MNRAS000,1–17(2016) Preprint12January2017 CompiledusingMNRASLATEXstylefilev3.0 The effect of ram pressure on the molecular gas of galaxies: three case studies in the Virgo cluster Bumhyun Lee1(cid:63), Aeree Chung1,2,3†, Stephanie Tonnesen4, Jeffrey D. P. Kenney5, O. Ivy Wong6, B. Vollmer7, Glen R. Petitpas8, Hugh H. Crowl9, Jacqueline van Gorkom10 1DepartmentofAstronomy,YonseiUniversity,50Yonsei-ro,Seodaemun-gu,Seoul03722,Korea 7 2YonseiUniversityObservatory,YonseiUniversity,50Yonsei-ro,Seodaemun-gu,Seoul03722,Korea 1 3JointALMAObservatory,AlonsodeCórdova3107Vitacura,Santiago,Chile 0 4CarnegieObservatories,813SantaBarbaraSt,Pasadena,CA,91101 2 5YaleUniversityAstronomyDepartment,POBox208101,NewHaven,CT06520-8101,USA 6InternationalCentreforRadioAstronomyResearch,TheUniversityofWesternAustraliaM468,35StirlingHighway,Crawley,WA6009,Australia n 7CDS,ObservatoireastronomiquedeStrasbourg,UniversitédeStrasbourg,CNRS,UMR7550,11ruedel’Université,F-67000Strasbourg,France a 8Harvard-SmithsonianCenterforAstrophysics,60GardenStreet,Cambridge,MA02138,USA J 9DivisionofScienceandMathematics,BenningtonCollege,1CollegeDrive,Bennington,VT05201,USA 0 10DepartmentofAstronomy,ColumbiaUniversity,MailCode5246,550W120thSt,NewYork,NY10027,USA 1 ] A AcceptedtoMNRAS G . h ABSTRACT p Wepresent12CO(2–1)dataofthreeVirgospirals–NGC4330,NGC4402andNGC4522 - o obtained using the Submillimeter Array. These three galaxies show clear evidence of ram r pressurestrippingduetotheclustermediumasfoundinpreviousHIimagingstudies.Using t s high-resolution CO data, we investigate how the properties of the inner molecular gas disc a change while a galaxy is undergoing HI stripping in the cluster. At given sensitivity limits, [ wedonotfindanyclearsignsofmoleculargasstripping.However,bothitsmorphologyand 1 kinematicsappeartobequitedisturbedasthoseofHI.Morphologicalpeculiaritiespresentin v the molecular and atomic gas are closely related with each other, suggesting that molecular 0 gascanbealsoaffectedbystrongICMpressureevenifitisnotstripped.COisfoundtobe 5 modestly enhanced along the upstream sides in these galaxies, which may change the local 7 starformationactivityinthedisc.Indeed,thedistributionofHα emission,atracerofrecent 2 starformation,wellcoincideswiththatofthemoleculargas,revealingenhancementsnearthe 0 localCOpeakoralongtheCOcompression.FUVandHα sharesomepropertiesincommon, . 1 butFUVisalwaysmoreextendedthanCO/Hα inthethreegalaxies,implyingthatthestar- 0 forming disc is rapidly shrinking as the molecular gas properties have changed. We discuss 7 how ICM pressure affects dense molecular gas and hence star formation properties while 1 diffuseatomicgasisbeingremovedfromagalaxy. : v Keywords: ISM:molecules–galaxies:clusters:intraclustermedium–galaxies:evolution i X –galaxies:ISM–galaxies:spiral. r a 1 INTRODUCTION observations.Inaddition,Giovanelli&Haynes(1985)havefound thattheHIcontentiswellcorrelatedwiththelocationofgalaxiesin Since Gunn & Gott (1972) suggested that a galaxy might lose asensethatHIismoredeficientatsmallerdistancesfromtheclus- its interstellar medium (ISM) by interacting with the intracluster tercentre.ThentheHIsynthesisimagingstudiessuchasWarmels medium(ICM)intheclusterenvironment,muchevidenceforram (1988a,b) and Cayatte et al. (1990) have shown that HI-deficient pressure stripping has been found to date. In early days, Davies galaxies near the cluster centre have small HI-to-optical extents, &Lewis(1973)haveshownthatVirgogalaxiesaregenerallymore truncated within the stellar disc in many cases. In a more recent deficientinHIcomparedtofieldgalaxiesbasedontheirsingle-dish high-resolution HI imaging study of ∼50 selected Virgo galaxies byChungetal.