ebook img

The elastic properties, elastic models and elastic perspectives of metallic glasses PDF

170 Pages·8.411 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The elastic properties, elastic models and elastic perspectives of metallic glasses

ProgressinMaterialsSciencexxx(2011)xxx–xxx ContentslistsavailableatScienceDirect Progress in Materials Science journal homepage: www.elsevier.com/locate/pmatsci The elastic properties, elastic models and elastic perspectives of metallic glasses ⇑ Wei Hua Wang InstituteofPhysics,ChineseAcademyofSciences,Beijing100190,PRChina a r t i c l e i n f o a b s t r a c t Articlehistory: Bulkmetallicglass(BMG)providesplentifulpreciseknowledgeof Received7September2010 fundamental parameters of elastic moduli, which offer a bench- Accepted21July2011 mark reference point for understanding and applications of the Availableonlinexxxx glassymaterials.Thispapercomprehensivelyreviewsthecurrent stateoftheartofthestudyofelasticproperties,theestablishments ofcorrelationsbetweenelasticmoduliandproperties/features,and theelasticmodelsandelasticperspectivesofmetallicglasses.The goalistoshowthekeyrolesofelasticmoduliinstudy,formation, and understanding of metallic glasses, and to present a compre- hensiveelasticperspectivesonthemajorfundamentalissuesfrom processingtostructuretopropertiesintherapidlymovingfield. A plentiful of data and results involving in acoustic velocities, elastic constants and their response to aging, relaxation, applied press,pressureandtemperatureofthemetallicglasseshavebeen compiled. The thermodynamic and kinetic parameters, stability, mechanical and physical properties of various available metallic glassesespeciallyBMGshavealsobeencollected.Asurveybased on the plentiful experimental data reveals that the linear elastic constants have striking systematic correlations with the micro- structuralfeatures,glasstransitiontemperature,meltingtempera- ture, relaxation behavior, boson peak, strength, hardness, plastic yieldingoftheglass,andevenrheologicalpropertiesoftheglass formingliquids.TheelasticconstantsofBMGsalsoshowacorrela- tionwithaweightedaverageoftheelasticconstantsoftheconstit- uentelements.Weshowthattheelasticmodulicorrelationscan assistinselectingalloyingcomponentswithsuitableelasticmoduli for controlling the elastic properties and glass-forming ability of ⇑ Address:InstituteofPhysics,ChineseAcademyofSciences,P.O.Box603(42-1),Beijing100190,PRChina.Tel.:+8610 82649198;fax:+861082640223. E-mailaddress:[email protected] URL:http://www.mmp.iphy.ac.cn 0079-6425/$-seefrontmatter(cid:2)2011ElsevierLtd.Allrightsreserved. doi:10.1016/j.pmatsci.2011.07.001 Pleasecitethisarticleinpressas:WangWH.Theelasticproperties,elasticmodelsandelasticperspectivesof metallicglasses.ProgMaterSci(2011),doi:10.1016/j.pmatsci.2011.07.001 2 W.H.Wang/ProgressinMaterialsSciencexxx(2011)xxx–xxx themetallicglasses,andthustheresultswouldenablethedesign, control and tuning of the formation and properties of metallic glasses. Wedemonstratethattheglasstransition,theprimaryandsec- ondaryrelaxations,plasticdeformationandyieldcanbeattributed tothefreevolumeincreaseinducedflow,andtheflowcanbemod- eledastheactivatedhoppingbetweentheinherentstatesinthe potentialenergylandscape.Wethenproposeanextendedelastic model to understand flow in metallic glass and glass-forming supercooledliquid,andthemodelpresentsasimpleandquantita- tivemathematicexpressionforflowactivationenergyofvarious glasses.Theelasticperspectives,whichconsiderallmetallicglasses exhibit universal behavior based on a small number of readily measurableparametersofelasticmoduli,arepresentedforunder- standingthenatureanddiversepropertiesofthemetallicglasses. (cid:2)2011ElsevierLtd.Allrightsreserved. Contents 1. Introduction......................................................................... 00 2. Thebriefdescriptionofthetheoryofelasticity............................................. 00 2.1. Thecharacterizationofelasticpropertiesofsolids..................................... 00 2.2. Physicaloriginfortheelasticity.................................................... 00 2.2.1. Basisforlinearelasticity .................................................. 00 2.2.2. Elasticpropertiesandenergylandscapes..................................... 00 2.3. Elasticpropertiesinequilibriumliquidsandsupercooledliquids......................... 00 2.3.1. Instantaneouselasticconstants............................................. 00 2.3.2. Elasticpropertiesintheequilibriumliquidsandsupercooledliquids .............. 