ebook img

The establishment of apple orchards as temperate forest garden systems and their PDF

93 Pages·2015·1.77 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The establishment of apple orchards as temperate forest garden systems and their

The  establishment  of  apple  orchards  as  temperate  forest  garden  systems  and   their  impact  on  indigenous  bacterial  and  fungal  population  abundance  in   Southern  Ontario,  Canada           by     Paul  Wartman           A  Thesis   Presented  to   The  University  of  Guelph           In  partial  fulfilment  of  requirements     for  the  degree  of   Master  of  Science     in   Plant  Agriculture             Guelph,  Ontario,  Canada     ©  Paul  Wartman,  May,  2015 ABSTRACT         THE  ESTABLISHMENT  OF  APPLE  ORCHARDS  AS  TEMPERATE  FOREST  GARDEN   SYSTEMS  AND  THEIR  IMPACT  ON  INDIGENOUS  BACTERIAL  AND  FUNGAL   POPULATION  ABUNDANCE  IN  SOUTHERN  ONTARIO,  CANADA         Paul  Wartman   Co-­‐Advisors:   University  of  Guelph,  2015              Rene  Van  Acker      Ralph  Martin         This   thesis   investigated   soil   microbial   abundances   affected   by   different   ground  management  systems  in  establishing  apple  (Malus  domestica  cv.  Idared,  M9)   orchards  in  Ontario.  Four    treatments  including  forest  garden  systems  with  and   without  compost  (FGSC  and  FGS)  and  grass  understory  systems  with  and  without   compost  (GC  and  G)  were  established,  sampled  and  analyzed  over  the  establishing   two  years  for  gene  copy  abundance  of  soil  arbuscular  mycorrhizal  (AM)  fungi,  total   fungi,  and  total  bacteria  using  quantitative  real-­‐time  polymerase  chain  reactions.   From  Spring2013  to  Fall2014  soil  bacterial  abundance  decreased  by  -­‐0.78,  -­‐0.84,  -­‐ 0.86,  and  -­‐0.88  ± 0.08  Log  16S  gene  copies  g-­‐1  dry  soil,  total  soil  fungal  abundance   increased  by  2.12,  1.86,  1.82,  and  1.78  ± 0.15  Log  ITS  gene  sequence  copies  g-­‐1  dry   soil,  and  AM  fungal  abundance  decreased  by  -­‐1.73,  -­‐2.15,  -­‐2.23,  -­‐2.04  ± 0.55  Log   AML  gene  sequence  copies  g-­‐1  dry  soil  within  respective  treatments  FGSC,  FGS,  GC,   and  G. iii     Acknowledgements     I  would  like  to  acknowledge  that  this  research  was  conducted  on  the  traditional   territory  of  the  Attawandaron  and  the  Mississaugas  of  the  New  Credit  First  Nations   peoples,  and  offer  respect  to  them  and  their  ancestors.  I  hope  that  the  food  systems   that  support  us  can  contribute  to  the  reconciliation  of  the  harm  caused  to  your   communities  and  our  shared  environment.  Ecological  farmers  in  southern  Ontario   area  who  are  practicing  regenerative  food  production  on  the  land  that  they  are   stewarding  inspired  this  work.  Thank  you  all  and  I  hope  this  work  can  support  you.     I  am  extremely  grateful  to  my  co-­‐advisors,  Rene  Van  Acker  and  Ralph  Martin,  for   their   initial   interest   in   this   topic,   and   their   generous   financial,   technical,   and   emotional   support   throughout   this   process.   Your   commitment   to   regenerative   agriculture  is  inspiring!  Thank  you  so  much  to  the  amazingly  supportive  folks  at  the   School  for  Environmental  Sciences:  Kari  Dunfield,  who  sat  on  my  committee  and   greatly  assisted  in  the  whole  process,  Kamini  Khosla,  who  provided  so  much  lab   support  and  laughter,  Crystall  McCall,  who  showed  me  “the  ropes”  of  molecular   analysis,  and  John  Drummelsmith,  who  analyzed  soil  microbes  with  great  dexterity!   Armfuls   of   thanks   to   Ecosource   in   Mississauga   for   their   donation   of   land   and   logistical  support,  to  Martha  and  Martin  from  the  Guelph  Centre  for  Urban  Organic   Farming  in  Guelph  for  their  donation  of  land  and  logistical  support,  and  to  Ignatius   Farm   for   logistical   support!   So   much   love   and   thanks   to   my   Mum,   Dad,   Sister,   Brother,  and  Ilana  for  emotional  and  physical  support  over  the  two  years.  I  give   boundless  appreciation  for  my  housemates  and  friends  who  joined  me  on  countless   conversations,  outdoor  adventures,  and  board  games  when  I  felt  challenged.    To  all iv   of  you  who  helped  to  set  up  and  maintain  this  project,  my  heartfelt  thanks!  Thanks,   also,  to  Arthur  D.  Latornell  and  family  for  their  offering  of  a  graduate  scholarship  in   support   of   conservation   and   remediation.   Finally,   I   acknowledge   myself   for   committing  to  this  project  and  following  through  with  what  I  wanted  to  do.  It  took  a   lot  of  asking  for  help  and  self-­‐care,  and  I  did  it! v   TABLE  OF  CONTENTS     Acknowledgements                                                                                                                                                                                                                                                  iii   Table  of  Contents                                                                                                                                                                                                                                                              v     1.0  Introduction                                          1   1.1 Introduction                                        1   1.2 Literature  Review                                    4   1.2.1 Introduction                                    4   1.3 Land  Acknowledgement  of  Southern  Ontario                                                  5   1.4 Development  of  Temperate  Forest  Garden  Systems                              8   1.4.1 Beginning  and  History                                  8   1.4.2 Present  and  Future  Growth  Opportunities  in  Academia                    12   1.5 Holistic  Conceptual  and  Practical  Design  Frameworks                        13   1.6 Orchards  as  a  Base  for  FGS                              14   1.6.1 Soil  Microbe-­‐Plant  Communities  and  Interactions                      17   1.6.2 Apple  Orchard  Plant-­‐Microbe  Interactions                      20   1.6.3 Agroforestry  Plant-­‐Microbe  Interactions                        22   1.7 Perennial  Contributions  to  Agricultural  Systems                        25   1.7.1 Internal  System  Inputs                              26   1.7.2 Biodiversity  and  Balance                            32   1.8 Interactions  Between  Plants  and  Management                          36   1.9 Future  Work                                  38   2.0 Materials  and  Methods                                  39   2.1 Site  Description                                  39   2.2 Experimental  Design                                  41   2.3 Sampling  and  Laboratory  Analysis                              50   2.4 Statistical  Analysis                                53   3.0 Results                                      54   3.1 Abundance  of  soil  bacteria  and  fungi                          54   3.2 Tree  Growth                                  58   3.3 Soil  Nutrients                                  58   4.0 Discussion                                    63   5.0 Conclusions                                    73   6.0 Summary  and  Final  Thoughts                                              75   7.0 Literature  Cited                                                                                                                                                                                                                                                78   8.0  Appendix  A                                                                  86 1   1.1  Introduction     Agriculture  is  going  through  a  transition  on  a  global  scale.  External  input-­‐ intensive  practices  have  led  to  great  accomplishments  in  some  regards  but  now,   with  reflection,  effects  of  these  practices  on  the  environment  and  on  some  groups  in   society   demonstrate   a   need   to   evolve   these   practices   or   look   for   alternative   practices    (Bainard  et  al.,  2011A;  Foley  et  al.,  2005;  FAO,  2013;  Tomich  et  al.,  2011;   Tsonkova,  et  al.,  2012;  Van  Acker,  2008).  In  temperate  areas  of  North  America,  such   as  Southern  Ontario,  our  landscapes  have  largely  been  transformed  from  forest  and   grassland   to   urban   development   and   cultivation   agriculture   (Ontario,   2014).   Consequences  of  such  a  large-­‐scale  change  in  landscape  include  loss  of  biodiversity,   soil   erosion,   contributions   to   climate   change,   water   contamination,   hydrological   imbalances,  and  dependence  on  fossil  fuels  for  management  practices  (Graves  et  al.,   2014;  Tomich  et  al.,  2011).  