submittedtoactaphysicaslovaca 1–4 TheEffectsofVaryingtheCorrelationVolumeonStrangenessProductioninHighEnergy Collisions H.Caines1fortheSTARCollaboration WNSL,PhysicsDepartment,YaleUniversity,NewHaven,CT06520,U.S.A. 6 Preliminary results on strange particle production versus collision centrality are presented. 0 0 STARmeasurementsfrom√sNN=200GeVheavy-ionandp-pcollisionsarecomparedto 2 SPSmeasurements. Asystematicstudyofstrangeparticleproductionispresentedwiththe n aimof establishing how thecorrelation volume of theproduced source affectsthescale of a strange particle creation, including that of the multi-strange baryons. A linear increase of J strangenessproductionwithvolumehasbeensuggestedbythermalmodelsasanindication 0 thatthecollisionregionhasreachedsufficientsizesuchthatsmallvolumeeffectscanbene- 1 glected. AnalysisofpreliminaryresultsfromSTARshowthat,usingtheassumptionthatthe numberofparticipantsislinearlycorrelatedwiththevolume,nosuchregimewasobtained. 1 v Thissuggeststhatthecorrelationvolume”seen”bystrangequarksisnotmerelythatofthe 4 initialoverlap. 1 0 1 PACS:... 0 6 Bystudyingthespectraandyieldsofthestrangeparticlesproducedinheavy-ioncollisionsand 0 / comparingthemtothoseresultingfromelementaryp-pcollisions,inwhichaQGPphaseisnot x expected,we gaininsightinto the propertiesof themedium. While we cannotmeasurea state e - offreequarksandgluonsdirectly,indirectmethodscanbeusedtoprovideevidencethatsucha cl phasedidexistandwhetherthestatewasinchemicaland/orthermalequilibrium.Itispredicted u thatstrangenessissuppressedinp-pdueto a lackofphase space[1]. As thecollisionvolume n increases,thissuppressionreduces.Therelevantvolumeisbelievedtobelinearlyproportionalto : v thenumberofparticipantsinthecollision, Npart . Calculationsalsoshowthatthep-psuppres- h i i sionincreaseswiththestrangenesscontentoftheparticleanddecreaseswithincreasedcollision X energy. Thescale ofthe suppressionis verysensitiveto the temperaturesof the producedsys- r a tems. For large systems this phase space suppression is removedand strangeness is produced freely, resulting in yields that are proportional to the volume. It is then appropriate to apply the Grand Canonical approach, where quantum numbers need only be conserved on average, tocalculatetheyields. Experimentallythescaleofthesuppressionismeasuredviaa so-called enhancementfactor: E(i)=(Yield(i) /N )/(Yield(i) /N ) (1) AA part pp part 1E-mailaddress:[email protected] InstituteofPhysics,SAS,Bratislava,Slovakia 1 2 H.Cainesetal. Detailedpredictionsof the phasespace suppressioneffectsdonotyetexistfor 200GeV colli- sions.However,forcentraleventsusingT=177MeVandµ =29MeVenhancementsofE(Ξ−)=3.05 b andE(Λ)=1.44arecalculated.ForT=170MeVandµ =29MeV,E(Ξ−)=4.5andE(Λ)=1.77[2]. b WepresentherepreliminarydatatakenwiththeSTARexperimentfromAu-Auandp-pcollisions at √sNN= 200 GeV. The pT spectra and yields have been analyzed as a functionof centrality andaGlaubermodelisusedtocalculate N and N foreachcentralitybin[3]. part bin h i h i e to pp10 √sNN = 200 GeV e to pp10 STAR Preliminary RAA3.45 STAR PRELIMINARY v v Au-Au: 0-5% ati Λ ati Λ el el + 3 p+p (TOF+RICH) rNPart Ξ- rNPart Ξp 2.5 ΞΛ+Ξ d/ d/ Yiel Yiel 2 1.5 1 1 11 binary scaling 0.5 participants scaling 0 1 2 3 4 5 p (GeV/c) 1 10 102 1 10 102 T N N Part Part Fig. 1. Preliminary measured enhancements for Fig. 2. Preliminary measurements of the nuclear √sNN=200GeVAu-Aucollisions.Theuncertainties modification factor for baryons. Thedotted curve shownareacombinationofstatisticalandsystematic. representsthechargehadronmeasurement. Fig. 1 shows the preliminary measured enhancementfactors from STAR. The p show a linear scaling with N and almost no enhancement relative to p-p. Meanwhile, the Λ and the part h i Ξ exhibit significant enhancements, even for the most peripheraldata. The expected ordering with strangeness content is also observed, i.e. the Ξ are more enhanced than the Λ. The par- ticles and their anti-particles show similar enhancements - reflecting the near-zero net baryon number. However, neitherthe Λ norΞ show a linear scalingwith N , suggestingthatthe part h i GrandCanonicalregimeisnotreachedevenincentralevents.Incontrast,calculationsofγ ,the s strangenesssaturationfactor,usingathermalmodelshowthatitapproachesunityforthemore centralbinsfromfitstoSTARdata[4].ThesefitsthereforesupporttheuseoftheGrandCanon- icalapproachandsuggestthatthestrangenessyieldsshouldscalewiththecollisionvolume. As theseresultsarecontradictory,weconcludethattherelevantvolumeforstrangenessproduction isnotlinearlyproportionalto N andhencenotpurelyrelatedtothatoftheinitialcollision part h i overlap.ThisideaallowsfortheGrandCanonicalregimetohavebeenreached,assuggestedby thermalmodelfitstogetherwithalackofproportionalityoftheyieldswith N . part h i In order to explore how strangeness production in the central Au-Au data compares to p-p as a function of p , we calculate the nuclear modification factor, R , for baryons. The pre- T AA liminary results are shown in Fig. 2. Previously reported measurementsof R (the ratio of CP central/peripheral),showthatallbaryonsfollowthesamecurveandaresuppressedathighp , T theresultof the modificationofjets bythe medium[5]. OurmeasuredR , however,reveals AA EffectsofVolumeonStrangenessProduction. 3 N*N)qbin1.28 Kφs0 ΛΛ ΞΞ-+ pΩ-+Ω+ e to pp/Be103 NSTAA57R ((ofuplel)n) e to pp/Be103 PAbu--PAbu √√ssNNNN==1270 0 GGeeVV eld/1.6 ativ ativ Yi el el +(N*s1.4 eld r102 eld r102 N)part1.2 Yi Yi d)/(N*q 1 10 10 el N*Yiu/d0.8 (0.6 STAR Preliminary 1 1 Au-Au √sNN=200 GeV STAR Preliminary 0.4 50 100 150 200 250 300 350 1 10 102 1 10 102 Npart dNch/dη dNch/dη Fig.3. PreliminaryAu-Audatascaledasdefinedby Fig. 4. Preliminary RHIC and SPSstrange baryon Eqn.2,excepttheφwhichisscaledby N .All yieldsrelativetothemeasuredp-pyieldsasafunc- part h i dataarenormalizedtothemostcentralbin. tionofdNch/dη.OpensymbolsarefortheSPSdata andclosedsymbolsfromSTAR. a striking dependency on the strangeness content. This can be explained by considering that R usesperipheraleventstodeterminethebaselinespectraandR usesp-pdata. Fig.1has CP AA already shown that the peripheral Au-Au yields are enhanced compared to scaled p-p. Thus, R reveals a combined effect of suppressed p-p production, due to phase space effects, and AA suppressed Au-Au production, due to ”jet quenching”. The R measure only reveals the jet CP quenching.Whatisunexpectedisthatthesoftphysicsphasespacesuppressioninp-pappearsto dominatetheR ratioouttop >3GeV/c. AA T Since the Au-Au strangeness data appear to show that N , or the initial nuclear overlap, part h i is not the appropriate scaling volume for strangeness production we take a closer look at the centrality dependence. Our goal is to try to determine if there is a measurable quantity that isproportionalto the strangenessproductionvolume in whichcase the yieldsasa functionof centralitywillscalelinearly.Fig.1showsthattheanti-protonalonescaleswith N .Acloser part h i lookatthestrangebaryonsrevealsthatasstrangequarksareaddedtotheparticle,thescaledyield deviatesmorestronglyfromalineardependenceon N andinfactcomescloserto N part bin h i h i scaling. Thissuggeststhatthestrangequarkshavealarge N contributionwhereasthelight bin