The effects of paint-based protective films on the actual temporal water-side performance characteristics of steam surface condenser tubes by John Goodenough Dissertation presented for the degree of Doctor of Philosophy in the Faculty of Engineering at Stellenbosch University Supervisor: Prof Hanno Carl Rudolf Reuter Co-supervisor: Dr Mike Owen March 2017 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this dissertation electronically, I declare that the entirety of the workcontainedthereinismyown,originalwork,thatIamthesoleauthorthereof (savetotheextentexplicitlyotherwisestated),thatreproductionandpublication thereofbyStellenboschUniversitywillnotinfringeanythirdpartyrightsandthat Ihavenotpreviouslyinitsentiretyorinpartsubmitteditforobtaininganyqual- ification. Date: ..............M..a.r.c.h. 2.0..1.7........... Copyright©2017StellenboschUniversity Allrightsreserved. i Stellenbosch University https://scholar.sun.ac.za Abstract Paint-based protective films (PPFs) are applied to the internal surface of steam surface condenser tubes to mitigate corrosion and erosion. The performance impactresultingfromfresh-waterfoulingonthesePPFsisexperimentallyinves- tigatedusingactualcoolingwaterfromathermalcoal-firedpowerstation. Four different paint types are tested alongside unmodified stainless steel, titanium, andbrasstubesfordirectcomparison,usingapurpose-builttestapparatusfea- turingsixco-currentflowdouble-pipeheatexchangersarrangedinparallel. Ex- posure times vary between 85 days and 280 days providing novel information pertainingtothesePPFsintermsoftheirperformanceovertime. Coolingwaterexitingthecondenserisdrawnfromatake-offvalvefittedbe- forethecoolingductentersthewet-cooledcoolingtower,andpassesthroughthe testapparatusat4L/s. Thecoolingwaterpassesoncethrougheachtesttubeat thecondenserdesignvelocitybeforebeingreturnedtothecoolingtowerpond. Each tube is heated using water instead of steam, to provide consistent and re- peatableouterconvectionconditions. Bymeasuringatotalof24bulkfluidtem- peraturesand12volumetricflowrates,theheattransfer,andhencefoulingfac- tor,foreachtubeisdeterminedduringtests. In order of decreasing predominance: biological fouling, precipitation foul- ing (scaling), and particulate fouling (deposition) are identified on all the test tubes. The unmodified admiralty brass tube provides the best overall perfor- mancebecauseitscopperionsretardthebiologicalfoulingrate.Thenon-biocidal PPFs experience similar fouling to all the non-copper alloy tubes tested, where their asymptotic fouling factors are almost five times greater than the copper- bearing alloy tested. The data gained using the testing techniques described hereinallowsthedominantfoulingmechanismtobeidentifiedandcanbeused to better design water treatment management, as well as direct further PPF de- velopment towards reducing biological fouling tendencies. One of the biocidal PPFs that is tested reaches a lower fouling factor than an unmodified stainless steeltubeafter85daysofexposureunderthesameconditions. Theseresultsare comparedtotheplant’scondenserfoulingfactor,calculatedusingaonedimen- sionalcondensermodel.Theagreementbetweenthefoulingfactormeasuredon single tubes compared to the fouling factor of the condenser validates the test- ing and further means that the fouling data can be used to enhance condenser designandmanagementusingPPFs. Keywords: Paint,coating,condenser,fouling,biofouling,performance,corrosion,thermal conductivity ii Stellenbosch University https://scholar.sun.ac.za Uittreksel Verf-gebaseerdebeskermendefilm(VBF)wordtoegepasaaninterneoppervlak- tes van stoom oppervlakte kondenser buise om roes te versag. Die prestasie impak gevolg van vars-water aangroei op die VBF is eksperimenteel ondersoek deurgebruikvanwerklikeverkoelingswatervantermiesesteenkoolkragstasie. Vier verkillende verf tiepes word getoets langs onveranderde vlekvrye staal, ti- tanium en koper buise vir direkte vergelyking, deur gebruik van doel-geboude toets aparatus wat ses mede-huidige vloei dubbel pyp hitte uitruilers uitgele in parallel. Blootstellingtyekanverskiltussen85daeen280daeverskafuniekein- formasiemetbetrekkingtotdieVBFintermevandieprestasieoortydterwyldie