00 2.4. Correlationsbetweenelasticmoduliandphysicalpropertiesincrystallinematerials......... 00 3. Experimentalmethodsfordeterminingelasticmoduliofglasses .............................. 00 3.1. Ultrasonicmethods.............................................................. 00 3.1.1. Thetheoryforultrasonicmeasurements ..................................... 00 3.1.2. Theultrasonicexperimentalmethods........................................ 00 3.1.3. Theinsitumeasurementofultrasonicwavevelocitiesunderhighpressure......... 00 3.1.4. Themeasurementofultrasonicwavevelocitiesupontemperature................ 00 3.2. Theinformationprovidedfromultrasonicstudy ...................................... 00 4. Elasticmoduliofmetallicglasses........................................................ 00 5. Pressuredependenceofelasticpropertiesofmetallicglasses ................................. 00 6. Temperaturedependenceofelasticpropertiesofmetallicglasses.............................. 00 6.1. TheelasticpropertyofBMGsuponannealingtemperatures............................. 00 6.2. InsitumeasurementoftemperaturedependenceofelasticmoduliofBMGs................ 00 6.2.1. Insitumeasurementoftemperaturedependenceofelasticmoduliduringglass transition................................................................................. 00 6.2.2. Insitumeasurementoftemperaturedependenceofelasticmoduliatlowtemperatures 00 7. Timedependence(structuralrelaxation)ofelasticconstantsofmetallicglasses.................. 00 8. Correlationsbetweenelasticmoduliandmicrostructure,glassformation,glasstransition,fragility andmelting........................................................................... 00 8.1. Thecorrelationsbetweenelasticpropertiesandmicrostructureofmetallicglasses.......... 00 8.2. Correlationbetweenelasticconstantsofmetallicglassesandelasticconstantsoftheir constituents....................................................................... 00 8.3. Correlationbetweenelasticpropertiesandglassformation ............................. 00 8.4. Correlationbetweenelasticmoduliandglasstransition................................ 00 8.5. Correlationbetweenelasticmoduliandmelting ...................................... 00 8.6. Correlationbetweenelasticmoduliandfragility ...................................... 00 8.7. Correlationbetweenelasticpropertiesandbosonpeak................................. 00 8.8. Othercorrelations............................................................... 00 9. Correlationsbetweenelasticmoduliandmechanicalproperties............................... 00 Pleasecitethisarticleinpressas:WangWH.Theelasticproperties,elasticmodelsandelasticperspectivesof metallicglasses.ProgMaterSci(2011),doi:10.1016/j.pmatsci.2011.07.001 W.H.Wang/ProgressinMaterialsSciencexxx(2011)xxx–xxx 3 9.1. Correlationbetweenelasticmoduliandstrength...................................... 00 9.2. Correlationbetweenelasticmoduliandmicrohardness................................. 00 9.3. Correlationbetweenelasticmoduliandtoughness/plasticity ............................ 00 9.4. Correlationbetweenelasticmoduliandfracture ...................................... 00 10. Thesummaryforelasticcorrelations.................................................... 00 11. Searchingmetallicglassesbasedonelasticmodulicriterion................................. 00 12. Elasticmodelsofsupercooledliquidsandmetallicglasses................................... 00 12.1. Elasticmodelsforglass-formingsupercooledliquids.................................. 00 12.2. Elasticmodelsformetallicglasses................................................. 00 12.3. Extendedelasticmodelforflowinmetallicglass-formingliquidsandglasses ............. 00 13. Theelasticperspectivesonmetallicglasses............................................... 00 14. Summaryandoutlook................................................................ 00 Acknowledgments.................................................................... 00 References .......................................................................... 00 1.Introduction Glassystate,whichisauniversalpropertyofsupercooledliquidsiftheyarecooledrapidlyenough, isregardedasthefourthstateofmatter[1–5].Themysteriousglasstransitionphenomenon,which connectstheliquidandglassystates,isrelatedwidelytodailylife,industry,materialspreparation, organismpreservationandalotofnaturalphenomena.However,theexactandcomprehensivephys- icalunderstandingoftheglasstransitionandglassnaturesisconsideredtobeoneofthemostchal- lengingproblemsincondensedmatterphysicsandmaterialscience.Duetotherandomdisordered structure,thecharacterizationoftheglassesareverydifficult,andthisleadstoproblemsforunder- standing the formation, deformation, fracture, nature, and the structure–properties relationship of theglasses[1–18]. Metallicglass,whichisanewcomeringlassyfamily(discoveredin1959)andatthecuttingedgeof currentmetallicmaterialsresearch,isofcurrentinterestandsignificanceincondensedmatterphys- ics, materials science and engineering because of its unique structural features and outstanding mechanical, many novel, applicable physical and chemical properties [11,14]. Metallic glasses have also been the focus of research advancing our fundamental understanding of liquids and glasses andprovidemodelsystemsforstudyingsomelong-standingfundamentalissuesandhavepotential engineering and functional applications. The recently developed bulk metallic glass (BMG) forming systems are complicated multicomponent alloys that vitrify with remarkable ease during conven- tionalsolidification.TheBMGsrepresentanovelandexcitinggroupofmetallicmaterialswithmany favorableandapplicablepropertiesascomparedtotheircrystallinecounterparts.Theiruniquecom- binations of mechanical, physical, tribological and chemical properties are of current interest and importance[1–15].Itisknownthatthestructuredeterminesthepropertiesofacrystallinematerial, whileinthemetallicglasses,duetotherandomatomicstructureinlong-range[16–18],thedifficult forcharacterizingofthestructuraldisorderedglassesleadstoproblemforunderstandingtheforma- tionandthestructure–propertiesrelationshipofthemetallicglasses[1–18].Therefore,thebirthofthe novelmetallicglassesalsopresentsalotofunresolvedissues,outstandingquestionsandchallenges. Thefollowingiskeyquestionsthatrepresentfundamentalissuescriticalformetallicglasses.These issuesinclude: (1) Whereandwhydoesmetallicliquidendandglassbegin?Howcouldliquidsuddenlystopmov- ingwhileapproachingglasstransitiontemperatureT ?Howdoesstructureconnecttodynam- g icsastheygive risetodynamicalheterogeneity,fragility,agingand rejuvenation?Sofar, the understanding of these common phenomena in glass is still fragmentary. The fundamental studies on the rheology, dynamic, and nature of glasses is one of major drivers for research Pleasecitethisarticleinpressas:WangWH.Theelasticproperties,elasticmodelsandelasticperspectivesof metallicglasses.ProgMaterSci(2011),doi:10.1016/j.pmatsci.2011.07.001 4 W.H.Wang/ProgressinMaterialsSciencexxx(2011)xxx–xxx Nomenclature BMG bulkmetallicglass MG metallicglass GFA glass-formingability GFR glass-formingcompositionrange EOS equationofstate RT roomtemperature STZ sheartransformationzone BP bosonpeak q densityofmatter g(r) pairdistributionfunction M masspermolar C atomicpackingdensity g r stress r fracturestrength F r yieldstrength y e strain s shearstress s yieldshearstrength y c shearstrain K fracturetoughness c G fractureenergy c Hv Vicker’shardness r positionvectorbeforethedeformation u displacementvector V volume V averagemolarvolume m V atomicvolume a P pressure T temperature t time g viscosity s relaxationtime R x frequency K bulkmodulus(ormodulusofcompression) v compressibility K instantaneousbulkmodulus 1 E Young’smodulus Q(cid:2)1 internalfriction G shearmodulus(modulusofrigidity) G instantaneousshearmodulus 1 G0 storagemodulus G00 lossmodulus m Poisson’sratio c Grueneisenconstant G v longitudinalacousticvelocity l v transverseacousticvelocity s DE activationenergy q theflowactivationenergydensity E a thermalexpansioncoefficient T glasstransitiontemperature g T crystallizationtemperature x T meltingtemperature m Pleasecitethisarticleinpressas:WangWH.Theelasticproperties,elasticmodelsandelasticperspectivesof metallicglasses.ProgMaterSci(2011),doi:10.1016/j.pmatsci.2011.07.001 W.H.Wang/ProgressinMaterialsSciencexxx(2011)xxx–xxx 5 T liqudustemperature l T fictivetemperature f T Kauzmanntemperature K T kineticidealglasstransitiontemperatureorVFTtemperature 0 T crossovertemperature c T reducedglasstransitiontemperature(=T/T) rg g l DT supercooledliquidtemperatureregion,DT=T (cid:2)T x g C orC specificheat p V h Debyetemperature D h effectiveEinsteintemperature E m fragility k Boltzmannconstant B N theAvogadroconstant A h Planckconstant DSC differentialscanningcalorimeter DTA differentialthermalanalysis XRD X-raydiffraction TEM transmissionelectronmicroscope SEM scanningelectronmicroscope DMA thermalmechanicalanalyzer onthemetallicglasses,whichareregardedtohavethesimplestatomicstructureinglassfam- ily. The