ebook img

The effects of paint-based protective films on the actual temporal water-side performance ... PDF

187 Pages·2017·10.91 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The effects of paint-based protective films on the actual temporal water-side performance ...

The effects of paint-based protective films on the actual temporal water-side performance characteristics of steam surface condenser tubes by John Goodenough Dissertation presented for the degree of Doctor of Philosophy in the Faculty of Engineering at Stellenbosch University Supervisor: Prof Hanno Carl Rudolf Reuter Co-supervisor: Dr Mike Owen March 2017 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this dissertation electronically, I declare that the entirety of the workcontainedthereinismyown,originalwork,thatIamthesoleauthorthereof (savetotheextentexplicitlyotherwisestated),thatreproductionandpublication thereofbyStellenboschUniversitywillnotinfringeanythirdpartyrightsandthat Ihavenotpreviouslyinitsentiretyorinpartsubmitteditforobtaininganyqual- ification. Date: ..............M..a.r.c.h. 2.0..1.7........... Copyright©2017StellenboschUniversity Allrightsreserved. i Stellenbosch University https://scholar.sun.ac.za Abstract Paint-based protective films (PPFs) are applied to the internal surface of steam surface condenser tubes to mitigate corrosion and erosion. The performance impactresultingfromfresh-waterfoulingonthesePPFsisexperimentallyinves- tigatedusingactualcoolingwaterfromathermalcoal-firedpowerstation. Four different paint types are tested alongside unmodified stainless steel, titanium, andbrasstubesfordirectcomparison,usingapurpose-builttestapparatusfea- turingsixco-currentflowdouble-pipeheatexchangersarrangedinparallel. Ex- posure times vary between 85 days and 280 days providing novel information pertainingtothesePPFsintermsoftheirperformanceovertime. Coolingwaterexitingthecondenserisdrawnfromatake-offvalvefittedbe- forethecoolingductentersthewet-cooledcoolingtower,andpassesthroughthe testapparatusat4L/s. Thecoolingwaterpassesoncethrougheachtesttubeat thecondenserdesignvelocitybeforebeingreturnedtothecoolingtowerpond. Each tube is heated using water instead of steam, to provide consistent and re- peatableouterconvectionconditions. Bymeasuringatotalof24bulkfluidtem- peraturesand12volumetricflowrates,theheattransfer,andhencefoulingfac- tor,foreachtubeisdeterminedduringtests. In order of decreasing predominance: biological fouling, precipitation foul- ing (scaling), and particulate fouling (deposition) are identified on all the test tubes. The unmodified admiralty brass tube provides the best overall perfor- mancebecauseitscopperionsretardthebiologicalfoulingrate.Thenon-biocidal PPFs experience similar fouling to all the non-copper alloy tubes tested, where their asymptotic fouling factors are almost five times greater than the copper- bearing alloy tested. The data gained using the testing techniques described hereinallowsthedominantfoulingmechanismtobeidentifiedandcanbeused to better design water treatment management, as well as direct further PPF de- velopment towards reducing biological fouling tendencies. One of the biocidal PPFs that is tested reaches a lower fouling factor than an unmodified stainless steeltubeafter85daysofexposureunderthesameconditions. Theseresultsare comparedtotheplant’scondenserfoulingfactor,calculatedusingaonedimen- sionalcondensermodel.Theagreementbetweenthefoulingfactormeasuredon single tubes compared to the fouling factor of the condenser validates the test- ing and further means that the fouling data can be used to enhance condenser designandmanagementusingPPFs. Keywords: Paint,coating,condenser,fouling,biofouling,performance,corrosion,thermal conductivity ii Stellenbosch University https://scholar.sun.ac.za Uittreksel Verf-gebaseerdebeskermendefilm(VBF)wordtoegepasaaninterneoppervlak- tes van stoom oppervlakte kondenser buise om roes te versag. Die prestasie impak gevolg van vars-water aangroei op die VBF is eksperimenteel ondersoek deurgebruikvanwerklikeverkoelingswatervantermiesesteenkoolkragstasie. Vier verkillende verf tiepes word getoets langs onveranderde vlekvrye staal, ti- tanium en koper buise vir direkte vergelyking, deur gebruik van doel-geboude toets aparatus wat ses mede-huidige vloei dubbel pyp hitte uitruilers uitgele in parallel. Blootstellingtyekanverskiltussen85daeen280daeverskafuniekein- formasiemetbetrekkingtotdieVBFintermevandieprestasieoortydterwyldie onderwerpvandieindentiesewaterwatindienservaarword. Verkoelingswaterwatdiekondenserverlaat,wordvertrekvan’nuitlaatklep wattoegerusisvoordieverkoelingsuitlaatpypdienat-verkoeldeverkoelingstor- ing in loop, en loop deur die toets aparatus teen 4L/s. Die verkoelings water loop een keer deur elke toets buis van die kondenser ontwerpde snelheid voor ditteruggekeerwordnadieverkoelingstoringdam. Elkebuisisverhitdeurwa- terinplaasvanstoom,om’nkonstanteenvertroubarebuitekonveksietoestand tevoorsien.Deur’ntotaalvan24grootmaatvloeistoftemperatureen12volume- triesefloeikoers,diehitteoordrag,envandaardieaangroeifaktorvanelkebuis wordbepaalgeduirendedietoets. Biologieseaangroei,skalering,endeeljies(ingesteldheid)wordgeidentifiseer asdieoorheersendemeganismeopaldietoetsbuise,hoeweldieonveranderde Admiralty braas buise voer die beste algehele prestasie want die koper ione be- woonbakterelesellulereasemhaling.Dienie-biocidenVBFervaringhetsoortge- lykaangroeiviraldienie-koperallooibuisewatgetoetswas, waarhulleasimp- totiese aangroei faktore in orde was vyf keer groter as die koper-draende allooi wat getoets was. Die data laat toe dat die dominante aangroei meganisme gei- dentifiseer word en dan beter gebruik kan word vir beter ontwerpde water be- handelingbeheer,sowelasdirekverdereVBFontwikkelingvirdievermindering vanbiologieseaangroeineigings. EenvandiebiocidenVBFwatgetoetswas,het ’n laer biologiesie aangroei bereik as ’n nie geverfde stainless steel buise na 85 daeonderdieselfdeblootstelling. Hierdieresultateisvergelykmetdiekragstasie sekondenseraangroeifaktor,watbepaalisdeur’neendimensionellekondenser model. Dieooreenkomstussendieaangroeifaktorwatgemeetisopenklebuise invergelykingvandieaangroeifaktorvandiekondenserbevestigdietoets,endie datakandusgebruikwordvirdieverbeteringvankondenserontwerpenbestuur, deurdiegebruikvanVBF. Sleutelwoorde:verf,laag,kondenser,aangroei,biologieseaangroei,pre,roes,gradering,ter- miesegeleiding iii Stellenbosch University https://scholar.sun.ac.za Acknowledgements MydeepestgratitudeisgiventomysupervisorandmentorProfessorHannoCarl Rudolf Reuter. Thank you for your continued dedication, exceptional support, andleadershipthroughouttheyearsofourfriendship. Yourteachingisextraor- dinaryandIshallalwaysendeavortoapplytheknowledgeyouhavepassedonto me. MyparentshavemadethisprojectpossibleandIcouldnothaveachievedany ofthiswithoutthem.Myfatherhasguidedmealonganamazingjourney,lighting the way ahead. Thank you for believing in us and never giving up. My mother, with her ironclad faith in all our efforts, has been a stronghold in any adversity. To my sister and brother-in-law, thank you and I appreciate your never-ending help,encouragementandsupport. Membersofthepowerutilitywhowereinstrumentalinthisresearcharedeeply appreciated. In particular Dhiraj Maharaj, the plant station manager who sup- portedthisprojectfromitsinception.LouwNagal,KeithNorthcott,Kelley-Reynolds Clausene,FrancoisdePreez,AlainMicheals,andGontseMathibediareexpressly thankedfortheircontributions. Tomyco-supervisorDrMichealOwen,thankyouforyourexceptionalguid- ance,aswellasyourdeterminedsupportinseeingthisprojecttocompletion. iv Stellenbosch University https://scholar.sun.ac.za Contents Page Declaration i Abstract ii Uittreksel iii Acknowledgements iv Contents v Listoffigures viii Listoftables x Nomenclature xiii 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Foulingofheattransfersurfaces . . . . . . . . . . . . . . . . . . . . . 6 1.3 Fieldtestingofthewatersidefoulingofcondensertubesatather- malpowerplant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Definitionsandpresuppositions . . . . . . . . . . . . . . . . . . . . 12 1.5 Contextofthisresearch . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.6 Researchobjectivesandmotivation . . . . . . . . . . . . . . . . . . 13 1.7 Thesisoutline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 Literaturesurvey 17 2.1 Characteristicsofcondensertubematerials . . . . . . . . . . . . . . 17 2.2 PerformancetestingofPPFsinheatexchangerapplications . . . . 20 2.3 Foulingmitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Measuringthefoulingresistance . . . . . . . . . . . . . . . . . . . . 26 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 Experimentation 32 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2 Apparatusdescription . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 v Stellenbosch University https://scholar.sun.ac.za CONTENTS 3.3 Measurementtechniques . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4 Operationandcontrol. . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.6 Performancemeasures: thefoulingfactorandcleanlinessfactor . 49 3.7 Foulingmodeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.8 Calibrationandvalidation . . . . . . . . . . . . . . . . . . . . . . . . 52 3.9 Uncertaintyanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.10 Dataprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.11 Experimentalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4 Relatingtheexperimentalresultsobtainedonsingletesttubestothe actualcondenserperformance 79 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2 Theoryforcondensationonasinglehorizontalcondensertube . . 80 4.3 Condensationphenomenainsideasteamsurfacecondenser . . . 81 4.4 Designperformancefactor . . . . . . . . . . . . . . . . . . . . . . . . 82 4.5 Actualcondenserperformance . . . . . . . . . . . . . . . . . . . . . 85 4.6 ImpactonthecondenserperformanceandPPFsinthecondenser lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5 Conclusionsandrecommendations 94 5.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.2 Recommendations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Listofreferences 98 Appendices 106 A Thermophysicalpropertydata 107 A.1 Thermophysicalpropertiesofsaturatedwater . . . . . . . . . . . . 107 A.2 Thermophysicalpropertiesofsaturatedwatervapor . . . . . . . . 108 B Supplementarydataandphotographs 109 B.1 Testfacilityspecifications. . . . . . . . . . . . . . . . . . . . . . . . . 109 B.2 Supplementaryphotographs . . . . . . . . . . . . . . . . . . . . . . . 109 C Calibrationsandcommissioningtests 114 C.1 Temperatureprobecalibrationandcertification . . . . . . . . . . . 114 C.2 Regressioncoefficientsresultingfromtheannularconvectionco- efficienttesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 C.3 Conductivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 C.4 Flowmeteringcalibrationresults . . . . . . . . . . . . . . . . . . . . 128 C.5 ComparisonofannularNusseltnumbers . . . . . . . . . . . . . . . 129 vi Stellenbosch University https://scholar.sun.ac.za CONTENTS D Experimentaldata 130 D.1 Presentationofdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 D.2 Rawdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 D.3 Processedconvectiondata . . . . . . . . . . . . . . . . . . . . . . . . 147 D.4 AnnularNusseltnumbers . . . . . . . . . . . . . . . . . . . . . . . . 150 D.5 Heattransferdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 D.6 Bacterialcounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 D.7 ComparisonofR andR fromtestBandtestC . . . . . . . . . . 161 f f∗ E Samplecalculations 162 E.1 Determiningthefrictionfactoratthestartoftesting . . . . . . . . . 162 E.2 Determiningthefoulingfactor . . . . . . . . . . . . . . . . . . . . . 164 F Wateranalysis 170 F.1 Coolingwateranalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 170 vii Stellenbosch University https://scholar.sun.ac.za List of figures Page 1.1 Temperature-entropydiagramoftheRankinepowercycle . . . . . . . 2 1.2 Simplifiedendviewofcondenser . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Crosssectionofcondensertube . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Schematicofanopenrecirculatingcoolingsystemwithawet-cooled naturaldraftcoolingtower . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Influence of bulk water temperature: measured log rate of biofilm thicknessinanexperimentalflowsystem . . . . . . . . . . . . . . . . . 9 1.6 TimelineofthehistoryofPPFsusedattheselectedthermalpowerplant 11 2.1 Overallheattransfercoefficientchangewithtimeforseveralcondenser tubealloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Schematicofpilotplant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1 Apparatusinstallationinrelationtotheplantcoolingwaternetwork . 