ebook img

The Equation of State Approach to Cosmological Perturbations in f(R) Gravity PDF

0.11 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Equation of State Approach to Cosmological Perturbations in f(R) Gravity

February8,2016 1:25 WSPCProceedings-9.75inx6.5in main page1 1 The Equation of State Approach to Cosmological Perturbations in f(R) Gravity BorisBolliet Laboratoire de Physique Subatomique et de Cosmologie, Universit´e Grenoble-Alpes, CNRS/IN2P3 53, avenue des Martyrs, 38026 Grenoble cedex, France 6 RichardA.Battye 1 Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The Universityof 0 Manchester, Manchester M13 9PL, U.K. 2 b JonathanA.Pearson e F School of Physics and Astronomy, Universityof Nottingham, Nottingham NG7 2RD, U.K. 5 Thediscoveryofapparentcosmologicalaccelerationhasspawnedahugenumberofdark ] energyandmodifiedgravitytheories. Thef( )modelsofgravityareobtainedwhenone c replacestheRicciscalarintheEinstein-HilbRertactionbyanarbitraryfunctionf( ), q R gr- S= 21κZ d4x√−g {R+f(R)}+Sm, (1) [ 2 wachteiorne κde≡scr8ibπiGngisthtehestraensdcaalreddmNaetwtetronfi’esldcso.nIsntatnhti,sRwoirsktwheepRriocvciidsecaelxaprreasnsdionSsmfoisrtthhee v equations of state (EoS) for perturbations which completely characterize the linearized 5 perturbationsinf( )gravity,includingthescalar,vector,andtensormodes. TheEoS 8 formalism1isapowRerfulandelegantparametrizationwherethemodificationtoGeneral 5 Relativityaretreatedasadark-energy-fluid. Theperturbeddark-energy-fluidvariables 7 such as the anisotropic stress or the entropy perturbation are explicitly given in terms 0 ofparametersofthemodelofinterest. . 1 Keywords:Modifiedgravity;DarkEnergy;Cosmologicalperturbations. 0 6 1 1. Field Equations : v Varying the action (1) with respect to the metric yields the field equations, i X r Gµν =κ(Tµν +Dµν), (2) a whereG istheEinsteintensorandT isthestress-energytensorofthestandard µν µν matter fields. Allcontributionsdue tof(R)arepackagedintothe extra-termD , µν which we call the stress-energy tensor of the dark sector, explicitly formulated as κD ≡ 1fg −(R +g (cid:3)−∇ ∇ )f , (3) µν 2 µν µν µν µ ν R where R is the Ricci tensor, and f ≡ df . A direct calculation shows that µν R dR D is covariantly conserved, that is, ∇µD = 0. The background geometry is µν µν assumedto be ds2 =−dt2+a(t)2δ dxidxj, where a(t) is the scalefactor. Instead ij of the first and second order time derivative of the Hubble parameter, H, we use February8,2016 1:25 WSPCProceedings-9.75inx6.5in main page2 2 the dimensionless parametersa H′ R′ ǫ ≡− , ǫ¯ ≡− , (4) H H H 6H2 wheretheprimedenotesderivativewithrespecttod/dlna. Thedarksectorcanbe viewed as a fluid, with energy density ρ ≡ 1 D and pressure P ≡ 1 δijD . de a2 00 de 3a2 ij The field equations (2) read Ω +Ω =1, w Ω +w Ω = 2ǫ −1, (5) m de m m de de 3 H where Ω = κρi is the density parameter and w ≡ P/ρ. From (3). For the f(R) i 3H2 i i i fluid, they are explicitly given by f Ω = − +(1−ǫ )f −f′ , (6a) de 6H2 H R R 1 w +1= − (2ǫ f +(1+ǫ )f′ −f′′). (6b) de 3Ω H R H R R de 2. Dynamics of Linear Perturbations The dynamics of linear perturbations is presented in Fourier space. Instead of the