h i u/d quarks scale with N . This idea is supported by R (Fig. 2) which shows that the part AA h i strangebaryonsscale significantlyabovethatofsimple N scalingatintermediatep . We bin T h i thereforeconsideranormalizationthatisdependentonthequarkcontentoftheparticle: C =N N /N +N N /N (2) scaling light part q s bin q ∗ ∗ whereN isthenumberofquarksintheparticle,N isthenumberoflight(uandd)quarks, q light and N is the numberof strange quarks. While this scaling is mostly successful, the φ, which s accordingtoEqn.2shouldscalewith N ,appearstoscalewith N . This N scaling bin part part h i h i h i 4 H.Cainesetal. isusedinFig.3,whileallotherparticlesarescaledbyEqn.2. Itcanbeseenthatthescalingis goodto 20%level. ∼ ThePHOBOScollaborationhasreportedastrongcorrelationbetweenN /dη and N [8]. ch part h i Atwocomponentfit N /dη =n ((1 x) N /2 +x N /2 (3) ch pp part bin − h i h i was used to fit the data. Where npp = 2.29 (1.27) at √sNN= 200 (19.7) GeV and is the mid- rapidity charged particle yield in p(p)-p collisions. x represents the contribution to the yield from hard processes. Independent fits to the data using Eqn. 3, leaving x as a free parame- ter, determined that the 200 GeV and 19.6 GeV Au-Au data resulted in the same value of x. A simultaneous fit gave x = 0.13 0.01 0.05. This suggests that the contributions from ± ± hardprocessesareindependentofcollisionenergy,aresultnotpredictedbypQCDcalculations. Building on the idea from PHOBOS, M. Lisa et al. [9] have recently reported that when the measuredHBT radiiare plottedversusdN /dη1/3, a linearscaling isobserved. Theirreason- ch ingisthatHBTcorrelationmeasurementsarerelatedtothesourcesizeandthereforetheymust havesomedependenceontheinitialgeometricaloverlap,i.e. N 1/3. This, however,does part not give a perfect scaling, which could be due to the fact thath N i 1/3 relates to the origi- part h i nal overlap volume and HBT measurements resolve the sources final state. Since dN /dη is ch closelyrelatedtofinalstatedensity,thisvariable,orratherdN /dη1/3 whichgivesanapprox- ch imatelengthscale, shouldresultina strongercorrelation,andindeeditdoes. Fig. 4showsthe strangenessyieldsscaled bythe p-p(Be) data fromSTAR andNA57 atthe SPS [7]asa func- tionofdN /dη, estimatedusingEqn.3andthecalculatedvaluesof N and N . This ch part bin h i h i resultsin an apparentenergyindependentscaling forthe strange anti-baryonswhich are linear indN /dη. Eqn.3showsthatdN /dηcombinescontributionsfrom N and N which ch ch part bin h i h i seemstobenecessarytodescribestrangenessproductioninA-Acollisions. In summary, strange baryonproductionis not trivially related to the number of participantsin the collision and the numberof binarycollisions seems to havea significant impacton the p T integrated yields. The measured R of these baryons suggests that the strong effect of the AA phase space suppression extends out to high p . Meanwhile, three independent observations T appeartoprovideevidencethatdN /dη,whichiscloselyrelatedtotheentropyofthesystem,is ch theunderlyingdriveformanyoftheglobalobservablesmeasuredinheavy-ioncollisions. References [1] A.Tounsi,A.Mischke,K.Redlich: Nucl.Phys A715(2003)565 [2] K.Redlich:privatecommunication (2005) [3] R.J. Glauber:LecturesonTheoreticalPhysicsVol1(1959)315 [4] O.Barannik(STAR): J.Phys.G 31(2005) S93 [5] M.A.C.Lamont(STAR):J.Phys.G 30(2004) S963 [6] J.Speltz,M.Munhoz,J.Takahashi:Postersatthisconference (2005) [7] F.Antinori(WA97/NA57Collaboration):Nucl.PhysicsA698(2002) 118 [8] B.B.Back,(PHOBOS): Phys.Rev.C70(2004) 021902(R) [9] M.Lisa,S.Pratt,R.Soltz,U.Wiedeman:nucl-ex/0505014 (2005)