggriecsul(tFuuretucyomnasi&derSslantoktinon1l9y8t3h,eRiinntderoasct1i9o8n4s)b.eOtwureecnoeavospluetciiofincarfyarampipnrgoainchsetcot st. 2y of and a single cultivated crop, but also its interactions with other pathogenic and Sysit mutualistic microbes that have recently been discovered in insect gardens. Like ol. ver thecultivars,someofthesemicrobesarealsomanagedbytheinsectfarmersfor col. Evby Uni stupreec,ibfiuctpausrepqouseesst(eFriegduarend1)e.nIgnionteheerrewdoercdosl,oagnicianlsceoctmgmarudneintyiscnoontsaisptiunrgemofosneovceural-l E v. interacting microbes, some beneficial and others detrimental to the farmers. To e R u. gainacomprehensiveunderstandingoftheprinciplesofinsectagriculture,itwill nn thereforebenecessarytoexaminethenatureofinsect-microbeinteractionsingar- A dens,theevolutionaryoriginsoftheseinteractions,andtheconvergentanddiver- gentevolutionarytrajectoriesthatculminatedintheextantagriculturalsystemsof insects. 2.THETHREEINSECT-AGRICULTURESYSTEMS Behaviorally complex systems of insect agriculture are known from only three groupsofinsects:ant,termites,andbeetles. 20Oct2005 12:41 AR ANRV259-ES36-24.tex XMLPublishSM(2004/02/24) P1:OJO EVOLUTIONOFAGRICULTUREININSECTS 567 2.1.AntFungiculture The fungus-growing ants are a monophyletic group of about 220 described and manymoreundescribedspeciesinthetribeAttini(subfamilyMyrmicinae)(Price et al. 2003, Schultz & Meier 1995). Attine ants occur only in the New World (ArgentinatothesouthernUnitedStates)andattaintheirgreatestdiversityinthe wetforestsofequatorialSouthAmerica,theregionoftheirpresumedevolutionary origin(Muelleretal.2001).Attineantsareobligateagriculturists;theircultivated fungiarethesolesourceoffoodforthelarvaeandanimportantsourceoffoodfor g theadults.Althoughadultsareabletosupplementtheirdietsbyfeedingonplant s.or juices (Bass & Cherrett 1995, Murakami & Higashi 1997), the cultivated fungi w e are nutritionally sufficient to support the ants even in the absence of additional vi alre nutrients(Mueller2002,Muelleretal.2001).Gardenfungiaretransmittedverti- nuy. callyacrossgenerationswhendaughterqueenstransportsmallpelletsofnatal-nest nals.anuse onl mallyacneltisu(mFewrnita´hnidnetzh-eMirairn´ınfreatbualc.c2a0l0p4o,cHkeutbs,erpo1u9c0h5e,sMpureeslleenrt2in00t2h)e.mInotuhtehpdaerrtisveodf ournal leafcutterants,theworkersaredividedintoaremarkablerangeofdifferentlysized arjso m er morphologicalcastes,eachspecializedonadifferenttask(Hartetal.2002,Weber d froFor p 1972)(Figure2d). de5. Different attine ant lineages cultivate their fungi on different substrates. The a0 nlo14/ ancestralgardeningsubstrate,stillusedbytheso-calledlowerattines,consistsof ow11/ flowerparts,arthropodfrass,seeds,woodfragments,orothersimilarplantdebris, 3-595. Dustin on lweahveeresaasntdheflolweaefrcsu.tDtinegspgiteentehreaseAtdtiastainncdtsAucbrsotmraytremsepxecpiarilmizaatriiolynsu,saellfarettsihnleysycus-t 6A temscontainatleastfoursymbionts:(a)thefungus-growingants;(b)theirfungal 005.36:5Texas - cMuulteivllaerrse(tbaasl.id1io9m98y,cMeteusnkinacthsieemtuaslh.r2o0o0m4)f;a(mc)ilimesutLueapliisottiaccaenaetibainodtiPc-tperruoldaucceianeg; st. 2y of actinomycetebacteria(familyPseudonocardiaceae;Currieetal.1999b);and(d) Sysit