(2009),anumberofgalaxieshavebeenfoundwith variousscalesofextraplanarHIgasorlongHItails,indicatingthat (cid:63) E-mail:[email protected] rampressurestrippingisindeedactingintheclusterenvironment. † E-mail:[email protected](corresponding) (cid:13)c 2016TheAuthors 2 B.Leeetal. AsagalaxylosesitsISM,thestarformationrateisexpectedto besuppressed,whichagreeswellwiththeobservations.Asagood example,Koopmann&Kenney(2004a)findthatthemassivestar formationrateofVirgospiralsislowerthantheirfieldcounterpart byafactorof2.5onaverage.Koopmann&Kenney(2004b)also showthatmanyVirgospiralshaveasmallerHα extentcompared totheirstellardisc,reflectingthattheprocesstruncatingHI discs mayalsobeactingonthestar-formingdiscandHαemission. On the other hand, molecular gas is unlikely to be as easily strippedasatomichydrogen,sinceitismoretightlyboundtothe galacticcentreandthedensityishigher.Infact,mostpreviousstud- iesfindthatthemoleculargasmassoftheclusterpopulationisnot significantlydifferentfromthatoffieldgalaxies(Starketal.1986; Kenney&Young1989).Inaddition,morerecentstudiesarefinding clumpydustfeaturesintheupstreamsideofHIgasstrippedgalax- ies,whicharelikelytobesurvivingdensecloudsthatareunveiled afterdiffuseatomicgasisremoved(Crowletal.2005;Abramson &Kenney2014;Kenney,Abramson&Bravo-Alfaro2015). On the other hand, however, the opposite results also have beenreported.Rengarajan&Iyengar(1992)findthatH massnor- 2 malizedbythedynamicalmassofgalaxiestendstogetlargerwith increasing clustercentric distance, which supports that molecular gascanbealsodeficientintheclusterenvironment.Morerecently, Bosellietal.(2014)showthatHI-deficientgalaxiesinthecluster environmenttendtobealsomodestlydeficientinmoleculargas. However,themoleculargasfractiontotheopticalluminosity ofspiralgalaxiesmeasuredusing12CO(1−0)rangesquitewidely forallenvironments(Chung2012).Thisimpliesthatthemolecu- Figure1.ThelocationsofoursampleareshownontheROSATX-raymap lar gas fraction alone may not be a good tracer of molecular gas (bluecontours;Böhringeretal.1994).Redellipsesrepresenttheposition deficiency.Duetothescatterinthisrelationandopposingobser- angleandD25×5ofthesampleintheBband.NGC4569thatwehave vational results, it is still arguable whether molecular gas can be notobservedusingtheSMAbutisincludedinourdiscussionasagood affectedbytheICMpressureinasimilarwaytoHIgas,anditis representative of a galaxy at post-peak pressure, is shown in green. The thenstillpuzzlingwhystarformationappearstobequenchedinHI samplegalaxies,locatedat0.4–1MpcfromM87,adoptingaVirgodistance strippedgalaxiesifmoleculargas,whichisthemoredirectingre- of 16 Mpc (Yasuda et al. 1997), make a nice sequence of ram pressure strippingfromearlystage,closetopeakpressureandpost-peakpressurein dientforstarformation,isnotdeficient. theirorbit. No clear evidence for molecular gas stripping yet low star formationactivitiesinclustergalaxiesmayimplydistinctmolec- ular gas properties in high-density environments as supported by some previous observations. For example, Kenney et al. (1990) inside a galaxy under strong ICM pressure need to be probed. havefoundahighlyasymmetricCOmorphologyinanHIdeficient Hence, using the Submillimeter Array (SMA)1, we have taken Virgoclustergalaxy.Vollmeretal.(2008)alsohavefoundverype- high-resolution12CO(2−1)imagingdataofasubsampleofVirgo culiarCOdistributionsinsomeofVirgospiralsundergoingactive galaxies that have lost atomic gas significantly by ICM pressure. HIstripping.Thesestudiesindicatethatmoleculargascanbepo- Some preliminary results are published in Lee & Chung (2015), tentiallydisturbedbystrongICMpressurewhetheritisstrippedor andinthiswork,wepresentmorecompleteanalysisonbothmor- not. phologyandkinematicsofthreeVirgogalaxiesbasedontheSMA ParticularlyalongthesideexperiencingICMpressure,ithas data. beensuggestedthatinterstellargasincludingthemolecularphase Thispaperisorganizedasfollows.Weintroducethesamplein canbepushedupagainstthecentreofagalaxy.ThisleadstoISM Section2.Detailsofobservationsanddatareductionprocedureare compressionandincreasingH2formation;hence,itlocallytriggers providedinSection3.InSection4,wepresenttheSMAdata,de- intensivestarformation(Fujita&Nagashima1999;Kronbergeret scribingtheCOmorphologyandkinematics.InSection5,wecom- al.2008;Merluzzietal.2013;Henderson&Bekki2016).Indeed, paretheCOandotherwavelengthdatatodiscusshowthemolecu- ISMcompressionwithhighmolecularfractionintheupstreamside largasinthesegalaxieshasbeenaffectedbytheICMpressure.In isseeninanumberofgalaxiesexperiencingICMpressure(Vollmer Section6,wesummarizetheresultsandconclude. etal.2012b;Nehlig,Vollmer&Braine2016),whichareoftenac- A distance of 16 Mpc (1 arcsec ∼78 pc) to Virgo cluster is companied by an enhancement of star formation. Molecular gas adoptedinthiswork(Yasuda,Fukugita&Okamura1997). enhancementamongtheVirgoclustermembershasbeenalsore- cently reported by Mok et al. (2016). These observations clearly showthatmoleculargaspropertiesandhencestarformationactiv- itywithinastellardisccanbeaffectedbyrampressure. 