coordinate wavenumber, k, a reduced dimensionless wavenumber is introduced, k K≡ , (7) aH sothatK caneasilyrecognizethe sub-(super)-horizonregimes. Inthe synchronous gauge,the non-zerometric perturbationsareδg =a2h . Inanorthonormalbasis ij ij {kˆ,ˆl,mˆ} in k-space, the spatial matrix h is further decomposed as h = 1hδ + ij ij 3 ij h σ +hV·v +hT·e ,wherethenotationshVandhTcontainthetwovectorandthe k ij ij ij twotensorpolarizationstatesrespectively,andthedotproducthastobeunderstood as a sum over the polarization states. Instead of h, we use the combination 6η ≡ h − h. The basis matrices are σ = kˆ kˆ − 1δ for the longitudinal traceless k ij i j 3 ij mode, v(1) = 2kˆ ˆl and v(2) = 2kˆ mˆ for the vector modes and e× = 2ˆl mˆ , ij (i j) ij (i j) ij [i j] e+ =ˆl ˆl −mˆ mˆ for the tensor modes. In the conformal Newtonian gauge, δg = ij i j i j 00 −2a2ψ and t δg = −2a2φδ (the tensor and vector modes remain the same in ij ij both gauges). An additional scalar degree of freedom arises at the perturbative level from the non-vanishing f′ , given byb R f′ δR χ≡− R . (8) ǫ¯ 6H2 H This feature is a manifestation of the well-known connection between f(R) theo- ries and non-minimally coupled scalar-tensor theories. The expression of a generic aWiththesenotationtheRicciscalarreads =12H2(1 1ǫ ). bWith the gauge invariant notation the peRrturbed Ricc−i sc2alHar reads δ = 6H2(W +4X 1K2(Y 2Z) ǫ¯ T). The fact that T appears explicitly inthe expressRion of−δ indicates tha−t 3 − − H R thisisnotagaugeinvariantquantity. February8,2016 1:25 WSPCProceedings-9.75inx6.5in main page3 3 perturbed stress-energy tensor, Uµ , is ν δUµ =(ρδ+δP)uµu +(ρ+P)(u δuµ+uµδu )+δPδµ +PΠµ , (9) ν ν ν ν ν ν where the density contrast is δ ≡ δρ/ρ, the Hubble flow is parametrized by u = ν (−1,~0) in coordinate time, and δu =(0,δu ) is the perturbed velocity field whose ν i scalar mode is θ ≡ ikjδuj. k2 Our results areare obtainedin both the synchronousandconformalNewtonian gauges thanks to a new set of variables presented bellow (quantities denoted with the subscript ‘S’ (‘C’) are evaluated in the synchronous (conformal Newtonian) gauges respectively). Symbol Synchronous gauge Conformal Newtonian gauge h′ T k 0 2K2 Y T′+ǫ T ψ H Z η−T φ X Z′+Y Z′+Y (10) W X′−ǫ (X +Y) X′−ǫ (X +Y) H H Θˆ Θ +3(1+w)T Θ s c δˆP δP +P′T δP s s c χˆ χ +f′ T χ s R c Instead of δ and θ, we make an extensive use of the dimensionless variables ∆≡δ+3(1+w)Hθ, Θ≡3(1+w)Hθ. (11) The perturbed pressure is packaged into the gauge invariant entropy perturbation, δˆP dP wΓ= − ∆−Θˆ . (12) ρ dρ (cid:16) (cid:17) Theanisotropicstressisthespatialtracelesspartofthestress-energytensor. Inthe samewayasthemetricperturbation,itdecomposesintoonescalar,ΠS,twovector, ΠV, and two tensor modes, ΠT. The generic perturbed fluid equation, δ(∇µU )= µν 0, are ∆′−3w∆−2wΠS+g ǫ Θˆ =3(1+w)X,(13a) K H w′ w′ Θˆ′+ ǫ − Θˆ − 3w− ∆−2wΠS−3wΓ =3(1+w)Y.(13b) (cid:18) H 1+w(cid:19) (cid:18) 1+w(cid:19) The prime denote derivative with respect to d/dlna and g ≡ 1+ K2 . The field K 3ǫH equations (2) expanded to linear order in perturbations are − 2K2Z =Ω ∆ +Ω ∆ , (14a) 3 m m de de 2X =Ω Θˆ +Ω Θˆ , (14b) m m de de 2W +2X− 2K2(Y −Z)=Ω (δˆP /ρ )+Ω (δˆP /ρ ), (14c) 3 9 m m m de de de 1K2(Y −Z)=Ω w ΠS +Ω w ΠS, (14d) 3 m m m de de de 1hV′′+(1 − 1ǫ )hV′ =Ω w ΠV+Ω w ΠV, (14e) 6 2 6 H m m m de de de 1hT′′+(1 − 1ǫ )hT′+ 1K2hT =Ω w ΠT+Ω w ΠT. (14f) 6 2 6 H 3 m m m de de de February8,2016 1:25 WSPCProceedings-9.75inx6.5in main page4 4 3. Equation of State for Perturbations Inthef(R)scenario,theexpansiontofirstorderinperturbationsofthedarksector stress-energy tensor is κδD = −f δR + 1fδg + 1g f δR−f R δR µν R µν 2 µν 2 µν R RR µν +δ(∇ ∇ f )−((cid:3)f )δg −g δ((cid:3)f ). (15) µ ν R R µν µν R This allows us to isolate the perturbed fluid variables for the f(R) dark sector theory. The tensorandvectorprojectionsof(15)readilyconstitute theEoSforΠV de and ΠT, de Ω w ΠV =−1f hV′′− 1{(3−ǫ )f +f′ }hV′, (16a) de de de 6 R 6 H R R Ω w ΠT =−1f hT′′− 1{(3−ǫ )f +f′ }hT′− 1f K2hT. (16b) de de de 6 R 6 H R R 6 R Thetime-timeprojectionprovidesausefulformulaethatenablestowriteχˆinterms of ∆ ,X and Z, de Ω ∆ =−g ǫ χˆ+f′ (X + 1K2Z). (17) de de K H R 3 The longitudinal spatial traceless projection is Ω w ΠS =−1K2χˆ− 1f K2(Y −Z). (18) de de de 3 3 R Using (18,17)andthe perturbed field equations (14), it is possible to write Γ and de ΠS in terms of the other perturbed fluid variables: de w Γ =(ζ − 2 ǫ¯H 1 )∆ −ζ Θˆ + Ωmζ (∆ −Θˆ ) (19a) de de de 3gKǫHfR′ de de de Ωde m m m w ΠS = gK−1 1 (1+ 1f′ )∆ − 1f′ Θˆ + 1 Ωmf′ (∆ −Θˆ ) (19b) de de gK 1+fR n 2 R de 2 R de 2Ωde R m m o where ζ ≡ gKǫH−ǫ¯H − dPi. These expressions constitute the EoS for perturbations i 3gKǫH dρi in f(R) gravity. From here, the whole dynamics of the (scalar) perturbations is providedbythefourperturbedfluidequations(13),plusoneevolutionequationfor the metric perturbationscd. This approachis as powerfulas elegant: it provides an efficientwaytosolvethelinearperturbationinf(R)gravity,andthephenomenology becomestransparentthroughtheinterpretationofthefluidvariables. Herewehave illustratedthe EoSapproachwith f(R) gravity,butit shouldapply to anymodified gravitytheory. The EoSapproachcanbe analternative(or complementary)to the “parametrized post Friedmann framework” developped by Ferreira-Baker-Skordis. It enables to simply characterize intricate modified gravity theories through their equations of state for perturbations. In the quest for understanding the nature of dark energy, this approach seems to us particularly attractive as it links formal modification to General Relativity to phenomenology in a straightforwardway2. cZ′=X Y,whereX andY arewrittenintermsoftheperturbedfluidvariables. dInfact,t−hesystemoffivedifferentialequationsisoverdetermined: whenK=0,thefieldequation (14a)canbeusedtoexpress∆ intermsof∆ ;andwhenK=0,thesameequationgivesZ in de m 6 termsofthe∆’s i February8,2016 1:25 WSPCProceedings-9.75inx6.5in main page5 5 References 1. R. A. Battye and J. A. Pearson, Parametrizing dark sector perturbations via equations of state, Phys.Rev. D88 (2013), no. 6 061301, [arXiv:1306.1175](and references therein). 2. R. A.Battye,B.BollietandJ.A.Pearson,f(R) asadarkenergyfluid, accepted for publication in Phys.Rev. D, [arXiv:1508.04569](and references therein).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.