study will further the understanding of above subjects on glass dating from ancient times[9]. (2) Whatphysicalfactorsdeterminetheglass-formingability(GFA)inanalloy?Whataretheuni- versalaspectsofglassformation,andwhataccountsfortheseuniversalaspects?Whatfactors suppressoraffectcrystalnucleationinmulti-componentalloysystems?Thestructuraltrans- formuponchangesinthermodynamicandprocessingvariables,andcorrelationsoflocalatomic structures,electronicstructures,and atomicmotionswithGFAstill remainunclear.How can one predicts the composition with excellent GFA and search new metallic glass system and compositioninsmartway?Manyempiricalcriteriacorrelatingwiththermodynamicparame- terswereproposedtopredicttheGFAofthemetallicglass-formingalloys,whilethesecriteria cannotpredicttheuniversalGFA,andaredifficulttobeappliedtosearchingnewmetallicglass inpractice.Despitetheidentificationofavastrangeofmetallicglassesandapplications,the developmentofmethodsandcriterionforrationallydesigningmetallicglasseswithexcellent GFAreachingorapproachingthatofoxideglassesanddesirablephysicalandmechanicalprop- ertiesisstillachallenge[8–10,17–20]. (3) Themetastablenatureofthemetallicglassesimposesabarriertobroadcommercialandindus- tryapplications,andoneofthemainchallengesistoavoidcrystallizationandagingduringpro- cessing,annealingandapplications.Hence,theunderstandingofthecrystallizationandaging processesisnecessarytodevelopfabricationprocessesandtoprocessandapplybulkmetallic glasses.Whatisthenatureofthecrystallizationandageingmechanisms,andhowdotheeffects ofheterogeneitiesonthecrystallizationkinetics,andthethermodynamicanddynamicaspects ofaging?Whatfactorssuppressoraffectcrystalnucleationandgrowthinglassalloysystems? Alloftheissueshavetobedeeplystudied.Theresearchonthecrystallizationofmetallicglasses canuncoverthenucleationandgrowthinsupercooledliquidandfindnovelprocessingoppor- tunities for the metallic glasses. The aging and crystallization studies are important both for applicationsandunderstandingofmetallicglasses. (4) Howtocharacterizeandmodelthemetallicglassystructure,andhowdotheatomsandclusters packinmetallicglasseswithliquid-likemetastablestructure?Whatarethestructuralandelec- tronicfeaturesandcharacteristicsofmetallicglasses?Andhowdoesthestructuredetermine Pleasecitethisarticleinpressas:WangWH.Theelasticproperties,elasticmodelsandelasticperspectivesof metallicglasses.ProgMaterSci(2011),doi:10.1016/j.pmatsci.2011.07.001 6 W.H.Wang/ProgressinMaterialsSciencexxx(2011)xxx–xxx the properties of glasses? How to characterize and model the structural heterogeneity or ‘‘defects’’?Andwhatistherelationbetweenthestaticheterogeneityanddynamicheterogene- ity?Whatismicrostructureoriginofstructuralrelaxationandaging,physicalandmechanical propertiesofmetallicglasses?Allofthemarekeytopicinthisfield[16].Manymetallicliquids can be deeply supercooled without crystallizing and subsequently to form metallic glasses, whilefundamentalunderstandingsoftheatomicarrangementsinsupercooledmetallicliquids arestilllacking.Tounderstandthestructureofthesupercooledliquid,oneneedstoidentifydif- ferenttypesoftopologicalstructuralordering,andmonitorhierarchicalstructuralorderingof supercooled liquids temporally and spatially, and uncover the correlations between atomic packingschemesandthedynamicslowing-down,liquidfragility,glassformingability,etc.of the supercooled liquids. To reveal the details of atomic-level structural evolution and local atomic rearrangement in metallic liquids would advance the understanding of the structural underpinningsofthevitrificationprocessofsupercooledmetallicliquids. (5) Compared with conventional crystalline metals and alloys, non-crystalline metallic glasses show higher strength and yet can still sustain plastic flow (permanent strains and shape changes).Theplasticityofcrystallinemetalsiswellknowntobecarriedbystructuraldefects such as dislocations or grain boundaries. How does metallic glass respond to the application ofmechanicalstressesorotherexternalappliedenergybothatandfarbelowtheglasstransi- tion?Incontrast,thecorrespondingplasticflowmechanisminmetallicglassesremainslargely unresolved. Under imposed stresses, there should be preferential ‘‘flow defects’’ or ‘‘plastic units’’generatedwhichcarriestheplasticstrain,andtheremustbestructuraloriginsresponsi- bleforthelocalizedbasicflowevents.Thelocationsoffertileandliquid-likesites,theinitiation and percolation for the cooperative flow events under stresses or other external activations havenotbeenidentifiedbasedonspecificlocalstructuralanddynamicalproperties,including thedegreeoflocalorderandsymmetry,atomic-sitestressesandfreevolumecontent.Howdo weidentifythe‘‘flowdefects’’?Theatomicflowmechanisms(thetriggeringeventsandcoop- erativeatomicshear/shuffling),thelocalizedflowsize(numberofatomsinvolved)andthefer- tilityorpropensityoflocalatomsforflow,theevolutionoftheshort-to-mediumrangeorder duringtheflowandintheflowstate,andthepercolatingbehavioroflocalizedfloweventslead- ing to later shear banding still remain unclear. The flow barrier and its dependence on local structure and properties is a key issue for deformation in metallic glasses. The deformation eventsinmetallicglassesinvolvesinlargerangeoflengthscalefromatomicscaleoffreevol- umes, to nano-scale of plastic units (or shear transformation zone) and medium-range order change,tomicrometerscaleshearbands.Howtocharacterizethechangesoflocalstructures indifferentlengthscalesuponplasticdeformationbothatandfarbelowtheglasstransition, theconnectionandcorrelationamongthesefloweventsindifferentlengthscales,thenature, operationandpropagationoftheshearbands,andhowtoovercometheshearbandproblem and makethemetallicglassesductileand tough,and theintrinsicmechanisms oftheplastic deformationandrecordhighstrengthinmetallicglassesarestillchallenges[1,2,21–24]. Withthedevelopmentofmoreandmorebulkmetallicglasssystems,theacousticmeasurements arewidelyappliedtostudytheiracousticandelasticpropertiesanddeterminetheelasticmodulias wellastheircomposition,processing,coolingrate,temperature,pressure,agingtime,creepandexter- nalstressdependencesofthemetallicglasses.Plentifuldataontheelasticpropertiesofthemetallic glasseswereaccumulatedandalotofinterestingexperimentalphenomenawereobserved.Combin- ingwiththeplentifulelasticmodulidataofnon-metallicglasses,remarkablelinksamongtheelastic moduli and thermodynamic, kinetic, and property parameters are found. These elastic correlations should have common structural and physical origins, and the key challenge now is to understand these correlations and exploit such understanding to develop new glass systems and compositions that combine excellent glass-forming ability with desirable properties. The correlations with other properties and features of metallic glasses, and the elastic models provide insight into above long- standingissuesoftheglassesandarealsousefulfornewmetallicglassesdesignandsearching.Some elasticmodelshavebeenproposedbasedontheelasticdataandcorrelationstounderstandthenature oftheglasses.Moreandmoreevidencesshowthattheelasticmoduli,whichcanbeeasilymeasured Pleasecitethisarticleinpressas:WangWH.Theelasticproperties,elasticmodelsandelasticperspectivesof metallicglasses.ProgMaterSci(2011),doi:10.1016/j.pmatsci.2011.07.001 W.H.Wang/ProgressinMaterialsSciencexxx(2011)xxx–xxx 7 byexperimentsduetothemacroscopicallyisotropicfeatureofthemetallicglasses,arekeyparame- tersfordeveloping,characterizing,tougheningandunderstandingthemetallicglasses,andtheyare thekeyphysicalquantityforcontrollingthemainthermodynamicandkinetic,intrinsicstaticstruc- turalheterogeneity,mechanicalanddynamicproperties.Elasticmodelandelasticperspectivespro- videdeepinsightintoabovelistedissuesinthemetallicglasses. Thepurposesofthisreviewpaperaretocomprehensivelyreviewandsummarizetherecentelastic propertiesstudiesofthemetallicglassesandtheestablishedelasticmodulicorrelationsandelastic models.Basedontheelasticmodulidata,thefoundcorrelations,theelasticmodelsonsupercooled liquidandglassesandotherexperimentalobservations,wetrytounderstand,characterizeanddis- cusstheissuesontheformation,glasstransition,crystallization,stability,relaxation,structuraland dynamic features, physical and mechanical properties and other found phenomena of the metallic glasses by using the elastic moduli as the key parameter. We propose an extended elastic model andelasticperspectivesonaboveissuesinmetallicglassesandarguethatthevariousmetallicglasses exhibituniversalbehaviorbasedonasmallnumberofmeasurableparametersofelasticmoduli.We showthatagenuineunderstandingoftheseissuesbasedonelasticproperties,elasticmodelcanassist inselectingalloyingcomponentsforcontrollingtheelasticpropertiesandGFAofthemetallicglasses, andthuscanguidethenewmetallicglassesdesignandprocess,andshouldalsomakeitpossibleto optimizepropertiesofmetallicglasses. Thepaperconsistsof14parts.Thefirstpartisabriefintroductiononthemainissuesinthisfield andonthepurposeandthestructureofthepaper.Thesecondpartbrieflyintroducesthegeneralthe- oryofelasticityforsolid,thephysicaloriginfortheelasticityanditsrelationshipwithenergyland- scape, and describes how to characterize the elasticity of a solid especially the homogeneous and isotropicsolid.Thedescriptionofhowtodeterminetheelasticmoduliinanisotropicsolidisalsopre- sented.Todescribetheelasticityofsupercooledliquidorliquid,theconceptofinstantaneouselastic moduliisintroduced.Theinstantaneouselasticmoduliaremeasuredonshorttimescalesorahigh- frequencydisturbancewheretheliquiddoesnothaveenoughtimetoflow.Then,webrieflyintroduce thetheoryofelasticpropertiesintheequilibriumliquidsandsupercooledliquids.Thesetheoriesare basis for characterizing and understanding the elastic properties and elastic models of the metallic glass-formingliquidsandglasses. Part3describestheexperimentalmeasurementsoftheelasticmoduliinmetallicglassesandother non-metallic glasses with isotropic structure. In particularly, the ultrasonic methods for the elastic moduli measurement in ambient conditions, under high pressure, under high or low temperature are systematically introduced. And the significanceinformationon the metallicglasses one can get fromtheultrasonicstudyisalsosummarized. Inpart4,theelasticmodulidatacompilationforavailablemetallicglassessofarispresented.The elasticmoduliofvariousmetallicglassesarecarefullyanalyzed,classifiedandcharacterized,andare comparedwiththatoftheircrystallinecounterpartsandothertypicalnon-metallicglasses.Thesedata providethebasisforestablishingtheelasticcorrelationandelasticmodel. In parts 5–7, the temperature, pressure and relaxation (or ageing) time dependences of elastic modulioftypicalbulkmetallicglassesarepresentedandarecomparedwiththatoftheircrystalline counterparts and other typical non-metallic glasses. These elastic moduli data demonstrate unique featuresofthemetallicglassesunderpressureandloworhightemperatures,andshowtheinfluence ofageingeffectonthephysicalandmechanicalpropertiesofmetallicglasses.Thestudiesalsoprovide theinformationaboutequationofstate,atomicconfigurations,excitationsinthemetallicglassysolids includingtheanharmonicityoftheatomicvibrations,thedensityofelectronstatesattheFermilevel andtheshapeoftheFermisurface,andtheactivationbarriersforthermallyactivatedrelaxations. Aftergivinganoverviewofthebasicexperimentalfactsoftheelasticpropertystudy,thepaperin parts8–9attemptstocorrelatetheelasticmoduliofthemetallicglassestotheirmicrostructure,for- mation,glass-formingability,stability,crystallizationbehavior,glasstransition,thermodynamicand kineticfeatures,mechanicalandphysicalproperties,andrehologyoftheglass-formingliquids.Itis showninthesepartsthatthelinearelasticmodulihavecorrelationswiththemicrostructure,glass transition temperature, relaxation, GFA, melting temperature, strength, hardness, plasticity and toughness, and even the fragility of the glass forming liquids. Meanwhile, the elastic constants of available BMGs show a rough correlation with a weighted average of the elastic constants for the Pleasecitethisarticleinpressas:WangWH.Theelasticproperties,elasticmodelsandelasticperspectivesof metallicglasses.ProgMaterSci(2011),doi:10.1016/j.pmatsci.2011.07.001 8 W.H.Wang/ProgressinMaterialsSciencexxx(2011)xxx–xxx constituentelements.Inpart10,wesummarizevariouscorrelationsinmetallicglassesamongelastic moduliandfeaturesandproperties.Thephysicaloriginsforthesecorrelationsarediscussed. Basedonthesefoundelasticcorrelations,inpart11,theplausibleelasticmodulicriterionispro- posedforsearchingmetallicglasses.Itisdemonstratedthattheelasticcorrelationsaswellastheelas- ticcriterioncanassistinBMGdesignandexploration. Inpart12,theprevailingelasticmodelsforsupercooledliquidsandglassesareintroduced,andan extendedelasticmodelforflowinmetallicglassesisproposed.Itisshownthattheextendedelastic modelisinremarkableagreementwithavarietyofexperimentalobservationsandoffersasimplesce- narioforexplainingsomecorrelationsbetweenelasticconstantsandpropertiesandforunderstanding thenatureofthemetallicglasses. Inpart13,attemptismadetounderstandsomepuzzlesandfundamentalissuesinmetallicglasses basedontheirelasticproperties,theelasticcorrelationsandtheelasticmodels.Therolesofelastic moduli as the key parameters for developing, characterizing, toughening and understanding the metallicglassesandtheirformingliquidsareemphasized.Theelasticperspectivesontheformation, GFA,thethermodynamicandkineticaspects,intrinsicstaticstructuralanddynamicheterogeneities, mechanicalandphysicalpropertiesofthemetallicglassesaresuggested.Thereviewpaperendswith summaryandoutlookinpart14. 