Academics  have  been  researching  these  issues  for  many   years  and  governments  have  created  policies  that  support  the  transition  towards   reconciling   the   issues   of   the   21st   century,   but   the   actions   are   slow   and,   comparatively,  under-­‐supported  (FAO,  2014;  Wotherspoon  2014;  UNCTD,  2013).   The  shift  away  from  late  20th  century  agricultural  practices  towards  systems,   such  as  forest  garden  systems  (FGS),  which  are  regenerative,  locally  appropriate,   holistic  in  design,  and  resilient,  is  occurring  (Ferguson  and  Lovell,  2014;  Tomich  et   al.,  2011).  Indigenous  communities,  grass  roots  organizations,  private  and  public   research  institutions,  and  ecological  farmers  are  the  leading  practitioners  of  forest   garden   systems.   They   are   applying   indigenous   knowledge,   western   scientific   knowledge,   and   nature-­‐mimicked   frameworks   of   system   design   to   achieve   this. 2   Academics   have   a   great   opportunity   to   support   the   development   of   resilient,   regionally  appropriate,  community-­‐based  food  systems  by  providing  research  and   data  on  system  performance.   A   forest   garden   system   (FGS)   can   be   described   simply   as   “a   perennial   polyculture  of  multipurpose  plants”  (Jacke  and  Toensmeier,  2005).  Similar  to  some   agroforestry   concepts,   FGS   support   ecosystem   services,   provide   environmental   benefits,  and  diversify  economic  products  as  a  multi-­‐functional  landscape  (Jose,   2009).  Agroforestry  has  been  defined  as  a  land-­‐use  system  where  trees  and/or   shrubs  are  introduced  into  agricultural  cropping  and  livestock  systems  or  where   crops  are  planted  into  forest  systems.  FGS  expands  this  approach  to  land-­‐use  and   production  systems  designed  primarily  with  diverse,  multi-­‐strata  perennials  and   self-­‐sowing   annuals   that   mimic   the   structure   of   natural   forest,   woodland,   and   savannah  ecosystems.  The  goals  of  FGS  are  to  achieve  a  state  of  abundant  diverse   yields,  self-­‐fertilization,  self-­‐maintenance,  and  self-­‐renewal  (Jacke  and  Toensmeier,   2005;  Wiersum,  2004).  In  temperate  climates,  FGS  are    increasing  in  popularity  for   the  production  of  food,  medicine,  fodder,  fuel,  fibre,  and  recreation,  and  the  practice   of  these  systems  is  increasing  on  smallholder  farms  in  North  America  and  the  UK   (M.  Crawford,  personal  communication,  August  27  2014;  E.  Toensmeier,  personal   communication,  August  29  2014).  FGS  are  noted  as  an  area  of  great  opportunity  in   agroforestry   research   and,   although   current   scientific   literature   is   lacking   in   temperate  FGS,  it  is  being  practiced  around  the  world.  There  is  novel,  larger-­‐scale,   participatory   research   on   FGS   occurring   at   the   University   of   Illinois   (Savana   Institute,  2013;  Wiersum,  2004). 3   The  purpose  of  this  study  was  to  initiate    research  in  temperate  forest  garden   systems  with  goals  of  measuring  the  effects  that  establishing  an  apple-­‐based  FGS   with  varying  amounts  of  compost  has  on  the  abundance  of  soil  bacterial  and  fungal   communities   (integral   components   of   a   self-­‐sufficient   ecosystem)   in   Southern   Ontario,  Canada.  The  overall  null  hypothesis  is  that  newly  established  apple-­‐based   FGS  and  newly  established  apple  trees  with  mixed-­‐grass  understories,  both  with  an   without  compost,  will  have  the  same  shift  in  soil  bacterial  and  fungal  population   abundance,  SOM,  tree  growth  and  soil  chemistry  over  two  years.  The  alternative   hypothesis   is   that   newly   established   apple-­‐based   FGS   with   compost   will   have   different  soil  fungal  and  bacterial  abundance,  different  tree  growth,  and  different   soil   nutrients   compared   to   newly   established   apple   trees   with   mixed-­‐grass   understories  after  the  first  two  establishing  years.  The  specific  objectives  of  this   study  were  to  measure  and  compare  1)  the  abundance  of  indigenous  total  bacterial,   total  fungal,  and  arbuscular  mycorrhizal  fungi  populations  in  the  soil,  2)  soil  organic   matter,  3)  apple  tree  growth,  and,  4)  chemical  properties  (i.e.,  the  nutrients  K,  Mg,   P),   between   newly   established   apple-­‐based   FGS   plots   and   grass   understory   managed  apple  plots,  both  with  and  without  compost  amendments. 