1 TheSubmillimeterArrayisajointprojectbetweentheSmithsonianAs- Therefore, in order to get a deeper understanding on how trophysicalObservatoryandtheAcademiaSinicaInstituteofAstronomy galaxiesbecomepassiveafterHI stripping,notonlythepossibil- and Astrophysics and is funded by the Smithsonian Institution and the ity of stripping but also the detailed properties of molecular gas AcademiaSinica. MNRAS000,1–17(2016) MoleculargaspropertiesofVirgospirals 3 Table1.GeneralInformationofSampleGalaxiesa. Galaxy NGC4330 NGC4402 NGC4522 Rightascension(J2000) 12h23m17s.0 12h26m07s.6 12h33m39s.7 Declination(J2000) +11◦22(cid:48)03(cid:48)(cid:48).5 +13◦06(cid:48)47(cid:48)(cid:48).4 +09◦10(cid:48)30(cid:48)(cid:48).2 Morphologicaltype Sc Sb SBc Inclination(◦) 79 82 79 Positionangle(◦) 60 89 35 Vrad(kms−1)b 1565 232 2328 D25(arcmin) 2.29 3.55 3.47 TotalapparentB-bandmagnitude 12.02 12.05 11.86 TotalK-bandluminosity(109L(cid:12),K)c 6.58 21.30 5.64 MHI(108M(cid:12))d 4.45 3.70 3.40 defHId,e 0.80 0.74 0.86 dM87(◦)d 2.1 1.4 3.3 aGeneral information of the sample galaxies from Paturel et al. (2003) (HyperLeda, http://leda.univ-lyon1.fr/). bcf.theVirgomean∼1100kms−1(Meietal.2007). cSkrutskieetal.(2006),cf.Milkyway:8.24×1010 L(cid:12),K (Drimmel&Spergel2001), M31:1.29×1011L(cid:12),K(Barmbyetal.2006). dtheVIVAstudy(Chungetal.2009). edefHI=(cid:104)log∑HI,all(cid:105)−log∑HI,obs, where (cid:104)log∑HI,all(cid:105) is the mean HI surface density of field galaxies (Haynes & Giovanelli 1984), and log∑HI,obs is the mean HI surface densityofanobservedgalaxy(Chungetal.2009).Inthiswork,morphologyindependent deficiencyhasbeenadoptedasChungetal.(2009). 2 SAMPLEGALAXIES mean star formation quenching time-scale, i.e. how long ago a galaxystoppedformingstars,isnotsignificantlydifferentamong The sample for the SMA observations has been selected from our sample by ranging from 100 to 300 Myr (Crowl & Kenney theVLA(VeryLargeArray)2 ImagingstudyofVirgogalaxiesin 2008; Abramson et al. 2011). Therefore, the detailed CO data of Atomicgas(VIVA)byChungetal.(2009).TheVIVAisahigh- thesethreecasesshouldenableustoprobehowmoleculargasprop- resolution HI imaging study of 53 late-type galaxies that are lo- ertiesandthusstarformationactivitiesaremodifiedbystrongICM catedthroughouttheVirgoclusterfromahigh-densitycoreregion pressure.Inaddition,bycomparingourdatawiththeCOdataof to low-density outskirts. Among the VIVA sample, we have se- NGC4569,whichisknowntohavecrossedtheclusterawhileago lected three galaxies with clear evidence for active HI stripping, (Fig. 1, and has a star formation quenching time (cid:29) ∼300 Myr; NGC 4330, NGC 4402 and NGC 4522 (Fig. 1). Although these Vollmer et al. 2004; Crowl & Kenney 2008), we will probe how galaxiesarethoughttohavelostasimilarfractionofHIgas,being moleculargaspropertiesevolvewithtime,duringthefirstinfallto deficient by a factor of 6∼7 compared to their field counterparts the cluster and under strong ICM pressure, then after core cross- (Table1),theyshowdistinctpropertiesintheirHImorphology. ing.ForNGC4569,whichisnotincludedinourSMAsample,we NGC 4330 is truncated in HI within one side of the stellar makeuseoftheCOdatafromtheHERACLESsurvey(Leroyetal. disc, while it reveals a long HI tail on the opposite side as if the 2009).ThegeneralpropertiesofourSMAsamplearesummarized HI disc is pushed to the tail side (Chung et al. 2009; Abramson inTable1. etal.2011).ThelocationandtheHImorphologysuggestthatthis galaxyisarecentarrival,enteringthehigh-densityregionforthe firsttime(Chungetal.2007),andthisgalaxywillreachthepeak pressureafter100Myr,basedonthesimulationofVollmer(2009). 3 OBSERVATIONSANDDATAREDUCTION Meanwhile,NGC4402hasbeenexperiencingstrongICMpressure inthelast∼150−250Myr(Abramson&Kenney2014),currently The SMA is a radio interferometer with eight antenna elements, crossing the core region (Crowl et al. 2005). Lastly, NGC 4522 6meachindiameter.ItislocatedinMaunaKeaattheelevationof isfartherawayfromtheclustercentrecomparedtoNGC4402in 4080mabovethesealevel. projection,butitsHImorphologyisalsosuggestiveofactiveram OurSMAobservationsweredoneinMarch2010andMarch pressurestrippingasNGC4402.Vollmeretal.