33 3.2 Illustrationcomparingheattransferconditionswithinthecondenser andthedouble-pipeheatexchanger . . . . . . . . . . . . . . . . . . . . 34 3.3 Photographoftheapparatushousing . . . . . . . . . . . . . . . . . . . . 35 3.4 Simplified front view of the apparatus showing hexagonal arrange- mentoftheheatexchangers . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5 Photographs showing a centralizing disc inside the heat exchanger unionatitsmidpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.6 Explodedviewofatubegland . . . . . . . . . . . . . . . . . . . . . . . . 36 3.7 Pipingandinstrumentationdiagramshowingvariablemeasurement locationsandset-pointflowrates . . . . . . . . . . . . . . . . . . . . . . 38 3.8 Perspectiveviewofheatexchangers. . . . . . . . . . . . . . . . . . . . . 39 3.9 Photographshowingastaticpressuretapping . . . . . . . . . . . . . . . 41 3.10 Schematicofaheatexchanger . . . . . . . . . . . . . . . . . . . . . . . . 46 3.11 Diagramshowingthelinkpipeinstalledduringnoloadtesting . . . . 52 3.12 Measuredflowratesusingtheultrasonicflowmetercomparedtothe referenceelectromagneticflowmeter . . . . . . . . . . . . . . . . . . . . 53 3.13 Flowchartshowingtheexperimentalprocedure . . . . . . . . . . . . . 56 3.14 MeasuredfrictionfactorsfromtestA . . . . . . . . . . . . . . . . . . . . 61 3.15 MeasuredfoulingfactorsfromtestA . . . . . . . . . . . . . . . . . . . . 62 3.16 PhotographofTT3Aafterlongitudinalsectioning . . . . . . . . . . . . 63 3.17 MicrographofTT3Aaftercrosssectioningshowingdezincification . . 63 viii Stellenbosch University https://scholar.sun.ac.za LISTOFFIGURES 3.18 Measuredfoulingfactorscomparedusingequations(3.24)and(3.30). 64 3.19 MeasuredfrictionfactorsfromtestB . . . . . . . . . . . . . . . . . . . . 66 3.20 BulkfoulingfluidvelocityfromtestB . . . . . . . . . . . . . . . . . . . . 67 3.21 MeasuredfoulingfactorsfromtestB . . . . . . . . . . . . . . . . . . . . 68 3.22 CleanlinessfactorversustimemeasuredduringtestB . . . . . . . . . . 70 3.23 Bacterialcountsafter126daysofexposure . . . . . . . . . . . . . . . . 71 3.24 QEMSCAN®cross-sectionalmicrographsofstainlesssteeltubes:TT1B andTT2B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.25 QEMSCAN®cross-sectionalmicrographsoftitaniumtubes:TT4Band TT5B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.26 Dwelltimesnecessaryforremovaloffoulantsoneachtubeusinghigh pressurewaterlancing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.27 MeasuredfrictionfactorsfromtestC . . . . . . . . . . . . . . . . . . . . 75 3.28 MeasuredfoulingfactorsfromtestC . . . . . . . . . . . . . . . . . . . . 76 3.29 CleanlinessfactorversustimemeasuredduringtestC . . . . . . . . . . 77 4.1 Simplifiedillustrationofthesteam-waterpowercycleusedbythepower plant(designvaluesnormalizedper1MW ) . . . . . . . . . . . . . . . . 80 e 4.2 Performancefactorasafunctionofsteamflow . . . . . . . . . . . . . . 84 4.3 Estimatedfoulingfactoroftheplantcondenser . . . . . . . . . . . . . . 85 4.4 Modelcomparisontoactualplantdata . . . . . . . . . . . . . . . . . . . 86 4.5 CleanlinessfactoroftheplantcondensercomparedtotesttubeTT1B 87 4.6 Comparisonoftheexpectedsteamtemperatureforvarioustubeoptions 89 4.7 Measuredhotwelltemperature . . . . . . . . . . . . . . . . . . . . . . . 90 4.8 DecisiontreeforwhentoapplyPPFsinthecondenserlifecycle . . . . 91 B.1 Assembledheatexchangersbeforeplacementinthecontainer . . . . 110 B.2 Hotpumpshowingallwettedpartsareplastic . . . . . . . . . . . . . . 110 B.3 Photographduringinitialconstructionofapparatusshowingthesize ofthecontainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 B.4 Transportofapparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 B.5 Apparatusafterinstallationon-site . . . . . . . . . . . . . . . . . . . . . 112 B.6 Photographofblockedstrainer . . . . . . . . . . . . . . . . . . . . . . . 112 B.7 Y-strainersarrangedinparalleltoenableonlinecleaning . . . . . . . . 113 C.1 MeasuredNusseltnumbersversustheoreticalvalues . . . . . . . . . . 129 ix

Description:
plot the relative fouling between copper alloys and stainless steel in figure 2.1. cleanliness factor (equation 3.25) is plotted against time. a church window steam condenser for different operational conditions using three.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.