2.Thebriefdescriptionofthetheoryofelasticity 2.1.Thecharacterizationofelasticpropertiesofsolids Themechanicsofsolids,regardedascontinuousmedia,formsthecontentofthetheoryofelastic- ity.Themacroscopicbehaviorofasolidisdescribedbyacontinuumfieldtheory,thetheoryofelas- ticity, which describes the way a solid deforms when external stresses are applied [25]. Under the actionofappliedstress,solidbodyexhibitsshapeandvolumechangestosomeextent,andeverypoint inthesolidbodyisingeneraldisplaced.Letthepositionvectorbeforethedeformationber,andafter thedeformationhasavaluer0withcomponentx.Thedisplacementofthispointduetodeformation i thengivenbythedisplacementvectoru=r(cid:2)r0 oru ¼x0(cid:2)x.Ifu (x ,x ,x )isthejthcomponentof i I i ij 1 2 3 thedisplacementatpoint(x ,x ,x ),thestraintensorforsmalldeformationsis 1 2 3 1(cid:2)@u @u(cid:3) u ¼ iþ j ð2:1Þ ij 2 @x @x j i Whena deformation happens, thebody ceasesto bein its original state ofequilibrium,and the forces,whicharecalledinternalstresses,thereforearisewhichtendtoreturnthebodytoitsequilib- riumstate.Ifthedeformationofthebodyisfairlysmall,itreturnstoitsoriginalundeformedstate whentheexternalforcesceasetoact.Suchdeformationsareelastic.Forlargedeformations,there- movaloftheexternalforcesdoesnotresultinthefullyrecoveryofthedeformation.Suchdeforma- tionsareplastic[25].Foranisotropicsolid,inelasticdeformationcase,thestresstensorintermsof thestraintensorcanbeexpressedas[25]: r ¼Ku d þ2Gðu (cid:2)d u =3Þ ð2:2Þ ij ll ij ij ij ll where K (in many text books, a different notation B is used) is bulk modulus, and G (in many text books,adifferentnotationlisused)isshearmodulus.Thebulkmodulusdescribesthestrainresponse ofabodytohydrostaticstressinvolvingchangeinvolumewithoutchangeofshape.Theshearmod- ulusrelatestostrainresponseofabodytoshearortorsionalstress.Itinvolveschangeofshapewith- outchangeofvolume. Foranisotropicsolid,itselasticbehaviorisfullydescribedbythelongitudinalmodulus(L=c ) 11 andshearmodulus(G=c ).Betweenthecomponentsoftherelatedelasticstiffnesstensor,theiso- 44 tropicrelation[26]:c =c +2c .Ifinadditiontheatomsinteractthroughacentralpotential,the 11 12 44 Cauchyidentityc =c mayhold,andthen,oneobtainsareductiontoonlyoneindependentelastic 12 44 constantc =3c (orL=3G).TheCauchy’sidentity,validforanisotropicsolidcomposedofmolecular 11 44 interactingwithtwo-bodycentralforce,canalsobestatedas: Pleasecitethisarticleinpressas:WangWH.Theelasticproperties,elasticmodelsandelasticperspectivesof metallicglasses.ProgMaterSci(2011),doi:10.1016/j.pmatsci.2011.07.001 W.H.Wang/ProgressinMaterialsSciencexxx(2011)xxx–xxx 9 5 K¼ G ð2:3Þ 3 whichimpliesthatLandKareequalto0whenG=0.FortheLennardJonesinteractionpotential,this identitychangesto,L=a+bG,whereaandbareconstants.Thisleadstotherelation, K¼aþðb(cid:2)1:333ÞG ð2:4Þ which is known as the generalized Cauchy relation. Its parameters a and b remain constant with changingtemperatureandpressure,butaresensitivetosmallchangesinthepotential.Thisrelation isvalidforbothliquidsandglasses[25].Recently,ageneralizedCauchyrelationwasobservedtohold insupercooledliquidsandcanbeexpressedas:c (T)=Bc (T)+A,whereBandAareconstantsinde- 11 44 pendentofTandPwithintheirrangeinvolvingtheglasstransition[26]. Forminordeformation,theu isalinearfunctionofther .Thatis,thedeformationisproportional ij ij totheappliedforces.ThislawiscalledHooke’slaw,whichisactuallyapplicabletoalmostallelastic deformationsinsolids[25].Insimplecaseofhomogenousdeformationsinwhichthestraintensoris constantthroughoutthevolumeofthebody,thestresstensorisgivenintermsofthetraintensorby E (cid:4) m (cid:5) r ¼ u þ u d ð2:5Þ ij 1þm ij 1(cid:2)2m ll ij whereEisthemodulusofextensionorYoung’s modulus.Young’smodulusisnamedafter Thomas Young(the19thcenturyBritishscientist).However,theconceptwasdevelopedin1727byLeonhard Euler,andthefirstexperimentthatusedtheconceptofYoung’smoduluswasperformedbytheItalian scientistGiordanoRiccatiin1782[25].Young’smodulus,alsoknownasthetensilemodulus,isamea- sureofthestiffnessofanisotropicelasticmaterial.Itisdefinedastheratiooftheuniaxialstressover theuniaxialstrainintheelasticregime.Thiscanbeexperimentallydeterminedfromtheslopeofa stress–straincurvecreatedduringtensileorcompressiontestsconductedonamaterial.Young’smod- ulusis alsocommonly,but incorrectly,calledtheelasticmodulusor modulusofelasticity,because Young’smodulusEisthebest-knownelasticconstant,whichismostcommonlyusedinengineering design.Thereareotherelasticmoduli,suchasthebulkmodulusandtheshearmodulus.TheEcanbe givenintermsofGandKby: E¼9KG=ð3KþGÞ ð2:6Þ The ratioof thetransverse compressiontothe longitudinal extensionis calledPoisson’s ratio,m, namedafterSiméonPoisson.Poisson’sratioisanimportantmaterialpropertyusedinelasticanalysis ofmaterial.Whenamaterialiscompressedinonedirection,itusuallytendstoexpandintheother twodirectionsperpendiculartothedirectionofcompression.ThisphenomenoniscalledthePoisson effect.Poisson’sratiomisameasureofthePoissoneffect.Themistheratioofthefractionofexpansion dividedbythefractionofcompression(forsmallvaluesofthesechanges).Instretchcaseofasolid rather than the compression, the Poisson ratio will be the ratio of relative contraction to relative stretching,andwillhavethesamevalueascompressioncase.TherelationofPoisson’sratiowithother elasticconstantsis(forisotropicsolids): 1 m¼ ð3K(cid:2)2GÞ=ð3KþGÞ ð2:7Þ 2 Since K and G are always positive, the Poisson’s ratio can vary between (cid:2)1 (for K=0) and 0.5 (for G=0),thatis(cid:2)16m60.5.OnemightseePoisson’sratioslargerthan0.5reportedintheliterature, however, this implies that the material was stressed to cracking. Generally, ‘‘stiffer’’ materials will havelowerPoisson’sratiosthan‘‘softer’’materials.Whileonlyinveryrarecases,amaterialwillactu- allyshrinkinthetransversedirectionwhencompressed(orexpandwhenstretched)whichwillyielda negativevalueofthePoisson’sratio. TheGandKcanalsobegivenintermsofEandmby: G¼E=2ð1þmÞ ð2:8Þ K¼E=3ð1(cid:2)2mÞ ð2:9Þ Pleasecitethisarticleinpressas:WangWH.Theelasticproperties,elasticmodelsandelasticperspectivesof metallicglasses.ProgMaterSci(2011),doi:10.1016/j.pmatsci.2011.07.001 10 W.H.Wang/ProgressinMaterialsSciencexxx(2011)xxx–xxx Thequantity1/Kiscalledcoefficientofcompressionv: v¼1¼(cid:2)1(cid:2)@V(cid:3) ¼(cid:2)@ðlnVÞ(cid:6)(cid:6)(cid:6) ð2:10Þ K V @P @P (cid:6) T T Theelasticpropertiesofasolidbodyaretemperaturedependent.Deformationscanoccuraccom- paniedbyachangeintemperatureofthebodyeitherasaresultofthedeformationprocessitselfor fromexternalcauses.Among thevarioustypesof deformations, isothermaland adiabaticdeforma- tionsareofimportance.Inisothermaldeformation,thetemperatureTofthebodydoesnotchange, theK,E,G,andmthereforecanbecalledisothermalmoduli.Ifthereisnoexchangeofheatbetween thevariouspartsofthebody,thedeformationiscalledadiabatic,andtheadiabaticmoduliarelabeled tobeE ,K ,G ,andm .Therelationsbetweenadiabaticandisothermalmoduliare[25]: ad ad ad ad 1=K ¼1=K(cid:2)Ta2=C ð2:11Þ ad p G ¼G ð2:12Þ ad E E ¼ ð2:13Þ ad 1(cid:2)ETa2=9C p mþETa2=9C m ¼ p ð2:14Þ ad 1(cid:2)ETa2=9C p whereaisthethermalexpansioncoefficientofthesolid.ThisistheDebye–Grüneiseneffectofther- malexpansiononelasticconstantsforanisolatedconfigurationalstate,inwhichTdependentelastic behaviorarisesfromtheanharmonicityofthevibrationalpartsofthemotionofatoms[27–29].For systemswithpositivethermalexpansiontheadiabaticKishigherthantheisothermalK.Theadiabatic andisothermalshearmoduliarealwaysidentical.Thetimedependentelasticityistermedasviscoelas- ticity[25,30–32]. Inisotropicsolids,basedontheHooke’slaw: (1) Underthetensileor compressive state,E=r/e, wheree isstrain.TheEreflectsthetensileor compressionstrainresistanceofthematerials. (2) Underthetensileorcompressivestate,G=s/c,wheresisshearstress,andcisshearstrain.The Greflectsthetensileorcompressionshearstrainresistanceofthematerials. (3) TheKreflectstheresistancetodilatationcausedbythehydrostaticstressstate: K¼(cid:2)P=ð(cid:2)DV=VÞ¼E=3ð1(cid:2)2mÞ ð2:15Þ (4) ThePoisson’sratio,mcharacterizestherelativevalueofthecompressiveandsheardeformations ofasolid.Formostcrystallinemetalsandalloys,m=1/3[32]. Fortheisotropicsolidsormediums,thereareonlytwoelasticconstantsareindependent,andthe fourelasticconstantscorrelateas[25,32]: E¼3Kð1(cid:2)2mÞ ð2:16Þ E G¼ ð2:17Þ 2ðmþ1Þ Themetallicglassesaremacroscopicallyisotropicinstructureandhomogeneousinphysicaland mechanicalproperties,andtherefore,aboveequationscanbeappliedtometallicglasses. 2.2.Physicaloriginfortheelasticity 2.2.1.Basisforlinearelasticity Thelinearelasticbehaviorismacroscopicmanifestationofatomicbonding.Theelasticconstantsor elasticmoduliareoffundamentalimportanceforamaterial.TheKisdirectlyrelatedtotheexternal forcerequiredtocompressorextendinteratomicdistancesinoppositiontotheinternalforcesthat seektoestablishequilibriuminteratomicdistance.TheGsimilarlyrepresentsadistortionorbending Pleasecitethisarticleinpressas:WangWH.Theelasticproperties,elasticmodelsandelasticperspectivesof metallicglasses.ProgMaterSci(2011),doi:10.1016/j.pmatsci.2011.07.001

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.