(2006)showintheir 2011inthesubcompactconfiguration.Amongeightantennasinto- simulationsthatithasbeenatleast50Myr,sincethisgalaxyexpe- tal,onlysevenantennaswereavailableforourobservationsinboth riencedquitestrongICMpressure.Thisislikelyduetoturbulence years. The total bandwidth of 4 GHz is composed of 48 chunks intheICMthatcouldhavebeencausedbymergingofM49group thatareoverlappedby∼20MHz.Eachchunkwasconfiguredwith tothemaincluster(Kenneyetal.2004). 128channels,eachofwhichis0.8125MHzwidthor1.1kms−1 In spite of subtle differences in their HI morphologies, the at the rest frequency of 12CO (2−1), 230.538 GHz. 12CO for eachtargetwasplacedontheuppersidebandsothat13CO(2−1) (νrest=220.398GHz)andC18O(2−1)(νrest=219.560GHz)fre- 2 TheNationalRadioAstronomyObservatoryisafacilityoftheNational quencieswerecoveredsimultaneously.Thelowersidebandwhere ScienceFoundationoperatedundercooperativeagreementbyAssociated 13CO was included was separated with the upper sideband by Universities,Inc. 10GHz. MNRAS000,1–17(2016) 4 B.Leeetal. Figure2.TheHIdistributionofNGC4330,NGC4402andNGC4522(fromlefttoright)isshowninbluecontoursoverlaidontheDigitizedSkySurvey2 (DSS2,https://archive.stsci.edu/dss/index.html)redimage.TheredcrossindicatesthestellardisccentreofeachgalaxyestimatedfromSpitzer3.6µmdata (Saloetal.2015),andthethinredcirclesrepresenttheSMAobservationpoints,eachofwhichcorrespondstothesizeoftheprimarybeamat230GHz (≈54arcsec). Table2.Observationparameters. Galaxy NGC4330 NGC4402 NGC4522 Observationdate 2011Mar02,03 2010Mar20,21,27 2011Feb28,Mar01 Synthesizedbeam(arcsec) 6.35×4.47 7.21×3.89 6.62×3.92 Positionangle(◦) -28.4 73.4 -26.4 Spectralresolution(kms−1) 5.0 5.0 5.0 Integrationtimeperpoint(h) 2.1 5.5 2.6 rmsperchannel(mJybeam−1) 12COJ=2−1 35.2 16.3 32.7 13COJ=2−1a 29.7 13.0 29.9 Bandpasscalibrators 0854+201,1751+096 0854+201 1751+096,3c279 Fluxcalibrators titan,vesta mars,titan mwc349a,vesta Gaincalibrators 3c273,3c279 3c273,3c279 3c273,3c279 Note.a13CO(2−1)emissionisdetectedonlyinNGC4402. TheprimarybeamoftheSMAis∼54arcsecat12CO(2−1) 4 RESULTS rest frequency. Aiming to cover at least half the stellar disc, we Inthissection,wepresenttheresultsofourSMAobservations.The mosaicked3–5pointsdependingontheopticalsizeofindividual 12CO(2−1)fluxanditsuncertaintyaremeasuredinJykms−1as galaxies as shown in Fig. 2. In the case of NGC 4522, one addi- follows, tional field in the southwest was included to cover the extrapla- ∼na5r.5HhαpaenrdfieHldIdgeaps.enTdhiengtootnalthinetewgeraatthioenrctoimndeitriaonngse,syefrtowmea∼im2etod SCO=∑FCO×∆V±(cid:16)∑σ2(cid:17)21×∆V, (1) toachieveauniformsensitivityforeachgalaxy.DetailsoftheSMA where F is the total flux of CO emission in each channel, ∆V CO observationsaresummarizedinTable2. is the channel separation of the final cube (5 km s−1), and σ is thermsofeachchanneloutsideCOemission.Continuousfeatures above2σ−3σ areconsideredasrealsignalinindividualchannels. CO linewidths are calculated using the velocities, where the flux Flux,gainandbandpasscalibrationsweredoneusingtheMIR densitycorrespondsto20percentand50percentofthepeaksin software(Qi2012).Thecalibratorsusedforourobservationsare the receding and the approaching side, adopting the definition of listed in Table 2. After the calibration, the data had been anal- Rhee&vanAlbada(1996): ysedusingtheMIRIAD.Thecontinuumhasbeensubtractedusing W =V20percent−V20percent, (2) UVLINbyapplyingalinearfittotheuv-datainline-freechannels 20 high low selected based on the HI emission of each galaxy. The imaging and mosaicking were done using INVERT. In order to maximize thesensitivitywhilekeepingoptimalresolution,therobustwasset W50=Vh5i0ghpercent−Vl5o0wpercent. (3) to0.5(forNGC4402)or1(forNGC4330andNGC4522).The TheCOvelocityisdeterminedfollowingVerheijen(1997): channelwidthinthefinalcubewasregriddedto5kms−1,which iscomparabletoHIdata(VIVA;Chungetal.2009).Wehavede- Vsys=0.25(Vl2o0wpercent+Vl5o0wpercent+Vh5i0ghpercent+Vh2i0ghpercent). tected 12CO (2−1) in all three galaxies, while 13CO (2−1) has (4) beendetectedonlyinNGC4402,whichwillbepresentedinasep- aratepaper(Leeetal.inpreparation). FollowingtherecipefromSolomonetal.(1997),12CO(2−1) MNRAS000,1–17(2016) MoleculargaspropertiesofVirgospirals 5 Table3.SMACOpropertiesofsamplegalaxies. NGC4330 NGC4402 NGC4522 W20(kms−1) 208 255 176 W50(kms−1) 184 226 159 Vsys(kms−1) 1562 246 2326 SCO(Jykms−1) 182.22±8.02 1400.76±11.91 139.43±4.77 MH2(108M(cid:12))a 1.19±0.05 8.83±0.08 0.88±0.03 Note.aTheCO-to-H2 conversionfactorof3.2M(cid:12) pc−2 (Kkms−1)−1 is adoptedfromStrong&Mattox(1996). lineluminosityismeasuredasfollows: clump,thevelocitygradientisinverted.Thekinematicalcomplex- LC(cid:48) O(2−1)=3.25×107SCOνo−b2sD2L(1+z)−3, (5) iotfyaissatelseopcvleelaorclyitysegernadinietnhteinPVthDe(cFeingt.ra3lc∼).1A3dairsctsinecct(c∼o1mkppocn)enist inKkms−1pc2,whereS isanintegratedtotal12CO(2−1)flux quitenoticeable.Thismayindicateamolecularringorbar.Inad- CO inJykms−1,DListheluminositydistanceinMpc,νobsistheob- dition,theCOpeakisofffromthestellardisccentreby∼270pc servationfrequencyinGHz,andzistheredshift.Adoptingatypi- (Fig.3a),whiletheCOkinematiccentreismoreorlessconsistent cal 12CO (2−1)/(1−0) ratio of nearby galaxies (R ≈0.8; Leroy withthestellardisccentre(Fig.3c). 21 et al. 2009) and using the conversion relation of normal spirals (αCO =3.2M(cid:12) pc−2 (Kkms−1)−1;Strong&Mattox1996),the moleculargasmasscanbecalculatedby 4.2 NGC4402 M = αCO L(cid:48) (2−1), (6) AsshowninFig.4(a),theCOdiscofNGC4402isslightlymore H2 R21 CO extended in the west (62 arcsec in the west versus 58 arcsec in whereL(cid:48) (2−1)istheluminosityof12CO(2−1)transition.The the east), but the difference is subtle and not as significant as in CO HI.Whatmakesthiscaselookhighlyasymmetricisthenorth-west global CO properties of the sample are summarized in Table 3. quarterofthedownstreamside(thewestsideofthedisc).Inthis On the left of Figs 3–5, the CO intensity map, velocity field and region,amodestCObump(indicatedbyarrowinFig.4a)isfound position-velocitydiagram(PVD)withglobalandradialprofileare as in HI (Fig. 4d). Meanwhile, the southern part of the CO disc presentedin(a),(b)and(c)foreachgalaxy.Theoverlayswithother looks quite compressed along the enhanced far-ultraviolet (FUV) wavelengthdatashownontheright-handsideofFigs3–5aredis- emission(Fig.4e),whichwillbediscussedmoreindetailinSec- cussedinSection5. tion5.Thenorthernpartabovethemajoraxisismeasuredtobe91 percentofthatofthesouthinflux.AlthoughtheCOpeakagrees 4.1 NGC4330 wellwiththestellardisccentre,theinnerCOdiscalsoappearsto beslightlymorestretchedtowardthewest,reflectingtheouterCO As seen in Figs 3(a)–(c), the CO morphology of NGC 4330 is disc. highlyasymmetric,withthesouth-westextentinthedownstream TheCOkinematicsrevealstheevidencefornon-circularmo- side being about 75 per cent (40 arcsec versus 53 arcsec) of the tions as shown in Fig. 4(b). In the inner region, the iso-velocity northeastbutonly68percentwhentheoutermost4arcsecofthe curvesarehighlyskewedandnotperfectlyparallelwiththeminor south-westdisc,whichisbentdowntothesouth(indicatedbyar- axis. The skewness in velocity must be the result of two distinct rowinFig.3a)isexcluded(36arcsecversus53arcsec).Thecen- disccomponentsintheinner∼15arcsec(∼1kpc)beingprojected tral part, within 30 arcsec in diameter (∼2 kpc at the distance of ontheskyasseeninitsPVD(Fig.4c).Thevelocitygradientinthe Virgo),isalsoasymmetricduetothestronglocalpeakinthenorth- outer part is quite different in the two sides of the disc along the east from the stellar disc centre. The distinct extents and surface majoraxis.Inthenorth-westquarter(inthedownstreamside),the densitiesarealsoclearlyseeninradialprofiles.Intheendofthe kinematicsofmodestCObumpisslightlydeviatedfromthemain southwestdiscofthedownstreamside,COisfoundtobeslightly disc. bent (Fig. 3a). This bending is also found in many other wave- ItalsohasadistinctCOcomponentwithsteepvelocitygradi- lengthssuchasUV,Hα andHI,butallaredifferentinscaleand entintheinner∼15arcsec.Thislikelyindicatesanuclearbaror angle from one another as further discussed in Section 5. In the ring,althoughwefavoranuclearbarasthiswouldalsoexplainthe caseofCO,thisbendingpartisclumpy,almostidentifiedasanin- skewedisovelocitycontours.InNGC4402,Sofueetal.