gardenparasitesintheascomycetefungalgenusEscovopsis(Currieetal.1999a, ol. ver Currie et al. 2003b). Additional bacteria and yeasts also occur in attine gardens Ecol. Evby Uni a(Cndarmreairyofeutnaclt.io1n99a7s,mCurtauvaelnisetst,ael..g1.,9b7y0,sSecarnettoinsgetdaigl.e2st0i0v4e)e.nzymesorantibotics v. e R u. 2.2.TermiteFungiculture n n A Ofthemorethan2600describedtermitespecies,about330speciesinthesubfamily Macrotermitinae cultivate a specialized fungus, genus Termitomyces, for food. Nestsaregenerallyfoundedbyasinglepairofreproductives,thefuturequeenand king.Theysealthemselvespermanentlyinacellofhardclay(theso-calledroyal chamber)wheretheyrearthefirstbroodofsterileworkers.Inmosttermitespecies, anewcolonyacquiresafungalstrainfromwind-dispersedsexualTermitomyces sporesshortlyafternestfoundingandbeginsconstructionofthefirstgardens(De Fine Licht et al. 2005). These spores come from fruiting bodies (mushrooms) thatarisefrommaturetermitecolonies.Thefruitingofthefungusappearstobe roughlysynchronizedtotheperiodwhenthefirstforagingworkersemergefroma 20Oct2005 12:41 AR ANRV259-ES36-24.tex XMLPublishSM(2004/02/24) P1:OJO 568 MUELLERETAL. newnest,afewmonthsafterthenest-foundingstage.Termitegardensaregrown ondeadplantmaterialthatisonlypartiallydecomposed,suchasleaflitter,dead grass,deadwood,ordryleaves. Termitegardensarebuiltfromspore-containingfecalpelletsinchambersthat thetermitesconstructeitherinsideamoundordispersedinthesoil.Fecalpelletsare addedcontinuouslytothetopofthecombandfungalmyceliumrapidlypermeates thenewsubstrate(Figure2e).Afterafewweeks,thefungusstartstoproduceveg- etativenodulesthatareconsumedbythetermites.Thesenodulesarearichsource ofnitrogen,sugars,andenzymes.Thenodulesarealsocoveredwithindigestible org asexual spores (conidia), so that consumption serves the additional function of ws. inoculatingthefeceswithspores,whichpassthroughthegutunharmedandare e vi then planted in new comb with the deposition of feces (Leuthold et al. 1989). e alr Maturecombisalsoconsumed(Darlington1994),butitisnutritionallyinferior als.annuse only. tothenodules. ournnal u 2.3.BeetleFungiculture m arjerso Ambrosiabeetlesmakeuparound3400ofthe7500speciesintheweevilsubfam- ded fro5. For p iPlylatSycpooldyitninaaee;(Ftahrereblalrektaanl.d2a0m0b1r,oHsiaarrbineegttloens,2in0c0l5u,dWinogotdhe1t9r8a2d)it.ioMnoaslltyasmebpraorastiea nloa14/0 beetles construct tunnel systems (galleries; Figure 2f) in woody tissues of trees w1/ (typicallyinweakenedorrecentlydeadtreesor,morerarely,invigoroushosts), o1 63-595. DAustin on apculetlthtiioovulaegtsehd(sHboaymrrtehinsegpbteoecenietls2e0sa0roe5n,sgpWaelcolieoardlyiz1we9da8ltl2os),.cuoTplhooenniwzteehrmpicithhatm,hlaebyrrgofeseiesaederaedsfse,arfnsruetxiotcstl,huaesnivdfuel,neogafri 005.36:5Texas - nfreoamrewxhcliuchsitvhee,yfoaocqdusioreurecses.eTnthiaelbveietatlmesinasr,eaombilnigoaatceildysd,aenpdensdteernotlsup(Boneatvheerf1u9n8g9i,, st. 2y of Koketal.1970). Sysit The most advanced fungiculturists among the ambrosia beetles occur in the ol. ver Xyleborini,alargemonophyletictribeofabout1300species(Farrelletal.2001, EvUni Jordal2002).Itisthisgroupofambrosiabeetlesthatweprimarilyfocusoninthis col. by review.AlthoughlifehistoriesamongtheXyleborinivaryconsiderably,mostshare E v. anumberoffungiculturalcharacteristics.Thereisasexualdivisionoflaborinthe e u. R Xyleborini;onlyfemalesperformgardeningtasks,whereasmalesareshort-lived nn andflightless(Norris1979).Aftermating,femalesdispersetonewhostsubstrate, A carrying the fungi in specialized pockets termed mycangia. Once within a new host, founding females “plant” the fungi on the walls of the excavated tunnels, layeggs,andtendtheresultinggardenandbrood(Norris1979).Inwaysnotfully understood,theyareabletocontrolthegrowthofthefungalcrop,aswellas,to adegree,thecompositionofitsmultiplefungalspecies(Beaver1989,French& Roeper1972,Kingsolver&Norris1977,Roeperetal.1980).Ifthefemaledies,the gardenisquicklyoverrunbycontaminatingfungiandbacteria,whichultimately resultsinthedeathofthebrood(Borden1988,Norris1979). Theambrosiagardensofxyleborinebeetlesarenotpuremonoculturesaswas once believed, but are typically composed of an assemblage of mycelial fungi, 20Oct2005 12:41 AR ANRV259-ES36-24.tex XMLPublishSM(2004/02/24) P1:OJO EVOLUTIONOFAGRICULTUREININSECTS 569 yeasts, and bacteria (Batra 1966, Haanstadt & Norris 1985). These assemblages weretermedmulti-speciescomplexesbyNorris(1965),whosuggestedthatitisa complexasawhole,ratherthananyoneindividualmicrobe,thatallowsthebeetles toexploitnutrient-poorsubstratessuchaswood.However,mostsubsequentwork hasrevealedthatone“primary”fungusalwaysdominatesinbeetlegardens(Baker 1963,Batra1966,Gebhardtetal.2004,Kinuura1995).Furthermore,thebeetles typically carry only the primary fungus in the mycangium (although secondary fungi are sometimes also isolated from mycangia), and the cultivation efforts of female beetles tend to favor the primary fungus, which imparts the greatest nu- org tritional benefit (Francke-Grosmann 1967, Gebhardt et al. 2004, Morelet 1998, ws. Norris1979).Someauxiliaryfungialsosupportbeetledevelopment,butsurvival e vi ontheauxiliaryfungialoneisoftengreatlyreduced(Norris1979).Theseobser- e alr vationsimplicatetheprimaryfungusastheintendedcrop,whereasthesecondary als.annuse only. fauunxgilii,ayryearsotlse,sainndthbeacgtearridaenmsa,ypabrealcleolnintagmtihneanhtyp“owteheedsisz”eodrromleasyopflatyheadaudxitiiloianrayl nu ournal bacteriaandyeastsinattinegardens(seeabove). arjso m er ded fro5. For p 3.EVOLUTIONARYORIGINSOFINSECTAGRICULTURE a0 nlo14/ w1/ Phylogenetic analyses reveal nine independent origins of insect agriculture o1 63-595. DAustin on (ifnFunitghgueicrAeul2mt;uaTrzeaoblnilkerea2wi)n.isfIoenrhaenasdtts(a,Mfsuiunnegglalleelrcoeurtilgtaiivln.a,2tai0op0np1ra;orSoxcsimheuoalnttezlyl&yo2nM4c–ee3,iep4rrMo1b9ya9ab5il)ny.I4thn5e–teA6r5mfrMiicteyasna, 005.36:5Texas - rbaeientfloerse,shto(wAeavneern,aegtraicl.u2lt0u0re2;arDo.sKe.inAdaenpeennd&enPt.lyEgsegvleetnotnim,seusbbmeittwteede)n.2In0–a6m0bMroysiaa, st. 2y of sixtimesinvariousnonxyleborinelineages,andonceintheancestoroftheXyle- Sysit boriniabout30–40Mya(Farrelletal.2001).Whereasthecommonancestorsof ol. ver the macrotermitines and of the xyleborines each domesticated a single, specific EvUni primarycultivarcladetowhichtheirdescendantshaveadheredthroughoutsubse- col. by quentevolution(Figure2,Table2),attineantsmaintainassociationswithmultiple E v. independently domesticated cultivar lineages (which are for the most part very e u. R closelyrelated;Muelleretal.1998;Munkacsietal.2004;Table2).Interestingly, nn therearenoknowncasesofreversalfromagriculturaltononagriculturallifeinany A ofthenineagriculturalinsectlineages(Figure2a,2b,and2c),suggestingthatthe transitiontofungicultureisadrasticandpossiblyirreversiblechangethatgreatly constrainssubsequentevolution. Twomainmodelshavebeensuggestedfortheindependentevolutionarytran- sitionstoagricultureininsects,the“consumption-first”versusthe“transmission- first” models (Mueller et al. 2001). In the consumption-first model (the likely modelforthetermites),aninsectlineageinitiallybeginstoincorporatefungiinto itsmoregeneralistdiet,thenbecomesaspecializedfungivore,andfinallyevolves adaptationsforcultivatingfungi.Inthetransmission-firstmodel(thelikelymodel forthebeetles),theinsectlineagebeginsitsassociationwithafungusbyserving 20Oct2005 12:41 AR ANRV259-ES36-24.tex XMLPublishSM(2004/02/24) P1:OJO 570 MUELLERETAL. Humans Multipleindependentoriginsofagriculture 10,000yearsagofortheearliestknownoriginsofhumanagriculture;multipleregionsoforigin Multiplecropcladesfromdiverselineagesofplantsandfungi g Annu. Rev. Ecol. Evol. Syst. 2005.36:563-595. Downloaded from arjournals.annualreviews.orby University of Texas - Austin on 11/14/05. For personal use only. devolutioninant,termite,beetle,andhumanagriculture Agriculturein: AttineantsMacrotermitinetermitesXyleborineambrosiabeetles SingleoriginofagricultureSingleoriginofagricultureSingleoriginofagricultureinintheAttiniintheMacrotermitinitheXyleboriniNootherantpracticestrueNoothertermitepracticesAgricultureoriginatedagriculture,butsomeantstrueagriculture,buttheindependentlyinsixallowfungitogrowintheirdistantlyrelatedtermiteadditionalambrosiabeetleSphaerotermesnestwallsforstructuralorlineages;theseotherbeetlesphaerothoraxantibioticpurposes.promotessystemsarelesswellthegrowthofbacteriainunderstood(seetext).foodstores. 45–65MyainAmazonian24–34MyainAfrican30–40Myainxyleborinerainforestsrainforestsbeetles;regionoforiginunknown21–60Myaintheothersixambrosiabeetlelineages MultiplecultivarcladesSinglecultivarcladeMultiplecultivarcladesOnecultivarcladebelongsAlltermitecultivarsbelongTheambrosiacultivarsTermitomycesAmbrosiellaRaffaelleatothePterulaceae;atleasttothegenus.andthreeadditionalhaveapolyphyleticoriginpolyphyleticcultivarcladeswithinthegeneraOphiostomabelongtotheLepiotaceaeandCeratocystis(tribeLeucocoprineae).. n a y g n TABLE2Cropecolo Cropecology&evolutio Numberofinferredevolutionaryoriginsofagriculturalbehavior Estimateddateandregionoforiginofagriculturalbehavior Numberofcropcladescultivated 20Oct2005 12:41 AR ANRV259-ES36-24.tex XMLPublishSM(2004/02/24) P1:OJO EVOLUTIONOFAGRICULTUREININSECTS 571 Present Notapplicable NotapplicableSpecializationoncropsishistoricallymanifestedbydifferenthumanlineages(reflectingseparatedomesticationevents),butnosinglehumanlineageisnearlyasspecializedonasinglecropasaretheinsectfarmers. Continued() g st. 2005.36:563-595. Downloaded from arjournals.annualreviews.ory of Texas - Austin on 11/14/05. For personal use only. VariablePresentVerticalcultivarinheritanceVerticalcultivarinheritanceisistypicalfortwotheruleinallxyleborineindependentlyderivedlineages.macrotermitelineages;allothermacrotermitinesacquirecultivarshorizontallyviawind-dispersedsporesfromothercolonies. Clade-cladecorrespondenceNostrictclade-cladeDefinedcladesoftermitecorrespondencespeciesarespecializedinThefungallineagesthattheyonlygrowfungiassociatedwithxyleborinetypicalfortheirownambrosiabeetlesareonlytermite-specificcultivardistantlyrelatedtoeachclade.other,andallarealsoassociatedwithsomebarkbeetles. PresentPresentSingletermitespeciesSinglebeetlespeciesgenerallyassociatewithgenerallyassociatewithmultiplefungallineages,multiple,distantlyrelatedbutwithinthelimitsoffungallineages;theprimaryspecificcultivarclades(seecultivaristypicallyasingleabove);however,somefungalspecies,buttermitespeciesareverysecondarycultivarsvaryandspecializedonaparticularoftencomefromdifferentfungus.fungallineagesthantheprimary-cultivarlineage. Annu. Rev. Ecol. Evol. Syby Universit PresentVerticalcultivarinheritanceistheruleinallattineantlineages. Clade-cladecorrespondenceDefinedcladesofantspeciesarespecializedinthattheyonlygrowfungitypicalfortheirownant-specificcultivarclade. PresentInallcasesstudiedindetail,singlespeciesofantsgrowonlyasingle,phylogeneticallynarrowgroupoffungi(i.e.,asingle,phylogeneticallydefined“species”offungus). e c CroptransmissionVerticalcultivarinheritanfromparenttooffspring(i.e.,cultivartransferbetweengenerations) SpecializationoncropsSpecializationathigherphylogeneticlevels Specializationatleveloffarmerspecies 20Oct2005 12:41 AR ANRV259-ES36-24.tex XMLPublishSM(2004/02/24) P1:OJO 572 MUELLERETAL. Humans PresentLateralexchangeofcultivarsbetweenfarmersocietiesisaprominentfeatureofhumanagriculture. Notapplicable AbsentSometraditionalcultivationregimes(e.g.,potatofarminginthe g st. 2005.36:563-595. Downloaded from arjournals.annualreviews.ory of Texas - Austin on 11/14/05. For personal use only. Agriculturein: MacrotermitinetermitesXyleborineambrosiabeetles UnknownUnknownLateralcultivarexchangeisprobablyrare,butmayoccurwhengalleriescontainingbroodoftwoormorefoundressfemales,eachcarryingadifferentcultivar(e.g.,differentspeciesoffungi),occurincloseproximityinthesametree. PresentRareHorizontalcultivarexchangeHorizontalcultivarexchange(throughwind-dispersedoccursatleastoccasionally.spores)istypicalformosttermitelineages. AbsentAbsentWildpopulationsareWildpopulationsareunknownfortermiteunknownforambrosiacultivars.beetlecultivars. Annu. Rev. Ecol. Evol. Syby Universit Attineants PresentWithinaspeciesofant,cultivarsareprobablyoccasionallyexchangedbetweencolonies(e.g.,aftercultivarlosswhencultivar-deprivedcoloniesmayacquirereplacementcultivarsfromneighboringcolonies). PresentHorizontalcultivarexchangeoccursbetweensympatricantspeciesiftheyarespecializedonthesamecultivarlineage. VariablePrimitiveattineantsprobablyimportnovelcultivargenotypes Table2Continued() Cropecology&evolution CropsharingandcropexchangeLateralexchangeofcultivarswithinthesamefarmerspecies(i.e.,exchangewithinsamefarmergeneration) Cultivarexchangebetweenfarmerspecies Geneticexchangebetweendomesticatedandwildpopulations(e.g.,geneticinterbreedingbetween

Description:
tion, insect farmers appear to cultivate, and possibly “artificially select” for, fungus-growing ants, the fungus-growing termites, the ambrosia beetles and, . garden parasites in the ascomycete fungal genus Escovopsis (Currie et al.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.