onderwerpvandieindentiesewaterwatindienservaarword. Verkoelingswaterwatdiekondenserverlaat,wordvertrekvan’nuitlaatklep wattoegerusisvoordieverkoelingsuitlaatpypdienat-verkoeldeverkoelingstor- ing in loop, en loop deur die toets aparatus teen 4L/s. Die verkoelings water loop een keer deur elke toets buis van die kondenser ontwerpde snelheid voor ditteruggekeerwordnadieverkoelingstoringdam. Elkebuisisverhitdeurwa- terinplaasvanstoom,om’nkonstanteenvertroubarebuitekonveksietoestand tevoorsien.Deur’ntotaalvan24grootmaatvloeistoftemperatureen12volume- triesefloeikoers,diehitteoordrag,envandaardieaangroeifaktorvanelkebuis wordbepaalgeduirendedietoets. Biologieseaangroei,skalering,endeeljies(ingesteldheid)wordgeidentifiseer asdieoorheersendemeganismeopaldietoetsbuise,hoeweldieonveranderde Admiralty braas buise voer die beste algehele prestasie want die koper ione be- woonbakterelesellulereasemhaling.Dienie-biocidenVBFervaringhetsoortge- lykaangroeiviraldienie-koperallooibuisewatgetoetswas, waarhulleasimp- totiese aangroei faktore in orde was vyf keer groter as die koper-draende allooi wat getoets was. Die data laat toe dat die dominante aangroei meganisme gei- dentifiseer word en dan beter gebruik kan word vir beter ontwerpde water be- handelingbeheer,sowelasdirekverdereVBFontwikkelingvirdievermindering vanbiologieseaangroeineigings. EenvandiebiocidenVBFwatgetoetswas,het ’n laer biologiesie aangroei bereik as ’n nie geverfde stainless steel buise na 85 daeonderdieselfdeblootstelling. Hierdieresultateisvergelykmetdiekragstasie sekondenseraangroeifaktor,watbepaalisdeur’neendimensionellekondenser model. Dieooreenkomstussendieaangroeifaktorwatgemeetisopenklebuise invergelykingvandieaangroeifaktorvandiekondenserbevestigdietoets,endie datakandusgebruikwordvirdieverbeteringvankondenserontwerpenbestuur, deurdiegebruikvanVBF. Sleutelwoorde:verf,laag,kondenser,aangroei,biologieseaangroei,pre,roes,gradering,ter- miesegeleiding iii Stellenbosch University https://scholar.sun.ac.za Acknowledgements MydeepestgratitudeisgiventomysupervisorandmentorProfessorHannoCarl Rudolf Reuter. Thank you for your continued dedication, exceptional support, andleadershipthroughouttheyearsofourfriendship. Yourteachingisextraor- dinaryandIshallalwaysendeavortoapplytheknowledgeyouhavepassedonto me. MyparentshavemadethisprojectpossibleandIcouldnothaveachievedany ofthiswithoutthem.Myfatherhasguidedmealonganamazingjourney,lighting the way ahead. Thank you for believing in us and never giving up. My mother, with her ironclad faith in all our efforts, has been a stronghold in any adversity. To my sister and brother-in-law, thank you and I appreciate your never-ending help,encouragementandsupport. Membersofthepowerutilitywhowereinstrumentalinthisresearcharedeeply appreciated. In particular Dhiraj Maharaj, the plant station manager who sup- portedthisprojectfromitsinception.LouwNagal,KeithNorthcott,Kelley-Reynolds Clausene,FrancoisdePreez,AlainMicheals,andGontseMathibediareexpressly thankedfortheircontributions. Tomyco-supervisorDrMichealOwen,thankyouforyourexceptionalguid- ance,aswellasyourdeterminedsupportinseeingthisprojecttocompletion. iv Stellenbosch University https://scholar.sun.ac.za Contents Page Declaration i Abstract ii Uittreksel iii Acknowledgements iv Contents v Listoffigures viii Listoftables x Nomenclature xiii 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Foulingofheattransfersurfaces . . . . . . . . . . . . . . . . . . . . . 6 1.3 Fieldtestingofthewatersidefoulingofcondensertubesatather- malpowerplant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Definitionsandpresuppositions . . . . . . . . . . . . . . . . . . . . 12 1.5 Contextofthisresearch . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.6 Researchobjectivesandmotivation . . . . . . . . . . . . . . . . . . 13 1.7 Thesisoutline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 Literaturesurvey 17 2.1 Characteristicsofcondensertubematerials . . . . . . . . . . . . . . 17 2.2 PerformancetestingofPPFsinheatexchangerapplications . . . . 