ebook img

The effect of ram pressure on the molecular gas of galaxies: three case studies in the Virgo cluster PDF

1.5 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The effect of ram pressure on the molecular gas of galaxies: three case studies in the Virgo cluster

MNRAS000,1–17(2016) Preprint12January2017 CompiledusingMNRASLATEXstylefilev3.0 The effect of ram pressure on the molecular gas of galaxies: three case studies in the Virgo cluster Bumhyun Lee1(cid:63), Aeree Chung1,2,3†, Stephanie Tonnesen4, Jeffrey D. P. Kenney5, O. Ivy Wong6, B. Vollmer7, Glen R. Petitpas8, Hugh H. Crowl9, Jacqueline van Gorkom10 1DepartmentofAstronomy,YonseiUniversity,50Yonsei-ro,Seodaemun-gu,Seoul03722,Korea 7 2YonseiUniversityObservatory,YonseiUniversity,50Yonsei-ro,Seodaemun-gu,Seoul03722,Korea 1 3JointALMAObservatory,AlonsodeCórdova3107Vitacura,Santiago,Chile 0 4CarnegieObservatories,813SantaBarbaraSt,Pasadena,CA,91101 2 5YaleUniversityAstronomyDepartment,POBox208101,NewHaven,CT06520-8101,USA 6InternationalCentreforRadioAstronomyResearch,TheUniversityofWesternAustraliaM468,35StirlingHighway,Crawley,WA6009,Australia n 7CDS,ObservatoireastronomiquedeStrasbourg,UniversitédeStrasbourg,CNRS,UMR7550,11ruedel’Université,F-67000Strasbourg,France a 8Harvard-SmithsonianCenterforAstrophysics,60GardenStreet,Cambridge,MA02138,USA J 9DivisionofScienceandMathematics,BenningtonCollege,1CollegeDrive,Bennington,VT05201,USA 0 10DepartmentofAstronomy,ColumbiaUniversity,MailCode5246,550W120thSt,NewYork,NY10027,USA 1 ] A AcceptedtoMNRAS G . h ABSTRACT p Wepresent12CO(2–1)dataofthreeVirgospirals–NGC4330,NGC4402andNGC4522 - o obtained using the Submillimeter Array. These three galaxies show clear evidence of ram r pressurestrippingduetotheclustermediumasfoundinpreviousHIimagingstudies.Using t s high-resolution CO data, we investigate how the properties of the inner molecular gas disc a change while a galaxy is undergoing HI stripping in the cluster. At given sensitivity limits, [ wedonotfindanyclearsignsofmoleculargasstripping.However,bothitsmorphologyand 1 kinematicsappeartobequitedisturbedasthoseofHI.Morphologicalpeculiaritiespresentin v the molecular and atomic gas are closely related with each other, suggesting that molecular 0 gascanbealsoaffectedbystrongICMpressureevenifitisnotstripped.COisfoundtobe 5 modestly enhanced along the upstream sides in these galaxies, which may change the local 7 starformationactivityinthedisc.Indeed,thedistributionofHα emission,atracerofrecent 2 starformation,wellcoincideswiththatofthemoleculargas,revealingenhancementsnearthe 0 localCOpeakoralongtheCOcompression.FUVandHα sharesomepropertiesincommon, . 1 butFUVisalwaysmoreextendedthanCO/Hα inthethreegalaxies,implyingthatthestar- 0 forming disc is rapidly shrinking as the molecular gas properties have changed. We discuss 7 how ICM pressure affects dense molecular gas and hence star formation properties while 1 diffuseatomicgasisbeingremovedfromagalaxy. : v Keywords: ISM:molecules–galaxies:clusters:intraclustermedium–galaxies:evolution i X –galaxies:ISM–galaxies:spiral. r a 1 INTRODUCTION observations.Inaddition,Giovanelli&Haynes(1985)havefound thattheHIcontentiswellcorrelatedwiththelocationofgalaxiesin Since Gunn & Gott (1972) suggested that a galaxy might lose asensethatHIismoredeficientatsmallerdistancesfromtheclus- its interstellar medium (ISM) by interacting with the intracluster tercentre.ThentheHIsynthesisimagingstudiessuchasWarmels medium(ICM)intheclusterenvironment,muchevidenceforram (1988a,b) and Cayatte et al. (1990) have shown that HI-deficient pressure stripping has been found to date. In early days, Davies galaxies near the cluster centre have small HI-to-optical extents, &Lewis(1973)haveshownthatVirgogalaxiesaregenerallymore truncated within the stellar disc in many cases. In a more recent deficientinHIcomparedtofieldgalaxiesbasedontheirsingle-dish high-resolution HI imaging study of ∼50 selected Virgo galaxies byChungetal.(2009),anumberofgalaxieshavebeenfoundwith variousscalesofextraplanarHIgasorlongHItails,indicatingthat (cid:63) E-mail:[email protected] rampressurestrippingisindeedactingintheclusterenvironment. † E-mail:[email protected](corresponding) (cid:13)c 2016TheAuthors 2 B.Leeetal. AsagalaxylosesitsISM,thestarformationrateisexpectedto besuppressed,whichagreeswellwiththeobservations.Asagood example,Koopmann&Kenney(2004a)findthatthemassivestar formationrateofVirgospiralsislowerthantheirfieldcounterpart byafactorof2.5onaverage.Koopmann&Kenney(2004b)also showthatmanyVirgospiralshaveasmallerHα extentcompared totheirstellardisc,reflectingthattheprocesstruncatingHI discs mayalsobeactingonthestar-formingdiscandHαemission. On the other hand, molecular gas is unlikely to be as easily strippedasatomichydrogen,sinceitismoretightlyboundtothe galacticcentreandthedensityishigher.Infact,mostpreviousstud- iesfindthatthemoleculargasmassoftheclusterpopulationisnot significantlydifferentfromthatoffieldgalaxies(Starketal.1986; Kenney&Young1989).Inaddition,morerecentstudiesarefinding clumpydustfeaturesintheupstreamsideofHIgasstrippedgalax- ies,whicharelikelytobesurvivingdensecloudsthatareunveiled afterdiffuseatomicgasisremoved(Crowletal.2005;Abramson &Kenney2014;Kenney,Abramson&Bravo-Alfaro2015). On the other hand, however, the opposite results also have beenreported.Rengarajan&Iyengar(1992)findthatH massnor- 2 malizedbythedynamicalmassofgalaxiestendstogetlargerwith increasing clustercentric distance, which supports that molecular gascanbealsodeficientintheclusterenvironment.Morerecently, Bosellietal.(2014)showthatHI-deficientgalaxiesinthecluster environmenttendtobealsomodestlydeficientinmoleculargas. However,themoleculargasfractiontotheopticalluminosity ofspiralgalaxiesmeasuredusing12CO(1−0)rangesquitewidely forallenvironments(Chung2012).Thisimpliesthatthemolecu- Figure1.ThelocationsofoursampleareshownontheROSATX-raymap lar gas fraction alone may not be a good tracer of molecular gas (bluecontours;Böhringeretal.1994).Redellipsesrepresenttheposition deficiency.Duetothescatterinthisrelationandopposingobser- angleandD25×5ofthesampleintheBband.NGC4569thatwehave vational results, it is still arguable whether molecular gas can be notobservedusingtheSMAbutisincludedinourdiscussionasagood affectedbytheICMpressureinasimilarwaytoHIgas,anditis representative of a galaxy at post-peak pressure, is shown in green. The thenstillpuzzlingwhystarformationappearstobequenchedinHI samplegalaxies,locatedat0.4–1MpcfromM87,adoptingaVirgodistance strippedgalaxiesifmoleculargas,whichisthemoredirectingre- of 16 Mpc (Yasuda et al. 1997), make a nice sequence of ram pressure strippingfromearlystage,closetopeakpressureandpost-peakpressurein dientforstarformation,isnotdeficient. theirorbit. No clear evidence for molecular gas stripping yet low star formationactivitiesinclustergalaxiesmayimplydistinctmolec- ular gas properties in high-density environments as supported by some previous observations. For example, Kenney et al. (1990) inside a galaxy under strong ICM pressure need to be probed. havefoundahighlyasymmetricCOmorphologyinanHIdeficient Hence, using the Submillimeter Array (SMA)1, we have taken Virgoclustergalaxy.Vollmeretal.(2008)alsohavefoundverype- high-resolution12CO(2−1)imagingdataofasubsampleofVirgo culiarCOdistributionsinsomeofVirgospiralsundergoingactive galaxies that have lost atomic gas significantly by ICM pressure. HIstripping.Thesestudiesindicatethatmoleculargascanbepo- Some preliminary results are published in Lee & Chung (2015), tentiallydisturbedbystrongICMpressurewhetheritisstrippedor andinthiswork,wepresentmorecompleteanalysisonbothmor- not. phologyandkinematicsofthreeVirgogalaxiesbasedontheSMA ParticularlyalongthesideexperiencingICMpressure,ithas data. beensuggestedthatinterstellargasincludingthemolecularphase Thispaperisorganizedasfollows.Weintroducethesamplein canbepushedupagainstthecentreofagalaxy.ThisleadstoISM Section2.Detailsofobservationsanddatareductionprocedureare compressionandincreasingH2formation;hence,itlocallytriggers providedinSection3.InSection4,wepresenttheSMAdata,de- intensivestarformation(Fujita&Nagashima1999;Kronbergeret scribingtheCOmorphologyandkinematics.InSection5,wecom- al.2008;Merluzzietal.2013;Henderson&Bekki2016).Indeed, paretheCOandotherwavelengthdatatodiscusshowthemolecu- ISMcompressionwithhighmolecularfractionintheupstreamside largasinthesegalaxieshasbeenaffectedbytheICMpressure.In isseeninanumberofgalaxiesexperiencingICMpressure(Vollmer Section6,wesummarizetheresultsandconclude. etal.2012b;Nehlig,Vollmer&Braine2016),whichareoftenac- A distance of 16 Mpc (1 arcsec ∼78 pc) to Virgo cluster is companied by an enhancement of star formation. Molecular gas adoptedinthiswork(Yasuda,Fukugita&Okamura1997). enhancementamongtheVirgoclustermembershasbeenalsore- cently reported by Mok et al. (2016). These observations clearly showthatmoleculargaspropertiesandhencestarformationactiv- itywithinastellardisccanbeaffectedbyrampressure. 1 TheSubmillimeterArrayisajointprojectbetweentheSmithsonianAs- Therefore, in order to get a deeper understanding on how trophysicalObservatoryandtheAcademiaSinicaInstituteofAstronomy galaxiesbecomepassiveafterHI stripping,notonlythepossibil- and Astrophysics and is funded by the Smithsonian Institution and the ity of stripping but also the detailed properties of molecular gas AcademiaSinica. MNRAS000,1–17(2016) MoleculargaspropertiesofVirgospirals 3 Table1.GeneralInformationofSampleGalaxiesa. Galaxy NGC4330 NGC4402 NGC4522 Rightascension(J2000) 12h23m17s.0 12h26m07s.6 12h33m39s.7 Declination(J2000) +11◦22(cid:48)03(cid:48)(cid:48).5 +13◦06(cid:48)47(cid:48)(cid:48).4 +09◦10(cid:48)30(cid:48)(cid:48).2 Morphologicaltype Sc Sb SBc Inclination(◦) 79 82 79 Positionangle(◦) 60 89 35 Vrad(kms−1)b 1565 232 2328 D25(arcmin) 2.29 3.55 3.47 TotalapparentB-bandmagnitude 12.02 12.05 11.86 TotalK-bandluminosity(109L(cid:12),K)c 6.58 21.30 5.64 MHI(108M(cid:12))d 4.45 3.70 3.40 defHId,e 0.80 0.74 0.86 dM87(◦)d 2.1 1.4 3.3 aGeneral information of the sample galaxies from Paturel et al. (2003) (HyperLeda, http://leda.univ-lyon1.fr/). bcf.theVirgomean∼1100kms−1(Meietal.2007). cSkrutskieetal.(2006),cf.Milkyway:8.24×1010 L(cid:12),K (Drimmel&Spergel2001), M31:1.29×1011L(cid:12),K(Barmbyetal.2006). dtheVIVAstudy(Chungetal.2009). edefHI=(cid:104)log∑HI,all(cid:105)−log∑HI,obs, where (cid:104)log∑HI,all(cid:105) is the mean HI surface density of field galaxies (Haynes & Giovanelli 1984), and log∑HI,obs is the mean HI surface densityofanobservedgalaxy(Chungetal.2009).Inthiswork,morphologyindependent deficiencyhasbeenadoptedasChungetal.(2009). 2 SAMPLEGALAXIES mean star formation quenching time-scale, i.e. how long ago a galaxystoppedformingstars,isnotsignificantlydifferentamong The sample for the SMA observations has been selected from our sample by ranging from 100 to 300 Myr (Crowl & Kenney theVLA(VeryLargeArray)2 ImagingstudyofVirgogalaxiesin 2008; Abramson et al. 2011). Therefore, the detailed CO data of Atomicgas(VIVA)byChungetal.(2009).TheVIVAisahigh- thesethreecasesshouldenableustoprobehowmoleculargasprop- resolution HI imaging study of 53 late-type galaxies that are lo- ertiesandthusstarformationactivitiesaremodifiedbystrongICM catedthroughouttheVirgoclusterfromahigh-densitycoreregion pressure.Inaddition,bycomparingourdatawiththeCOdataof to low-density outskirts. Among the VIVA sample, we have se- NGC4569,whichisknowntohavecrossedtheclusterawhileago lected three galaxies with clear evidence for active HI stripping, (Fig. 1, and has a star formation quenching time (cid:29) ∼300 Myr; NGC 4330, NGC 4402 and NGC 4522 (Fig. 1). Although these Vollmer et al. 2004; Crowl & Kenney 2008), we will probe how galaxiesarethoughttohavelostasimilarfractionofHIgas,being moleculargaspropertiesevolvewithtime,duringthefirstinfallto deficient by a factor of 6∼7 compared to their field counterparts the cluster and under strong ICM pressure, then after core cross- (Table1),theyshowdistinctpropertiesintheirHImorphology. ing.ForNGC4569,whichisnotincludedinourSMAsample,we NGC 4330 is truncated in HI within one side of the stellar makeuseoftheCOdatafromtheHERACLESsurvey(Leroyetal. disc, while it reveals a long HI tail on the opposite side as if the 2009).ThegeneralpropertiesofourSMAsamplearesummarized HI disc is pushed to the tail side (Chung et al. 2009; Abramson inTable1. etal.2011).ThelocationandtheHImorphologysuggestthatthis galaxyisarecentarrival,enteringthehigh-densityregionforthe firsttime(Chungetal.2007),andthisgalaxywillreachthepeak pressureafter100Myr,basedonthesimulationofVollmer(2009). 3 OBSERVATIONSANDDATAREDUCTION Meanwhile,NGC4402hasbeenexperiencingstrongICMpressure inthelast∼150−250Myr(Abramson&Kenney2014),currently The SMA is a radio interferometer with eight antenna elements, crossing the core region (Crowl et al. 2005). Lastly, NGC 4522 6meachindiameter.ItislocatedinMaunaKeaattheelevationof isfartherawayfromtheclustercentrecomparedtoNGC4402in 4080mabovethesealevel. projection,butitsHImorphologyisalsosuggestiveofactiveram OurSMAobservationsweredoneinMarch2010andMarch pressurestrippingasNGC4402.Vollmeretal.(2006)showintheir 2011inthesubcompactconfiguration.Amongeightantennasinto- simulationsthatithasbeenatleast50Myr,sincethisgalaxyexpe- tal,onlysevenantennaswereavailableforourobservationsinboth riencedquitestrongICMpressure.Thisislikelyduetoturbulence years. The total bandwidth of 4 GHz is composed of 48 chunks intheICMthatcouldhavebeencausedbymergingofM49group thatareoverlappedby∼20MHz.Eachchunkwasconfiguredwith tothemaincluster(Kenneyetal.2004). 128channels,eachofwhichis0.8125MHzwidthor1.1kms−1 In spite of subtle differences in their HI morphologies, the at the rest frequency of 12CO (2−1), 230.538 GHz. 12CO for eachtargetwasplacedontheuppersidebandsothat13CO(2−1) (νrest=220.398GHz)andC18O(2−1)(νrest=219.560GHz)fre- 2 TheNationalRadioAstronomyObservatoryisafacilityoftheNational quencieswerecoveredsimultaneously.Thelowersidebandwhere ScienceFoundationoperatedundercooperativeagreementbyAssociated 13CO was included was separated with the upper sideband by Universities,Inc. 10GHz. MNRAS000,1–17(2016) 4 B.Leeetal. Figure2.TheHIdistributionofNGC4330,NGC4402andNGC4522(fromlefttoright)isshowninbluecontoursoverlaidontheDigitizedSkySurvey2 (DSS2,https://archive.stsci.edu/dss/index.html)redimage.TheredcrossindicatesthestellardisccentreofeachgalaxyestimatedfromSpitzer3.6µmdata (Saloetal.2015),andthethinredcirclesrepresenttheSMAobservationpoints,eachofwhichcorrespondstothesizeoftheprimarybeamat230GHz (≈54arcsec). Table2.Observationparameters. Galaxy NGC4330 NGC4402 NGC4522 Observationdate 2011Mar02,03 2010Mar20,21,27 2011Feb28,Mar01 Synthesizedbeam(arcsec) 6.35×4.47 7.21×3.89 6.62×3.92 Positionangle(◦) -28.4 73.4 -26.4 Spectralresolution(kms−1) 5.0 5.0 5.0 Integrationtimeperpoint(h) 2.1 5.5 2.6 rmsperchannel(mJybeam−1) 12COJ=2−1 35.2 16.3 32.7 13COJ=2−1a 29.7 13.0 29.9 Bandpasscalibrators 0854+201,1751+096 0854+201 1751+096,3c279 Fluxcalibrators titan,vesta mars,titan mwc349a,vesta Gaincalibrators 3c273,3c279 3c273,3c279 3c273,3c279 Note.a13CO(2−1)emissionisdetectedonlyinNGC4402. TheprimarybeamoftheSMAis∼54arcsecat12CO(2−1) 4 RESULTS rest frequency. Aiming to cover at least half the stellar disc, we Inthissection,wepresenttheresultsofourSMAobservations.The mosaicked3–5pointsdependingontheopticalsizeofindividual 12CO(2−1)fluxanditsuncertaintyaremeasuredinJykms−1as galaxies as shown in Fig. 2. In the case of NGC 4522, one addi- follows, tional field in the southwest was included to cover the extrapla- ∼na5r.5HhαpaenrdfieHldIdgeaps.enTdhiengtootnalthinetewgeraatthioenrctoimndeitriaonngse,syefrtowmea∼im2etod SCO=∑FCO×∆V±(cid:16)∑σ2(cid:17)21×∆V, (1) toachieveauniformsensitivityforeachgalaxy.DetailsoftheSMA where F is the total flux of CO emission in each channel, ∆V CO observationsaresummarizedinTable2. is the channel separation of the final cube (5 km s−1), and σ is thermsofeachchanneloutsideCOemission.Continuousfeatures above2σ−3σ areconsideredasrealsignalinindividualchannels. CO linewidths are calculated using the velocities, where the flux Flux,gainandbandpasscalibrationsweredoneusingtheMIR densitycorrespondsto20percentand50percentofthepeaksin software(Qi2012).Thecalibratorsusedforourobservationsare the receding and the approaching side, adopting the definition of listed in Table 2. After the calibration, the data had been anal- Rhee&vanAlbada(1996): ysedusingtheMIRIAD.Thecontinuumhasbeensubtractedusing W =V20percent−V20percent, (2) UVLINbyapplyingalinearfittotheuv-datainline-freechannels 20 high low selected based on the HI emission of each galaxy. The imaging and mosaicking were done using INVERT. In order to maximize thesensitivitywhilekeepingoptimalresolution,therobustwasset W50=Vh5i0ghpercent−Vl5o0wpercent. (3) to0.5(forNGC4402)or1(forNGC4330andNGC4522).The TheCOvelocityisdeterminedfollowingVerheijen(1997): channelwidthinthefinalcubewasregriddedto5kms−1,which iscomparabletoHIdata(VIVA;Chungetal.2009).Wehavede- Vsys=0.25(Vl2o0wpercent+Vl5o0wpercent+Vh5i0ghpercent+Vh2i0ghpercent). tected 12CO (2−1) in all three galaxies, while 13CO (2−1) has (4) beendetectedonlyinNGC4402,whichwillbepresentedinasep- aratepaper(Leeetal.inpreparation). FollowingtherecipefromSolomonetal.(1997),12CO(2−1) MNRAS000,1–17(2016) MoleculargaspropertiesofVirgospirals 5 Table3.SMACOpropertiesofsamplegalaxies. NGC4330 NGC4402 NGC4522 W20(kms−1) 208 255 176 W50(kms−1) 184 226 159 Vsys(kms−1) 1562 246 2326 SCO(Jykms−1) 182.22±8.02 1400.76±11.91 139.43±4.77 MH2(108M(cid:12))a 1.19±0.05 8.83±0.08 0.88±0.03 Note.aTheCO-to-H2 conversionfactorof3.2M(cid:12) pc−2 (Kkms−1)−1 is adoptedfromStrong&Mattox(1996). lineluminosityismeasuredasfollows: clump,thevelocitygradientisinverted.Thekinematicalcomplex- LC(cid:48) O(2−1)=3.25×107SCOνo−b2sD2L(1+z)−3, (5) iotfyaissatelseopcvleelaorclyitysegernadinietnhteinPVthDe(cFeingt.ra3lc∼).1A3dairsctsinecct(c∼o1mkppocn)enist inKkms−1pc2,whereS isanintegratedtotal12CO(2−1)flux quitenoticeable.Thismayindicateamolecularringorbar.Inad- CO inJykms−1,DListheluminositydistanceinMpc,νobsistheob- dition,theCOpeakisofffromthestellardisccentreby∼270pc servationfrequencyinGHz,andzistheredshift.Adoptingatypi- (Fig.3a),whiletheCOkinematiccentreismoreorlessconsistent cal 12CO (2−1)/(1−0) ratio of nearby galaxies (R ≈0.8; Leroy withthestellardisccentre(Fig.3c). 21 et al. 2009) and using the conversion relation of normal spirals (αCO =3.2M(cid:12) pc−2 (Kkms−1)−1;Strong&Mattox1996),the moleculargasmasscanbecalculatedby 4.2 NGC4402 M = αCO L(cid:48) (2−1), (6) AsshowninFig.4(a),theCOdiscofNGC4402isslightlymore H2 R21 CO extended in the west (62 arcsec in the west versus 58 arcsec in whereL(cid:48) (2−1)istheluminosityof12CO(2−1)transition.The the east), but the difference is subtle and not as significant as in CO HI.Whatmakesthiscaselookhighlyasymmetricisthenorth-west global CO properties of the sample are summarized in Table 3. quarterofthedownstreamside(thewestsideofthedisc).Inthis On the left of Figs 3–5, the CO intensity map, velocity field and region,amodestCObump(indicatedbyarrowinFig.4a)isfound position-velocitydiagram(PVD)withglobalandradialprofileare as in HI (Fig. 4d). Meanwhile, the southern part of the CO disc presentedin(a),(b)and(c)foreachgalaxy.Theoverlayswithother looks quite compressed along the enhanced far-ultraviolet (FUV) wavelengthdatashownontheright-handsideofFigs3–5aredis- emission(Fig.4e),whichwillbediscussedmoreindetailinSec- cussedinSection5. tion5.Thenorthernpartabovethemajoraxisismeasuredtobe91 percentofthatofthesouthinflux.AlthoughtheCOpeakagrees 4.1 NGC4330 wellwiththestellardisccentre,theinnerCOdiscalsoappearsto beslightlymorestretchedtowardthewest,reflectingtheouterCO As seen in Figs 3(a)–(c), the CO morphology of NGC 4330 is disc. highlyasymmetric,withthesouth-westextentinthedownstream TheCOkinematicsrevealstheevidencefornon-circularmo- side being about 75 per cent (40 arcsec versus 53 arcsec) of the tions as shown in Fig. 4(b). In the inner region, the iso-velocity northeastbutonly68percentwhentheoutermost4arcsecofthe curvesarehighlyskewedandnotperfectlyparallelwiththeminor south-westdisc,whichisbentdowntothesouth(indicatedbyar- axis. The skewness in velocity must be the result of two distinct rowinFig.3a)isexcluded(36arcsecversus53arcsec).Thecen- disccomponentsintheinner∼15arcsec(∼1kpc)beingprojected tral part, within 30 arcsec in diameter (∼2 kpc at the distance of ontheskyasseeninitsPVD(Fig.4c).Thevelocitygradientinthe Virgo),isalsoasymmetricduetothestronglocalpeakinthenorth- outer part is quite different in the two sides of the disc along the east from the stellar disc centre. The distinct extents and surface majoraxis.Inthenorth-westquarter(inthedownstreamside),the densitiesarealsoclearlyseeninradialprofiles.Intheendofthe kinematicsofmodestCObumpisslightlydeviatedfromthemain southwestdiscofthedownstreamside,COisfoundtobeslightly disc. bent (Fig. 3a). This bending is also found in many other wave- ItalsohasadistinctCOcomponentwithsteepvelocitygradi- lengthssuchasUV,Hα andHI,butallaredifferentinscaleand entintheinner∼15arcsec.Thislikelyindicatesanuclearbaror angle from one another as further discussed in Section 5. In the ring,althoughwefavoranuclearbarasthiswouldalsoexplainthe caseofCO,thisbendingpartisclumpy,almostidentifiedasanin- skewedisovelocitycontours.InNGC4402,Sofueetal.(2003a,b) dependentbloborclump(seethearrowinFig.3c).ThisCOclump alsofindanuclearmoleculardisctracedby12CO(1−0)inthein- correspondsto2percentofthetotalinflux(∼1.9×106M(cid:12),com- ner∼10arcsec.Wedonotfindanydirectrelevanceofthesenuclear parabletothatofalargemolecularcloud).Thecentreoftheclump structureswithrampressurestripping. isofffromthemid-planeofthemaindisctowardthesouthby∼4 arcsec(∼312pc). TheCOkinematicsalsoshowspeculiarstructures,especially 4.3 NGC4522 alongthesouth-westconcentrationandtheendofthetailasshown inFig.3(b).Thevelocitygradientofthesouth-westisquitesteep, While the overall size of 12CO (2−1) disc in the SMA image is whileitismoreslowlyrisingontheothersidewithinthesmallradii consistentwiththeextentmeasuredbyasingledishforNGC4330 fromthecentre,reaching72kms−1 ontheapproachingsidebut (Vollmeretal.2012a)andNGC4402(Leeetal.inpreparation), only43kms−1ontherecedingat15arcsecradii.Inthesouth-west ourSMAdataofNGC4522revealonlytheinner∼57percentof MNRAS000,1–17(2016) 6 B.Leeetal. Figure3. NGC4330:(a)12CO(2−1)integratedintensitymap(the0thmoment)ingrey-scalewithcontours.Contourlevelsare0.3,1.5,4,8,12,16,20 Jybeam−1kms−1.Thesynthesizedbeamsizeis6.35arcsec×4.47arcsec(blueellipseatthebottomright).Thewhitecrossindicatesthestellardisccentre. (b)12CO(2−1)velocityfieldmap(the1stmoment).Velocitycontoursaredrawninevery10kms−1from1470kms−1to1670kms−1.Thewhitecross againindicatesthestellardisccentre.(c)Upperleft:aposition-velocitycutthroughthemajoraxisintegratedalongtheminoraxis.Contourlevelsare0.7,1.4, 2.1,2.8,3.5Jybeam−1.TheCOclumpisindicatedbyblackarrow.Right:theglobalprofileof12CO(2−1).TheCOvelocity(1562kms−1)isindicatedwith anarrow.Bottom:thegassurfacedensities(HIandH2)alongtheapproachingsideandtherecedingsideontherightandtheleft,respectively.(d)Anoverlay of12CO(2−1)(bluecontours)onHI(redcontours)andDSS2red(blackcontours).SynthesizedbeamoftheVLAandtheSMAareshowninredandblue atthebottomleft.TheentireCOdiscislocatedinsidetheopticaldisc.Unlikethestellardisc,however,theCOdiscisfoundtobehighlyasymmetricasthe atomicgasdisc.(e)12CO(2−1)(bluecontours)isoverlaidonFUVemission(blackcontoursandgrey-scale).FUVtailisalsoextendedandbenttowardthe south-westasCOandHIgastail.(f)12CO(2−1)(bluecontours)overlaidontheHαemission(grey-scale).Theoverallbendingshapecoincideswellbetween HαandCO,whileCOisnotextendedasmuchasHα. MNRAS000,1–17(2016) MoleculargaspropertiesofVirgospirals 7 Figure4. NGC4402:(a)12CO(2−1)integratedintensitymap(the0thmoment)ingrey-scalewithcontours.Contourlevelsare1,5,10,30,50,70,90 Jybeam−1kms−1.Thesynthesizedbeamsizeis7.21arcsec×3.89arcsec(blueellipseatthebottomright).Thewhitecrossindicatesthestellardisccentre. AmodestCObumpisindicatedbyblackarrow.(b)12CO(2−1)velocityfieldmap(the1stmoment).Velocitycontoursaredrawninevery20kms−1from 120kms−1to360kms−1.Thewhitecrossagainindicatesthestellardisccentre.(c)Upperleft:aposition-velocitycutthroughthemajoraxisintegratedalong theminoraxis.Contourlevelsare0.5,1.5,3,5,7,9,11Jybeam−1.Right:theglobalprofileof12CO(2−1).TheCOvelocity(246kms−1)isindicatedwith anarrow.Bottom:thegassurfacedensities(HIandH2)alongtheapproachingsideandtherecedingsideontherightandtheleft,respectively.(d)Anoverlay of12CO(2−1)(bluecontours)onHI(redcontours)andDSS2red(blackcontours).12COgasiswellconfinedwithintheopticaldisc,whileHIispushedoff outsidefromthestellardisc.Theopticaldiscdoesnotlookdisturbed,whilebothmolecularandatomicgascomponentsrevealasymmetryinasimilarsense. (e)12CO(2−1)(bluecontours)isoverlaidonFUVemission(blackcontoursandgrey-scale).FUVisfoundtobeenhancedalongtheCOcompression.(f) 12CO(2−1)(bluecontours)overlaidontheHαemission(grey-scale).Theoverallextentandmorphologywellcoincidewitheachother. MNRAS000,1–17(2016) 8 B.Leeetal. Figure5. NGC4522:(a)12CO(2−1)integratedintensitymap(the0thmoment)ingrey-scalewithcontours.Contourlevelsare0.3,1.5,4,8,12,16,20 Jybeam−1kms−1.Thesynthesizedbeamsizeis6.62arcsec×3.92arcsec(blueellipseatthebottomright).Thewhitecrossindicatesthestellardisccentre. (b)12CO(2−1)velocityfieldmap(the1stmoment).Velocitycontoursaredrawninevery10kms−1from2250kms−1to2400kms−1.Thewhitecross againindicatesthestellardisccentre.(c)Upperleft:aposition-velocitycutthroughthemajoraxisintegratedalongtheminoraxis.Contourlevelsare1.5, 2.0,2.5,3.0,3.5,4.0,4.5,5.0Jybeam−1.Right:theglobalprofileof12CO(2−1).TheCOvelocity(2326kms−1)isindicatedwithanarrow.Bottom:the gassurfacedensities(HIandH2)alongtheapproachingsideandtherecedingsideontheleftandtheright,respectively.(d)Anoverlayof12CO(2−1)(blue contours)onHI(redcontours)andDSS2red(blackcontours).OurSMAdatarevealonlytheinnerpartofthemoleculargasdisc,missingouttheouterpart thatisdetectedbytheIRAM(Vollmeretal.2008)duetothelackinpointingsandsensitivity.InSection4and5,wemorefocusonthemorphologyand kinematicsrevealedbytheSMA.(e)12CO(2−1)(bluecontours)isoverlaidonFUVemission(blackcontoursandgrey-scale).EnhancedFUVemissionis foundalongthesideonwhichtheICMwindispresumablyacting.(f)12CO(2−1)(bluecontours)overlaidontheHαemission(grey-scale).TheinnerCO discisslightlybenttowardsouth-eastastheinnerHαdisc. MNRAS000,1–17(2016) MoleculargaspropertiesofVirgospirals 9 itssingle-dishmapinsize(Vollmeretal.2008).WhileVollmeret usingLucy’s(1974)iterativedeconvolutionmethod.Thenthestrip al. (2008) have detected CO along the extraplanar Hα and HI in integralsofapproachingandrecedingsidesaredeprojectedsepa- both ends of the disc, we did not detect any such features in the ratelytoinfertheface-onHIsurfacedensity(Kregel,vanderKruit south-west in our SMA data due to the lack of sensitivity and/or &deBlok2004).Thesurfacedensityofbothatomicandmolec- potentiallyduetothediffusenatureofgasintheoutermolecular ularhydrogenismeasuredinM(cid:12) pc−2.Thecomparisonbetween disc.Thenorth-eastendwasnotcoveredintheSMAobservations. atomicandmoleculargasradialdistributionsisfoundinthebottom Therefore, we limit our discussion to only the inner CO disc for on the left-hand column of Figs 3–5. Overlays between CO and this particular case in this section and we cite the IRAM single- othermultiwavelengthdataarepresentedontheright-handcolumn dishdatawhenitisneededforcomparisonswithotherwavelength ofFigs3–5andFig.6. datainSection5. Forthereference,theIRAM12CO(2−1)mapsarealsoover- AsshowninFig.5,theCOextentiscomparableinbothsides laid in the composite map. The sensitivity of the IRAM cubes is (27.4arcsecinthenorth-eastversus27.6arcsecinthesouth-west). ∼10mKper5kms−1 channel(thesamechannelwidthasours), TheinnerCOdiscofNGC4522isfoundtobecurvedintheop- which is comparable to the SMA cubes or slightly better in the posite way to the outer CO and HI disc, i.e. to the south-east as casesofNGC4330andNGC4522whenthedifferentspatialres- theinnerHα disc.Wefindtwofeaturesstickingoutfromthein- olutionsaretakenintoaccount(∼11arcsecversus∼5arcsecfor nerpart,onefromtheendofnorth-eastdiscandanotheralmostto IRAMandSMA,respectively).ForNGC4402,thesensitivityof thesamedirectionbutconnectedfromthecentreofthemaindisc, SMAdataissomewhatbetterthantheIRAMdatanotonlybecause moretothesouth.Thenorth-eastblobcoincideswiththemorphol- of the sufficient integration time with the SMA but also because ogyoftheinnerCOdiscintheIRAMimage(Fig.6c;Vollmeret of the poor weather condition when the IRAM data were taken. al.2008),whichissmoothlyconnectedtothediscfartherextended For NGC 4330 and NGC 4402, the IRAM and SMA maps are inthenorth-east,coincidingwithadustloopinthisregion.While generallyingoodagreementinmorphology,consideringthebeam thedownwardbendingcoincideswiththeinnerspiralstructurein- sizes, while we are missing most of the extraplanar molecular of cludingthedustfeature(seeFig.A1inAppendixA). NGC4522intheSMAdataduetothelackincoverage,sensitivity, The CO velocity structure within the main disc generally and/orpotentiallyduetothediffusenatureofmoleculargasinthe showsthatofaregularlyrotatingdiscasseeninFigs5(b)and(c). extragalacticspaceasfurtherdiscussedinSection5.1.3. Thevelocitykeepsrisingupto∼10arcseconbothsides,thenal- mostflattensout,andtowardtheendofthedisc,thevelocityrises again.Thevelocitygradientalongthenorth-eastbranchisoverall 5.1.1 NGC4330 consistentwiththatofthemaindisconthesameside.However,the gradientissmallerandthevelocityrisesmoreslowlycomparedto Asymmetry is ubiquitous in a range of wavelengths data except theotherside. intheredopticalimage(DSS2red).InFig.6(a),weseethatthe HIistruncatedwithinthestellardiscinthenorth-east,whereHα and FUV emission reveals an upturn feature (Chung et al. 2009; 5 DISCUSSION Abramsonetal.2011).Ahintofupturnisalsofoundinthenorth- east end of the upstream of radio continuum at 6 cm and 20 cm 5.1 Comparisonwithotherwavelengthdata (Chung et al. 2009; Vollmer et al. 2012a). The single-dish 12CO In this section, we compare 12CO (2−1) properties with other (2−1)data(Vollmeretal.2012a)appeartobesimilartotheradio wavelengthdataincludingHI (Chungetal.2009),optical(DSS2 morphology,alsowithsomehintofupturn,althoughtheextentof red), FUV (Gil de Paz et al. 2007), and Hα (NGC 4330 and themoleculargasismuchlessthanthatofHI.InourSMAdata,we NGC 4569 from Gavazzi et al. 2003; Abramson et al. 2011, aremissingsomeoutermostfeaturesincludingthetipofthenose NGC 4402 from Crowl et al. 2005, NGC 4522 from Koopmann, inthenorth-east.Instead,theSMAdataclearlyrevealverydetailed Kenney,&Young2001).COtracesstar-forminggas,andHα and structuresoftheinnerCOdiscsuchasthedifferenceinscaleheight FUV emission are good indicators of star formation with time- betweenthenorthandthesouthalongthemajoraxis(upto∼0.36 scalesof∼20and100Myr,respectively(Kennicutt1998).Wealso kpc,Fig.3a)whichisnotasclearasthisintheprevioussingle-dish comparetheradialgassurfacedensitybetweenatomicandmolec- data. ularhydrogen.TheHIcolumndensityiscalculatedusing, Thesouth-westside,i.e.thedownstreamofthegalaxywhere anHIgastailispresent,isbenttowardthesouth.Onthisside,we N(HI)=1.82×1018×∑T (cid:52)V (7) B also find FUV, Hα and radio continuum tail but the extents and incm−2,where∑TB(cid:52)V istheintegratedintensity(brightnesstem- bending angles are all different in various wavelengths (Fig 6a). perature)inKkms−1(Walteretal.2008).TheH surfacedensity The distribution becomes patchy in the outer CO disc as seen in 2 isestimatedbythefollowingrelation: bothIRAMsingle-dishdata(Vollmeretal.2012a)aswellasour SMAdata.Intriguingly,theCOblobtowardtheendislocatedin N(H2)= αRCO I(CO) (8) almostthesamegalacticradiusasoneofthedistinctHαblobsand 21 offfromthemid-planeinthesamedirectionasthetailsoftheother inM(cid:12)pc−2,whereI(CO)is12CO(2−1)integratedintensity,and wavelengths(Fig6a). αCO is the same as in equation (6). Considering the high inclina- Asclearlyseen,themoleculardisc,whichextendstoonlyhalf R21 tionofallthreegalaxiesinoursample,weutilizethestripintegral thestellardiscorless,showsmanypropertiesincommonwiththe methodinsteadofellipsefittingtoderiveradialsurfacedensitybe- morphologiesintheotherwavelengths,reflectingtheimpactofthe cause ellipse fitting is usually inappropriate for edge-on galaxies ICMpressure.Althoughtherearesubtledifferences,thissuggests whenthespatialresolutionislimited(Warmels1988a;Rhee&van thatthemoleculargasinthisgalaxyhasbeenalsoaffectedinsim- Albada1996;Swaters1999).Thismethodcalculatesstripintegrals ilar ways by the same mechanism that is responsible for the pe- byintegratingHIcolumndensityperpendicularlytothemajoraxis, culiaritiesfoundintheotherwavelengths.ThisindicatesthatICM MNRAS000,1–17(2016) 10 B.Leeetal. Figure6.AcompositemapofFUV(blue;GildePazetal.2007),Hα (NGC4330andNGC4569fromGavazzietal.2003,NGC4402fromCrowletal. 2005,NGC4522fromKoopmannetal.2001),optical(black;DSS2red),HI(green;Chungetal.2009)and12CO(2−1)(whitecontoursfromourSMA data)ofNGC4330(redshifted),NGC4402(blueshifted),NGC4522(redshifted),andNGC4569(blueshifted).TheIRAM12CO(2−1)dataareshownin yellowcontours.Contourlevelsare3.7,7.5Jybeam−1kms−1forNGC4330(Vollmeretal.2012a);5,20Jybeam−1kms−1forNGC4402(Leeetal.in preparation);1.7,3.5,5.3Jybeam−1kms−1forNGC4522(Vollmeretal.2008)and14,71,106,214,498,712Jybeam−1kms−1forNGC4569(Leroyet al.2009).TheICMwinddirectiondeducedfromHImorphologyisshownwithblackarrows(Vollmeretal.2004;Crowletal.2005;Abramsonetal.2011; Abramson&Kenney2014).NGC4330,NGC4402andNGC4522areatrelativelyearlytoactiveHIstrippingstageduetotheICM,whileNGC4569is thoughttobeapost-peakpressurecasewheresomeHIgasisfallingbackonthediscaftercorecrossing. pressurecanchangemoleculargaspropertieswellinsidethestellar in the west (indicated by arrow in Fig. 4a), although the scale is disc. distinct because the HI bump is visible in extraplanar gas. HI is truncatedwithinthemid-planeofthestellardisconbothsides,with asharpcut-offintheeasttosouthalongtheupstream.Meanwhile, the northern side is more extended with a short tail pointing the 5.1.2 NGC4402 north-westinthedownstreamside.Theextentofthemoleculargas TheCOemissionshowsanumberofpropertiesincommonwith is not significantly different in the receding and the approaching theHI gas(Fig.4d).Itissomewhatextendedinthewest,i.e.the side,yetitsdistributionisquitedistinct.Thesedifferencesbetween samesidewheretheHIismoreextended.Bothphasesshowabump thetwosidesoftheCOdisccanbealsoclearlyseenintheradial MNRAS000,1–17(2016)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.