(2003a,b) dependentbloborclump(seethearrowinFig.3c).ThisCOclump alsofindanuclearmoleculardisctracedby12CO(1−0)inthein- correspondsto2percentofthetotalinflux(∼1.9×106M(cid:12),com- ner∼10arcsec.Wedonotfindanydirectrelevanceofthesenuclear parabletothatofalargemolecularcloud).Thecentreoftheclump structureswithrampressurestripping. isofffromthemid-planeofthemaindisctowardthesouthby∼4 arcsec(∼312pc). TheCOkinematicsalsoshowspeculiarstructures,especially 4.3 NGC4522 alongthesouth-westconcentrationandtheendofthetailasshown inFig.3(b).Thevelocitygradientofthesouth-westisquitesteep, While the overall size of 12CO (2−1) disc in the SMA image is whileitismoreslowlyrisingontheothersidewithinthesmallradii consistentwiththeextentmeasuredbyasingledishforNGC4330 fromthecentre,reaching72kms−1 ontheapproachingsidebut (Vollmeretal.2012a)andNGC4402(Leeetal.inpreparation), only43kms−1ontherecedingat15arcsecradii.Inthesouth-west ourSMAdataofNGC4522revealonlytheinner∼57percentof MNRAS000,1–17(2016) 6 B.Leeetal. Figure3. NGC4330:(a)12CO(2−1)integratedintensitymap(the0thmoment)ingrey-scalewithcontours.Contourlevelsare0.3,1.5,4,8,12,16,20 Jybeam−1kms−1.Thesynthesizedbeamsizeis6.35arcsec×4.47arcsec(blueellipseatthebottomright).Thewhitecrossindicatesthestellardisccentre. (b)12CO(2−1)velocityfieldmap(the1stmoment).Velocitycontoursaredrawninevery10kms−1from1470kms−1to1670kms−1.Thewhitecross againindicatesthestellardisccentre.(c)Upperleft:aposition-velocitycutthroughthemajoraxisintegratedalongtheminoraxis.Contourlevelsare0.7,1.4, 2.1,2.8,3.5Jybeam−1.TheCOclumpisindicatedbyblackarrow.Right:theglobalprofileof12CO(2−1).TheCOvelocity(1562kms−1)isindicatedwith anarrow.Bottom:thegassurfacedensities(HIandH2)alongtheapproachingsideandtherecedingsideontherightandtheleft,respectively.(d)Anoverlay of12CO(2−1)(bluecontours)onHI(redcontours)andDSS2red(blackcontours).SynthesizedbeamoftheVLAandtheSMAareshowninredandblue atthebottomleft.TheentireCOdiscislocatedinsidetheopticaldisc.Unlikethestellardisc,however,theCOdiscisfoundtobehighlyasymmetricasthe atomicgasdisc.(e)12CO(2−1)(bluecontours)isoverlaidonFUVemission(blackcontoursandgrey-scale).FUVtailisalsoextendedandbenttowardthe south-westasCOandHIgastail.(f)12CO(2−1)(bluecontours)overlaidontheHαemission(grey-scale).Theoverallbendingshapecoincideswellbetween HαandCO,whileCOisnotextendedasmuchasHα. MNRAS000,1–17(2016) MoleculargaspropertiesofVirgospirals 7 Figure4. NGC4402:(a)12CO(2−1)integratedintensitymap(the0thmoment)ingrey-scalewithcontours.Contourlevelsare1,5,10,30,50,70,90 Jybeam−1kms−1.Thesynthesizedbeamsizeis7.21arcsec×3.89arcsec(blueellipseatthebottomright).Thewhitecrossindicatesthestellardisccentre. AmodestCObumpisindicatedbyblackarrow.(b)12CO(2−1)velocityfieldmap(the1stmoment).Velocitycontoursaredrawninevery20kms−1from 120kms−1to360kms−1.Thewhitecrossagainindicatesthestellardisccentre.(c)Upperleft:aposition-velocitycutthroughthemajoraxisintegratedalong theminoraxis.Contourlevelsare0.5,1.5,3,5,7,9,11Jybeam−1.Right:theglobalprofileof12CO(2−1).TheCOvelocity(246kms−1)isindicatedwith anarrow.Bottom:thegassurfacedensities(HIandH2)alongtheapproachingsideandtherecedingsideontherightandtheleft,respectively.(d)Anoverlay of12CO(2−1)(bluecontours)onHI(redcontours)andDSS2red(blackcontours).12COgasiswellconfinedwithintheopticaldisc,whileHIispushedoff outsidefromthestellardisc.Theopticaldiscdoesnotlookdisturbed,whilebothmolecularandatomicgascomponentsrevealasymmetryinasimilarsense. (e)12CO(2−1)(bluecontours)isoverlaidonFUVemission(blackcontoursandgrey-scale).FUVisfoundtobeenhancedalongtheCOcompression.(f) 12CO(2−1)(bluecontours)overlaidontheHαemission(grey-scale).Theoverallextentandmorphologywellcoincidewitheachother. MNRAS000,1–17(2016) 8 B.Leeetal. Figure5. NGC4522:(a)12CO(2−1)integratedintensitymap(the0thmoment)ingrey-scalewithcontours.Contourlevelsare0.3,1.5,4,8,12,16,20 Jybeam−1kms−1.Thesynthesizedbeamsizeis6.62arcsec×3.92arcsec(blueellipseatthebottomright).Thewhitecrossindicatesthestellardisccentre. (b)12CO(2−1)velocityfieldmap(the1stmoment).Velocitycontoursaredrawninevery10kms−1from2250kms−1to2400kms−1.Thewhitecross againindicatesthestellardisccentre.(c)Upperleft:aposition-velocitycutthroughthemajoraxisintegratedalongtheminoraxis.Contourlevelsare1.5, 2.0,2.5,3.0,3.5,4.0,4.5,5.0Jybeam−1.Right:theglobalprofileof12CO(2−1).TheCOvelocity(2326kms−1)isindicatedwithanarrow.Bottom:the gassurfacedensities(HIandH2)alongtheapproachingsideandtherecedingsideontheleftandtheright,respectively.(d)Anoverlayof12CO(2−1)(blue contours)onHI(redcontours)andDSS2red(blackcontours).OurSMAdatarevealonlytheinnerpartofthemoleculargasdisc,missingouttheouterpart thatisdetectedbytheIRAM(Vollmeretal.2008)duetothelackinpointingsandsensitivity.InSection4and5,wemorefocusonthemorphologyand kinematicsrevealedbytheSMA.(e)12CO(2−1)(bluecontours)isoverlaidonFUVemission(blackcontoursandgrey-scale).EnhancedFUVemissionis foundalongthesideonwhichtheICMwindispresumablyacting.(f)12CO(2−1)(bluecontours)overlaidontheHαemission(grey-scale).TheinnerCO discisslightlybenttowardsouth-eastastheinnerHαdisc. MNRAS000,1–17(2016) MoleculargaspropertiesofVirgospirals 9 itssingle-dishmapinsize(Vollmeretal.2008).WhileVollmeret usingLucy’s(1974)iterativedeconvolutionmethod.Thenthestrip al. (2008) have detected CO along the extraplanar Hα and HI in integralsofapproachingandrecedingsidesaredeprojectedsepa- both ends of the disc, we did not detect any such features in the ratelytoinfertheface-onHIsurfacedensity(Kregel,vanderKruit south-west in our SMA data due to the lack of sensitivity and/or &deBlok2004).Thesurfacedensityofbothatomicandmolec- potentiallyduetothediffusenatureofgasintheoutermolecular ularhydrogenismeasuredinM(cid:12) pc−2.Thecomparisonbetween disc.Thenorth-eastendwasnotcoveredintheSMAobservations. atomicandmoleculargasradialdistributionsisfoundinthebottom Therefore, we limit our discussion to only the inner CO disc for on the left-hand column of Figs 3–5. Overlays between CO and this particular case in this section and we cite the IRAM single- othermultiwavelengthdataarepresentedontheright-handcolumn dishdatawhenitisneededforcomparisonswithotherwavelength ofFigs3–5andFig.6. datainSection5. Forthereference,theIRAM12CO(2−1)mapsarealsoover- AsshowninFig.5,theCOextentiscomparableinbothsides laid in the composite map. The sensitivity of the IRAM cubes is (27.4arcsecinthenorth-eastversus27.6arcsecinthesouth-west). ∼10mKper5kms−1 channel(thesamechannelwidthasours), TheinnerCOdiscofNGC4522isfoundtobecurvedintheop- which is comparable to the SMA cubes or slightly better in the posite way to the outer CO and HI disc, i.e. to the south-east as casesofNGC4330andNGC4522whenthedifferentspatialres- theinnerHα disc.Wefindtwofeaturesstickingoutfromthein- olutionsaretakenintoaccount(∼11arcsecversus∼5arcsecfor nerpart,onefromtheendofnorth-eastdiscandanotheralmostto IRAMandSMA,respectively).ForNGC4402,thesensitivityof thesamedirectionbutconnectedfromthecentreofthemaindisc, SMAdataissomewhatbetterthantheIRAMdatanotonlybecause moretothesouth.Thenorth-eastblobcoincideswiththemorphol- of the sufficient integration time with the SMA but also because ogyoftheinnerCOdiscintheIRAMimage(Fig.6c;Vollmeret of the poor weather condition when the IRAM data were taken. al.2008),whichissmoothlyconnectedtothediscfartherextended For NGC 4330 and NGC 4402, the IRAM and SMA maps are inthenorth-east,coincidingwithadustloopinthisregion.While generallyingoodagreementinmorphology,consideringthebeam thedownwardbendingcoincideswiththeinnerspiralstructurein- sizes, while we are missing most of the extraplanar molecular of cludingthedustfeature(seeFig.A1inAppendixA). NGC4522intheSMAdataduetothelackincoverage,sensitivity, The CO velocity structure within the main disc generally and/orpotentiallyduetothediffusenatureofmoleculargasinthe showsthatofaregularlyrotatingdiscasseeninFigs5(b)and(c). extragalacticspaceasfurtherdiscussedinSection5.1.3. Thevelocitykeepsrisingupto∼10arcseconbothsides,thenal- mostflattensout,andtowardtheendofthedisc,thevelocityrises again.Thevelocitygradientalongthenorth-eastbranchisoverall 5.1.1 NGC4330 consistentwiththatofthemaindisconthesameside.However,the gradientissmallerandthevelocityrisesmoreslowlycomparedto Asymmetry is ubiquitous in a range of wavelengths data except theotherside. intheredopticalimage(DSS2red).InFig.6(a),weseethatthe HIistruncatedwithinthestellardiscinthenorth-east,whereHα and FUV emission reveals an upturn feature (Chung et al. 2009; 5 DISCUSSION Abramsonetal.2011).Ahintofupturnisalsofoundinthenorth- east end of the upstream of radio continuum at 6 cm and 20 cm 5.1 Comparisonwithotherwavelengthdata (Chung et al. 2009; Vollmer et al. 2012a). The single-dish 12CO In this section, we compare 12CO (2−1) properties with other (2−1)data(Vollmeretal.2012a)appeartobesimilartotheradio wavelengthdataincludingHI (Chungetal.2009),optical(DSS2 morphology,alsowithsomehintofupturn,althoughtheextentof red), FUV (Gil de Paz et al. 2007), and Hα (NGC 4330 and themoleculargasismuchlessthanthatofHI.InourSMAdata,we NGC 4569 from Gavazzi et al. 2003; Abramson et al. 2011, aremissingsomeoutermostfeaturesincludingthetipofthenose NGC 4402 from Crowl et al. 2005, NGC 4522 from Koopmann, inthenorth-east.Instead,theSMAdataclearlyrevealverydetailed Kenney,&Young2001).COtracesstar-forminggas,andHα and structuresoftheinnerCOdiscsuchasthedifferenceinscaleheight FUV emission are good indicators of star formation with time- betweenthenorthandthesouthalongthemajoraxis(upto∼0.36 scalesof∼20and100Myr,respectively(Kennicutt1998).Wealso kpc,Fig.3a)whichisnotasclearasthisintheprevioussingle-dish comparetheradialgassurfacedensitybetweenatomicandmolec- data. ularhydrogen.TheHIcolumndensityiscalculatedusing, Thesouth-westside,i.e.thedownstreamofthegalaxywhere anHIgastailispresent,isbenttowardthesouth.Onthisside,we N(HI)=1.82×1018×∑T (cid:52)V (7) B also find FUV, Hα and radio continuum tail but the extents and incm−2,where∑TB(cid:52)V istheintegratedintensity(brightnesstem- bending angles are all different in various wavelengths (Fig 6a). perature)inKkms−1(Walteretal.2008).TheH surfacedensity The distribution becomes patchy in the outer CO disc as seen in 2 isestimatedbythefollowingrelation: bothIRAMsingle-dishdata(Vollmeretal.2012a)aswellasour SMAdata.Intriguingly,theCOblobtowardtheendislocatedin N(H2)= αRCO I(CO) (8) almostthesamegalacticradiusasoneofthedistinctHαblobsand 21 offfromthemid-planeinthesamedirectionasthetailsoftheother inM(cid:12)pc−2,whereI(CO)is12CO(2−1)integratedintensity,and wavelengths(Fig6a). αCO is the same as in equation (6). Considering the high inclina- Asclearlyseen,themoleculardisc,whichextendstoonlyhalf R21 tionofallthreegalaxiesinoursample,weutilizethestripintegral thestellardiscorless,showsmanypropertiesincommonwiththe methodinsteadofellipsefittingtoderiveradialsurfacedensitybe- morphologiesintheotherwavelengths,reflectingtheimpactofthe cause ellipse fitting is usually inappropriate for edge-on galaxies ICMpressure.Althoughtherearesubtledifferences,thissuggests whenthespatialresolutionislimited(Warmels1988a;Rhee&van thatthemoleculargasinthisgalaxyhasbeenalsoaffectedinsim- Albada1996;Swaters1999).Thismethodcalculatesstripintegrals ilar ways by the same mechanism that is responsible for the pe- byintegratingHIcolumndensityperpendicularlytothemajoraxis, culiaritiesfoundintheotherwavelengths.ThisindicatesthatICM MNRAS000,1–17(2016) 10 B.Leeetal. Figure6.AcompositemapofFUV(blue;GildePazetal.2007),Hα (NGC4330andNGC4569fromGavazzietal.2003,NGC4402fromCrowletal. 2005,NGC4522fromKoopmannetal.2001),optical(black;DSS2red),HI(green;Chungetal.2009)and12CO(2−1)(whitecontoursfromourSMA data)ofNGC4330(redshifted),NGC4402(blueshifted),NGC4522(redshifted),andNGC4569(blueshifted).TheIRAM12CO(2−1)dataareshownin yellowcontours.Contourlevelsare3.7,7.5Jybeam−1kms−1forNGC4330(Vollmeretal.2012a);5,20Jybeam−1kms−1forNGC4402(Leeetal.in preparation);1.7,3.5,5.3Jybeam−1kms−1forNGC4522(Vollmeretal.2008)and14,71,106,214,498,712Jybeam−1kms−1forNGC4569(Leroyet al.2009).TheICMwinddirectiondeducedfromHImorphologyisshownwithblackarrows(Vollmeretal.2004;Crowletal.2005;Abramsonetal.2011; Abramson&Kenney2014).NGC4330,NGC4402andNGC4522areatrelativelyearlytoactiveHIstrippingstageduetotheICM,whileNGC4569is thoughttobeapost-peakpressurecasewheresomeHIgasisfallingbackonthediscaftercorecrossing. pressurecanchangemoleculargaspropertieswellinsidethestellar in the west (indicated by arrow in Fig. 4a), although the scale is disc. distinct because the HI bump is visible in extraplanar gas. HI is truncatedwithinthemid-planeofthestellardisconbothsides,with asharpcut-offintheeasttosouthalongtheupstream.Meanwhile, the northern side is more extended with a short tail pointing the 5.1.2 NGC4402 north-westinthedownstreamside.Theextentofthemoleculargas TheCOemissionshowsanumberofpropertiesincommonwith is not significantly different in the receding and the approaching theHI gas(Fig.4d).Itissomewhatextendedinthewest,i.e.the side,yetitsdistributionisquitedistinct.Thesedifferencesbetween samesidewheretheHIismoreextended.Bothphasesshowabump thetwosidesoftheCOdisccanbealsoclearlyseenintheradial MNRAS000,1–17(2016)