20 2.3 Foulingmitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Measuringthefoulingresistance . . . . . . . . . . . . . . . . . . . . 26 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 Experimentation 32 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2 Apparatusdescription . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 v Stellenbosch University https://scholar.sun.ac.za CONTENTS 3.3 Measurementtechniques . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4 Operationandcontrol. . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.6 Performancemeasures: thefoulingfactorandcleanlinessfactor . 49 3.7 Foulingmodeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.8 Calibrationandvalidation . . . . . . . . . . . . . . . . . . . . . . . . 52 3.9 Uncertaintyanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.10 Dataprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.11 Experimentalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4 Relatingtheexperimentalresultsobtainedonsingletesttubestothe actualcondenserperformance 79 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2 Theoryforcondensationonasinglehorizontalcondensertube . . 80 4.3 Condensationphenomenainsideasteamsurfacecondenser . . . 81 4.4 Designperformancefactor . . . . . . . . . . . . . . . . . . . . . . . . 82 4.5 Actualcondenserperformance . . . . . . . . . . . . . . . . . . . . . 85 4.6 ImpactonthecondenserperformanceandPPFsinthecondenser lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5 Conclusionsandrecommendations 94 5.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.2 Recommendations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Listofreferences 98 Appendices 106 A Thermophysicalpropertydata 107 A.1 Thermophysicalpropertiesofsaturatedwater . . . . . . . . . . . . 107 A.2 Thermophysicalpropertiesofsaturatedwatervapor . . . . . . . . 108 B Supplementarydataandphotographs 109 B.1 Testfacilityspecifications. . . . . . . . . . . . . . . . . . . . . . . . . 109 B.2 Supplementaryphotographs . . . . . . . . . . . . . . . . . . . . . . . 109 C Calibrationsandcommissioningtests 114 C.1 Temperatureprobecalibrationandcertification . . . . . . . . . . . 114 C.2 Regressioncoefficientsresultingfromtheannularconvectionco- efficienttesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 C.3 Conductivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 C.4 Flowmeteringcalibrationresults . . . . . . . . . . . . . . . . . . . . 128 C.5 ComparisonofannularNusseltnumbers . . . . . . . . . . . . . . . 129 vi Stellenbosch University https://scholar.sun.ac.za CONTENTS D Experimentaldata 130 D.1 Presentationofdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 D.2 Rawdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 D.3 Processedconvectiondata . . . . . . . . . . . . . . . . . . . . . . . . 147 D.4 AnnularNusseltnumbers . . . . . . . . . . . . . . . . . . . . . . . . 150 D.5 Heattransferdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 D.6 Bacterialcounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 D.7 ComparisonofR andR fromtestBandtestC . . . . . . . . . . 161 f f∗ E Samplecalculations 162 E.1 Determiningthefrictionfactoratthestartoftesting . . . . . . . . . 162 E.2 Determiningthefoulingfactor . . . . . . . . . . . . . . . . . . . . . 164 F Wateranalysis 170 F.1 Coolingwateranalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 170 vii Stellenbosch University https://scholar.sun.ac.za List of figures Page 1.1 Temperature-entropydiagramoftheRankinepowercycle . . . . . . . 2 1.2 Simplifiedendviewofcondenser . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Crosssectionofcondensertube . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Schematicofanopenrecirculatingcoolingsystemwithawet-cooled naturaldraftcoolingtower . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Influence of bulk water temperature: measured log rate of biofilm thicknessinanexperimentalflowsystem . . . . . . . . . . . . . . . . . 9 1.6 TimelineofthehistoryofPPFsusedattheselectedthermalpowerplant 11 2.1 Overallheattransfercoefficientchangewithtimeforseveralcondenser tubealloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Schematicofpilotplant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1 Apparatusinstallationinrelationtotheplantcoolingwaternetwork . 