4   1.2  Literature  Review     1.2.1  Introduction         In  the  tropics,  FGSs,  which  are  characterized  as  forest-­‐analogous  agroforests   (i.e.,  a  cross  between  natural  forests  and  specialized  tree  crop  plantations)  that  have   been   established   by   indigenous   peoples   (Wiersum,   2004).   FGSs   are   currently   practiced  to  a  large  extent  using  systems  developed  by  local  communities  with  a   goal  of  conserving  the  forests  on  which  they  depend  for  a  livelihood  (Wiersum,   2004).  In  temperate  regions,  forest  ecosystems  have  been  and  still  are  an  integral   component   of   indigenous   livelihood   and   they   produce   products   for   the   global   market  (Uprety  et  al.,  2012).  Some  forest  functions  provide  direct  value  to  people   (e.g.  food  and  medicine)  while  others  are  more  indirect  such  as  what  we  may  now   refer  to  as  ecosystem  services,  such  as  water  filtration  (Kimmins,  2004;  Uprety  et  al.,   2012).     There  are  many  agroforestry  systems  that  domesticate  specific  components   of   forest   ecosystems   for   particular   yields,   for   example,   the   use   of   trees   in   silvopasture,  intercropping  with  alley  crops,  and  orchards  (Nerlich  et  al.,  2013).  The   land-­‐use  practice  of  FGS  in  temperate  climate  regions  is  relatively  new  but  it  mimics   aspects  from  regional  ecosystem  models  that  have  developed  over  centuries.  FGSs   provide  opportunities  for  producing  multiple  human-­‐use  yields,  such  as  food,  fibres,   medicines,  and  fuel,  while  simultaneously  preserving,  or  regenerating  aspects  and   processes  prevailing  in  undisturbed  forests  (Wiersum,  2004).  Choosing  to  study  our   regional  environments  and  the  benefits  of  implementing  FGS  is  a  vital  decision.  With   more  understanding  of  these  systems,  and  how  farmers  might  adopt  the  practices  to 5   establish  and  manage  them,  we  can  begin  to  transition  away  from  systems  of  low   diversity  that  require  high  external  inputs  towards  holistic  production  systems.       In  this  review  of  the  literature  I  first  acknowledge  the  history  and  ecology  of   the  land  in  Ontario  and  present  the  development  of  FGS  as  a  practice  and  science.   Second,  I  present  conceptual  aspects  of  permaculture  and  agroecology  from  which   FGS  can  be  designed.  The  main  focus  of  the  latter  section  is  on  the  relationships   between   diverse   perennial   plants   and   soil   microorganism   communities   which   informs  questions  around  how  FGS  function  and  where  research  is  most  required.   1.3  Land  Acknowledgement  of  Southern  Ontario   The  temperate  regions  of  the  world  have  different  conditions  that  support   diverse  ranges  of  ecosystems  which  can  be  mimicked  to  create  systems  that  provide   for   humans,   non-­‐human   species,   and   the   environment.   For   example,   Canada’s   temperate  land  mass  is  approximately  50%  forest  cover,  containing,  among  others,   the   deciduous   forest   biome   (McCartney,   2011).   Southern   Ontario’s   landscape   is   made  up  of  the  mixed-­‐wood  plains  ecozone  in  the  north  and  stretching  up  from  the   south  is  the  Carolinian  ecozone,  which  is  the  most  tree  species-­‐diverse  zone  in   Canada  with  more  than  1600  plant  species  (McCartney,  2011).  Figure  1  shows  the   19th  century  land  cover  in  S.  Ontario:  large  areas  of  forest  types  including  maple   (Acer  spp.  L.)  and  beech  (Fagus  grandifoloia  L.)  which  covers  most  of  S.  Ontario,  with   larger  patches  of  black  ash  (Fraxinus  nigra  Marshall)  swamps,  oak  (Quercus  spp.  L.)   forest,  and  interspersed  patches  of  hemlock  (Tsuga  spp.  Carriere),  willow  (Salix  spp.   L),  tamarack  (Larix  spp.  (Du  Roi)  K.  Koch),  chestnut  (Castanea  spp.  L.),  birch  (Betula   spp.  L.),  cedar  (Cedrus  spp.  L.),  spruce  (Picea  spp.  Mill.),  pine  (Pinus  spp.  L.),  poplar

Description:
Second, I present conceptual aspects of permaculture and agroecology from which .. producers to replant old apple orchards with apples, sometimes
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.