33 3.2 Illustrationcomparingheattransferconditionswithinthecondenser andthedouble-pipeheatexchanger . . . . . . . . . . . . . . . . . . . . 34 3.3 Photographoftheapparatushousing . . . . . . . . . . . . . . . . . . . . 35 3.4 Simplified front view of the apparatus showing hexagonal arrange- mentoftheheatexchangers . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5 Photographs showing a centralizing disc inside the heat exchanger unionatitsmidpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.6 Explodedviewofatubegland . . . . . . . . . . . . . . . . . . . . . . . . 36 3.7 Pipingandinstrumentationdiagramshowingvariablemeasurement locationsandset-pointflowrates . . . . . . . . . . . . . . . . . . . . . . 38 3.8 Perspectiveviewofheatexchangers. . . . . . . . . . . . . . . . . . . . . 39 3.9 Photographshowingastaticpressuretapping . . . . . . . . . . . . . . . 41 3.10 Schematicofaheatexchanger . . . . . . . . . . . . . . . . . . . . . . . . 46 3.11 Diagramshowingthelinkpipeinstalledduringnoloadtesting . . . . 52 3.12 Measuredflowratesusingtheultrasonicflowmetercomparedtothe referenceelectromagneticflowmeter . . . . . . . . . . . . . . . . . . . . 53 3.13 Flowchartshowingtheexperimentalprocedure . . . . . . . . . . . . . 56 3.14 MeasuredfrictionfactorsfromtestA . . . . . . . . . . . . . . . . . . . . 61 3.15 MeasuredfoulingfactorsfromtestA . . . . . . . . . . . . . . . . . . . . 62 3.16 PhotographofTT3Aafterlongitudinalsectioning . . . . . . . . . . . . 63 3.17 MicrographofTT3Aaftercrosssectioningshowingdezincification . . 63 viii Stellenbosch University https://scholar.sun.ac.za LISTOFFIGURES 3.18 Measuredfoulingfactorscomparedusingequations(3.24)and(3.30). 64 3.19 MeasuredfrictionfactorsfromtestB . . . . . . . . . . . . . . . . . . . . 66 3.20 BulkfoulingfluidvelocityfromtestB . . . . . . . . . . . . . . . . . . . . 67 3.21 MeasuredfoulingfactorsfromtestB . . . . . . . . . . . . . . . . . . . . 68 3.22 CleanlinessfactorversustimemeasuredduringtestB . . . . . . . . . . 70 3.23 Bacterialcountsafter126daysofexposure . . . . . . . . . . . . . . . . 71 3.24 QEMSCAN®cross-sectionalmicrographsofstainlesssteeltubes:TT1B andTT2B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.25 QEMSCAN®cross-sectionalmicrographsoftitaniumtubes:TT4Band TT5B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.26 Dwelltimesnecessaryforremovaloffoulantsoneachtubeusinghigh pressurewaterlancing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.27 MeasuredfrictionfactorsfromtestC . . . . . . . . . . . . . . . . . . . . 75 3.28 MeasuredfoulingfactorsfromtestC . . . . . . . . . . . . . . . . . . . . 76 3.29 CleanlinessfactorversustimemeasuredduringtestC . . . . . . . . . . 77 4.1 Simplifiedillustrationofthesteam-waterpowercycleusedbythepower plant(designvaluesnormalizedper1MW ) . . . . . . . . . . . . . . . . 80 e 4.2 Performancefactorasafunctionofsteamflow . . . . . . . . . . . . . . 84 4.3 Estimatedfoulingfactoroftheplantcondenser . . . . . . . . . . . . . . 85 4.4 Modelcomparisontoactualplantdata . . . . . . . . . . . . . . . . . . . 86 4.5 CleanlinessfactoroftheplantcondensercomparedtotesttubeTT1B 87 4.6 Comparisonoftheexpectedsteamtemperatureforvarioustubeoptions 89 4.7 Measuredhotwelltemperature . . . . . . . . . . . . . . . . . . . . . . . 90 4.8 DecisiontreeforwhentoapplyPPFsinthecondenserlifecycle . . . . 91 B.1 Assembledheatexchangersbeforeplacementinthecontainer . . . . 110 B.2 Hotpumpshowingallwettedpartsareplastic . . . . . . . . . . . . . . 110 B.3 Photographduringinitialconstructionofapparatusshowingthesize ofthecontainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 B.4 Transportofapparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 B.5 Apparatusafterinstallationon-site . . . . . . . . . . . . . . . . . . . . . 112 B.6 Photographofblockedstrainer . . . . . . . . . . . . . . . . . . . . . . . 112 B.7 Y-strainersarrangedinparalleltoenableonlinecleaning . . . . . . . . 113 C.1 MeasuredNusseltnumbersversustheoreticalvalues . . . . . . . . . . 129 ix
Description: