ebook img

The Effect of Absorption Systems on Cosmic Reionization PDF

6.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Effect of Absorption Systems on Cosmic Reionization

DRAFTVERSIONJANUARY20,2012 PreprinttypesetusingLATEXstyleemulateapjv.03/07/07 THEEFFECTOFABSORPTIONSYSTEMSONCOSMICREIONIZATION MARCELOA.ALVAREZ1 ANDTOMABEL2 DraftversionJanuary20,2012 ABSTRACT Weuselarge-scalesimulationstoinvestigatethemorphologyofreionizationduringthefinal,overlapphase. Ourmethodusesanefficientthree-dimensionalsmoothingtechniquewhichtakesintoaccountthefinitemean freepathduetoabsorptionsystems,λ ,byonlysmoothingoverscalesR <λ . Thelargedynamicrangeof abs s abs ourcalculationsisnecessarytoresolvetheneutralpatchesleftattheendofreionizationwithinarepresentative 2 volume; we find that simulation volumes exceeding several hundred Mpc on a side are necessary in order to 1 properlymodelreionizationwhentheneutralfractionis(cid:39)0.01−0.3. Ourresultsindicateastrongdependence 0 ofpercolationmorphologyonalargeanduncertainregionofmodelparameterspace.Thesinglemostimportant 2 parameter is the mean free path to absorption systems, which serve as opaque barriers to ionizing radiation. n If these absorption systems were as abundant as some realistic estimates indicate, the spatial structure of the a overlapphaseisconsiderablymorecomplexthanpreviouslypredicted.Inviewofthelackofconstraintsonthe J meanfreepathatthehighestredshifts,currenttheoriesthatdonotincludeabsorptionbyLyman-limitsystems, 9 andinparticularthree-dimensionalsimulations,mayunderestimatetheabundanceofneutralcloudsattheend 1 of reionization. This affects predictions for the 21 cm signal associated with reionization, interpretation of absorptionfeaturesinquasarspectraatz∼ 5−6,theconnectionbetweenreionizationandthelocaluniverse, ] O and constraints on the patchiness and duration of reionization from temperature fluctuations measured in the cosmicmicrowavebackgroundarisingfromthekineticSunyaev-Zel’dovicheffect. C Subjectheadings:cosmology: theory—darkages,reionization,firststars—intergalacticmedium . h p - 1. INTRODUCTION Directsimulationofalltheprocessesinvolvedinreioniza- o tion is not currently possible. Theoretical studies focus ei- On scales relevant to the large-scale structure of reioniza- r ther on the small scale hydrodynamics and radiative transfer t tion–hundredsofMpc–numericalcalculationscannotself- s (e.g.,Miralda-Escudéetal.2000;Gnedin2000;Haimanetal. a consistentlytrackallthesourcesandsinksofionizingradia- 2001; Shapiro et al. 2004; Ciardi et al. 2006; Pawlik et al. [ tion. ResolvingtheIGMonthesmallscalesrelevanttoQSO 2009;Raicevic&Theuns2011;McQuinnetal.2011),oron absorption systems optically-thick at the Lyman edge, also 2 thelargescalemorphologyofreionization(e.g.,Abel&Wan- known as Lyman limit systems (e.g., Weyman et al. 1981; v delt 2002; Furlanetto et al. 2004; Iliev et al. 2006; McQuinn Tytler1982;Mo&Miralda-Escudé1996),isparticularlydif- 2 etal.2007;Trac&Cen2007;Shinetal.2008;Friedrichetal. ficult. Theseabsorptionsystemswerelikelytohaveimpeded 3 2011). On the largest scales, it has been somewhat surpris- theprogressofreionization(e.g.,Miralda-Escudéetal.2000; 1 ing how well simplified “semi-numerical” approaches (e.g., 6 Gnedin&Fan2006). Zahnetal.2007;Mesinger&Furlanetto2007;Thomasetal. . Whatarelikelyvaluesforthecomovingabsorptionsystem 3 2009;Choudhuryetal.2009;Alvarezetal.2009;Santosetal. mean free path at the end of reionization, λ ? Prochaska 0 abs 2010;Zahnetal.2011a;Mesingeretal.2011a)matchmuch et al. (2009) determined the abundance of Lyman-limit ab- 0 sorption systems, dN/dz=1.9[(1+z)/4.7]5.2, over the red- morecomputationallyexpensiveradiativetransfertechniques 1 (e.g., Abel et al. 1999; Gnedin & Abel 2001; Sokasian et al. shift range 3.6 < z < 4.4, which translates into a comov- : v ing mean free path of λ = c/H(z)/(dN/dz) ∼ 415 Mpc 2001;Abel&Wandelt2002;Ilievetal.2006;McQuinnetal. i at z=3.7. This dependeanbcse on redshift is steeper than re- 2007; Trac & Cen 2007). In order to efficiently survey the X wideparameterspaceofλ andfocusonthelargescalemor- portedpreviously(e.g.,Storrie-Lombardietal.1994),andim- abs ar plies λabs ∝(1+z)−6.7. However, Songaila & Cowie (2010) pthheosloimgyplainfidedovseemrail-lnpurmogerreicssaloafprperiooancizha.tOiounr,wimephleamveenchtaotsioenn extended the constraints out to z∼6, finding a much shal- lower dependence, λ ∝ (1+z)−3.44, with a measurement is similar to that of Zahn et al. (2007), with the the addition abs ofatreatmentofphotonconsumptioninabsorptionsystems. of λ (cid:39)34 Mpc at z∼5.7. Comparison of the absorption abs Ourapproach,inwhichwetreatabundanceofabsorbersasan spectraandhydrodynamicsimulationscanalsoconstrainλ , abs input parameter, is complementary to that taken by Crociani with Bolton & Haehnelt (2007b) reporting 20 < λ < 50 abs et al. (2011), where the semi-numerical approach was used Mpc at z∼6. The evolution of the mean free path at z<6 to determine the large scale distribution of absorbers, rather leavesopenawiderangeofpossiblevaluesduringthereion- than to model the effect of the absorbers on the progress of izationepoch, fromseveraltohundredsofMpc. Ourgoalis reionization,aswedohere. todeterminethesensitivityofthehistoryandmorphologyof Our results are parametrized by different values of for the reionizationtothiswiderangeofpossiblemeanfreepaths. minimum source halo mass, ionizing efficiency of collapsed Electronicaddress:[email protected] matter, and the absorption system mean free path. We de- 1CanadianInstituteforTheoreticalAstrophysics,UniversityofToronto, scribeoursimulations in§2, followedbythemain resultsin 60St.GeorgeSt.,Toronto,ONM5S3H8,Canada §3,endingwithadiscussionin§4.Allcalculationsweredone 2KavliInstituteforParticleAstrophysicsandCosmology,StanfordUni- using(Ω ,Ω ,h,σ ,n )=(0.27,0.73,0.72,0.8,0.96),consis- versity,MenloPark,CA94025,USA m Λ 8 s tentwithWMAP7-yeardata(Komatsuetal.2011). Alldis- 2 ALVAREZ&ABEL TABLE1 SIMULATIONPARAMETERS τes Mmin λabs tev ζ z1/2 z0.9 zov λ0 [M(cid:12)] [Mpc/h] [Myr] [Mpc] 0.06 108 8 - 20 8.1 5.9 4.3 87 0.06 108 32 - 16 8 6.3 5 181 0.06 108 256 - 14.5 8 6.8 6.2 294 0.06 109 8 - 78 8.2 6.6 5.6 98 0.06 109 32 - 60 8.1 6.8 6 210 0.06 109 256 - 40 8.1 7.24 6.9 375 0.09 108 8 - 137 11 9.2 8 94 0.09 108 32 - 110 10.9 9.5 8.5 201 0.09 108 256 - 98 10.9 9.9 9.5 345 0.09 109 8 - 1200 11.1 9.8 9.1 105 0.09 109 32 - 920 11 10 9.3 232 0.09 109 256 - 820 11 10.3 10 443 0.12 108 8 - 1050 13.5 12.5 11.1 99 0.12 108 32 - 850 13.5 12.2 11.4 216 0.12 108 256 - 750 13.4 12.6 12.2 396 0.12 109 8 - 2.2e4 13.5 12.5 11.9 109 0.12 109 32 - 1.7e4 13.5 12.6 12.1 248 0.12 109 256 - 1.5e4 13.5 12.9 12.7 500 0.09a 108 8 - 102 10.9 9.7 8.3 - FIG. 1.—Bubblemeanfreepath,λb,asafunctionofmeanneutralfrac- 0.09a 108 32 - 94 10.8 9.9 9.6 - tion,xHI. Allmodelsexhibitacharacteristicscaleof∼10Mpcatthehalf- 0.09a 108 256 - 92 10.8 10 9.8 - ionizedepoch. Duringpercolation,lowervaluesofλabs leadtolowerval- 0.06 108 - 10 15 8.2 6.9 6.4 300 ues of λb. The solid line corresponds to the evaporating minihalo model 00..0066 110088 -- 15000 1155 88..10 66..41 55..63 216740 λwbith∝txevH−2I=/3.100 Myr. At xHI <0.1 the relation approaches approximately theedgeofabubbleisλ /λ ,andtheionizationrateissup- aObtainedusingsharpk-spacefiltering abs b pressed. tancesarecomoving. A more realistic treatment would involve allowing F, λ , b andλ tovaryspatially,obtainingaspatially-dependentso- 2. SIMULATIONS abs lutionofequation(1),whichcanthenbeaveragedtofindthe Table 1 shows our simulation parameters: ζ, the ioniz- globalreionizationhistory. Wehavechosenthesimpleruni- ing efficiency, λ , the comoving absorption system mean abs formmodelofequation(1)asastartingpoint. Althoughthis free path, t , the photoevaporation time for the evolving ev choice does not affect our results on the morphology of the λ models, and M , the minimum halo mass of galaxies. abs min ionizationfieldatfixedionizedfraction,theassumptionsun- Alsoshownaretheredshiftswhentheglobalionizedfraction derlyingequation(1)shouldbekeptinmindwheninterpret- equals0.5,0.9,and1–z ,z ,andz ,respectively,andthe 0.5 0.9 ov ingthereionizationhistoryandphotonconsumptionrateswe bubblemeanfreepathwhentheneutralfractionis0.1, λ ≡ 0 find. λ (x =0.1). TheparameterswerevariedtogiveaThomson b HI scatteringopticaldepthof(τ−,τ0,τ+)=(0.06,0.09,0.12),corre- 2.2. Spatialvariations sponding to the 2-σ constraint from WMAP (Komatsu et al. Our three-dimensional model is based on that of Furlan- 2011),withtheHeIfractiontrackingHI,andinstantaneous HeIIreionizationatz=3. Allsimulationsused40963cellsin ettoetal.(2004),laterextendedtothreedimensionsbyZahn etal.(2007). Itsmainassumptionisthataregionisfullyion- a2Gpc/hbox. ized if its collapsed fraction is greater than some threshold, 2.1. Meanreionizationhistory ζfcoll >1. As shown in Alvarez et al. (2009), by smoothing the linear density field over a range of scales, one can effi- Wemodelthemeanreionizationhistorywtihtwospatially ciently determine when each point is first reionized, z . We uniformmeanfreepaths: thatcorrespondingtoionizedbub- r do not smooth over scales with radii larger than λ , since bles, λ , and Lyman-limit systems, λ . Ionizing radiation abs b abs absorptionsystemsshieldradiationfromthesedistances. We isattenuatedbytheirsuperposition,sothatλ−1 =λ−1+λ−1. mfp b abs assumethattheabsorptionsystemscontributeaspatiallyuni- The spatially averaged ionizing flux is F(z) = λ (z)(cid:15)(z), mfp formopacity,andthereforethescalebeyondwhichwedonot where (cid:15)(z) is the ionizing photon emissivity. We set (cid:15)(z)= smoothisthesameeverywhere. ζnH,0f˙coll(z), whereζ isnumberofionizingphotons percol- Thisapproachisdesirablebecausetheorderinwhichpoints lapsed hydrogen atom, corrected for recombinations outside are ionized is the same as that in which the Furlanetto et al. ofabsorptionsystems. Themeanionizationrateis (2004)criterionisfirstmetaroundeachpoint. However, the reionizationredshiftsdonotgenerallyresultinthecorrectav- dx λ (z) =ζf˙ (z) abs . (1) erage ionization fraction for a sharp smoothing filter in real dt coll λ (z)+λ (x) abs b space(seebelowforsolutionsusingasharpfilterink-space, When λ (cid:29)λ , photons typically reach the edges of bub- which does conserve photons; Zahn et al. 2007). To obtain abs b bleswithoutbeingabsorbedbyinterveningLyman-limitsys- a self-consistent solution, we determine a correction to the tems, and the photoionization rate is equal to the emission reionization redshift at each point, z (z ), by matching the r,c r rate. When λ (cid:28)λ , the probability of a photon reaching simulated reionization history to the global reionization his- abs b ABSORPTIONSYSTEMS&REIONIZATION 3 FIG. 2.—Globalreionizationhistories(bottom)andphotonconsumption(top). Differentcolorsindicatedifferentvaluesofλabs,whilethepanelsindicate differentThomsonscatteringopticaldepths,τes=0.06,0.09,and0.12,fromlefttoright. Notethatinallcasestheearlypartofthereionizationhistoryis insensitivetoλabs,whenthebubblesarerelativelysmaller.Lowervaluesofλabsdelaytheendofreionization. tory, giventhatwewanttoexcludescalesR >λ . However,for f abs (cid:90) ∞dp (cid:90) ∞dxdt comparisonwehavecalculatedafewcaseswithsharpk-space dz= dz, (2) filtering,showninTable1. dz dt dz zr zr,c The ionization history is found by integrating a diffusion where dp/dz is the distribution of uncorrected simulated equationforthedistributionindensityofpointsthathavenot reionization redshifts, and dx/dt is given by equation (1). crossedthebarrier(Bondetal.1991), Thiscalibrationproceduredoesnotchangetheoveralltopol- ∂Π(Λ,δ˜,z) 1∂2Π ∂δ˜∂Π ogy we find at fixed ionized fraction, but does change the = − , (3) overallreionizationhistory. ∂Λ 2 ∂δ˜2 ∂Λ ∂δ˜ Wecalculateλb(x)byrandomraytracing. Ifaraystartsin with boundary condition Π(Λ,0,z)=0, where δ˜≡B(Λ,z)− an ionized region, it is extended in a random direction until δ, δ is the density contrast, B(Λ,z) = δ (z)−erf−1(1− it reaches a neutral cell. The bubble mean free path is then c (cid:113) the average over the lengths of all such rays. The average ζ−1) 2(σ2 −Λ)isthebubblebarrier(Furlanettoetal.2004), convergeswithontheorderof104rays. min andσ2 isthevarianceofthez=0lineardensityfieldatthe About30logarithmically-spacedsmoothingscalesaresuf- min scaleofM ,withthegrowthofstructureencodedinthetime ficienttoconvergeonthereionizationmorphology. Because min dependenceofδ (z). we determine the reionization redshifts simultaneously, the c Wesmoothonlyoverscaleslargerthanλ bystartingin- amountofdatastoredandtheoperationcountaregreatlyre- abs tegrationofequation3atΛ ≡σ2(λ )–thevarianceonthe duced compared to determining the ionization field at each i abs scale of the mean free path is matched to the one obtained redshift. Since the assumption that points are either highly- usingatop-hatfilterinrealspace–withinitialcondition ionized or neutral is made in both cases, no information is lostbyfollowingthemoreefficientapproach. 1 (cid:34) (δ˜−B(Λ,z))2(cid:35) Π(Λ,δ˜,z)= √ exp − i . (4) 2.3. Sharpk-spacefiltering i 2πΛi 2Λi Using a sharp k-space filter leads to a method which does The total ionized fraction is obtained by integrating over the conserve photons (Zahn et al. 2007) in the long mean free distributionatΛ=σ2 , min pathlimit,attheexpenseofusinganunphysicalfilterwhich (cid:90) ∞ “rings” in real space, and an ambiguity in the assignment of x(z)=1− Π(σ2 ,δ˜,z)dδ˜. (5) a smoothing scale R to the filter k – particularly troubling min f f 0 4 ALVAREZ&ABEL IftheinitialconditionforΠisspecifiedatΛ=0,(i.e. starting atascale→∞),thenthiscorrespondstosmoothingoverall scales,and (cid:20) (cid:113) (cid:21) x(z)=ζerfc δ (z)/ 2σ2 =ζf (z). (6) c min coll 2.4. Evolvingλ duetominihalos abs To model an evolving value of λ , we assume that the abs absorption systems are minihalos(e.g., Abel & Mo 1998). Given that the halo cross section increases as M2/3, while dn/dlnM ∝ M−1, small objects should dominate the mean free path, subject to photoevaporation effects (e.g., Haiman etal.2001;Shapiroetal.2004). Consider a uniform distribution of dark matter halos with anumberdensityn (z)≡dn/dlnM . Wewillassumethatin h h neutralregions, halosatmassM havegasfractionsofunity h and would serve as Lyman-limit absorptions systems, while in ionized regions, such halos survive for a time t before ev beingevaporatedbytheionizingbackground. Thenumberof absorptionsystemsevolvesaccordingto ddnazbs = ddlnzx(nh−nabs)+ξev(1+z)−5/2nabs(z), (7) eFlsIGco.n3s.i—der(etdoph)eNree,uitnraaldfrdaictitoionntvost.hreedrsehfeifrtefnocrethceasteh,refeorevwohlvicinhgλλababss→mo∞d- (right-mostdottedcurve). (bottom)Absorptionmeanfreepathvs. redshift. whereξ ≡(H Ω1/2t )−1(cid:39)260(t /100Myr)−1. Wechoose As the last neutral patches are cleared away, so are the last reservoirs of ev 0 m ev ev coldneutralgasinwhichtheminihaloscansurviveasabsorptionsystems,so Mh =5.7×103M(cid:12)[(1+z)/10]3/2, corresponding to the cos- λabsincreasesattheendofreionization. Astheevaporationtimedecreases, mological Jeans mass, and consider three models, in which thedestructionrateofabsorptionsystemsincreases,leadingtolongermean t =10, 50, and 100 Myr. These timescales are relatively freepaths. AlsoshownaretheconstraintsonλabsfromBolton&Haehnelt ev (2007b)atz=5and6. long compared with the rather short photoevaporation times simulation volumes in excess of several hundred Mpc on a forlow-masshalosfoundbyShapiroetal.(2004). However, sidearenecessaryinordertoproperlymodelthelasttenper if reionization is “photon-starved”, as observations are sug- gesting(e.g.,Bolton&Haehnelt2007b), thenthefluxcould centofthereionizationprocess. AtxHI<0.1, λb∼xH−2I/3, in be low at the end of reionization, leading to longer evapora- agreementwiththemodelofMiralda-Escudéetal.(2000),in tiontimes. whichaconstantnumberofneutralcloudsdecreaseinsizeat Themeanfreepathis thesamefractionalrateattheendofreionization. The reionization history for all of the fixed λ models is abs λ−1(z)=πR2 (z)n (z), (8) shown in Fig. 2. The early evolution is not sensitive to λ , abs vir abs abs becausethephotonmeanfreepathisdeterminedbythesize whereR correspondstothehalovirialradius. However,the vir of the ionized bubbles themselves. At later times, when the boundariesoftheabsorptionsystemsarenotwell-defineddue bubblesizesbecomecomparabletoλ ,thereionizationhis- to hydrodynamic effects and departures from spherical sym- abs toryissensitivetoλ ,ascanbeseenbycomparingtheevo- metry.Forourpurposes,theminihalomodelwedescribehere abs lution for the bracketing values of 8 Mpc/h and 256 Mpc/h. is sufficient to incorporate the effect of an evolving absorp- Fortheλ =8Mpc/hcase,theredshiftatwhichtheoverlap tionsystemmeanfreepathinourcalculations. Moreaccurate abs occursisdelayedby∆z∼1.5, relativetoλ =256Mpc/h, modelingofabsorptionsystemsduringreionizationwillneed abs forτ =0.09(seealsothe“z ”entriesinTable1). to incorporate the radiative transfer of ionizing radiation in es ov AlsoshowninFig.2isthenumberofionizingphotonsper cosmological hydrodynamics simulations which resolve the ionizedatom, Jeansmass. poWinetssttoarctrowsisththaenbianrirtiiearlagtuseosmsefosrcaλleabsa(nz)d, roendlsyhiaftlloifwtihnagt nγ(z) = ζfcoll(z) =1+ 1 (cid:90) x(z) λb(x(cid:48)) dx(cid:48). (9) n (z) x(z) x(z) λ (x(cid:48)) scaleisbelowthecurrentvalueofλ . Thevaluesobtained HII 0 abs abs forλ (x)fromthesimulatedionizationfieldarethenfedback As λ →∞, x→ζf and n /n →1. We only count b abs coll γ HII into equations 1, 7, and 8, and the process is reapeated until photons up to the moment of overlap (x=1), as we are con- convergenceisreached. cerned here with the consumption of ionizing photons dur- ing the reionization process. This integral converges, since 3. RESULTS attheendofreionizationweexpectλ (x)∝(1−x)−2/3 asthe b Fig. 1 shows the bubble mean free path as a function of remaining diffuse neutral hydrogen patches dissappear. For the neutral fraction for several parameter choices. At the λ =8 Mpc/h, about 3 photons per atom are consumed in abs half-ionized epoch, all models exhibit a characteristic bub- theabsorptionsystemsbyz . Inthelongestmeanfreepath ov blescaleofλ (cid:39)10Mpc,withmodelswithrarersources(i.e. case,λ =256Mpc/h,thecorrespondingfractionisabouta b abs increasing efficiency of ionizing radiation) leading to some- half. what larger bubbles. During percolation, most of the varia- ShowninFig.3istheevolutioninneutralfractionandab- tion in λ (x ) comes from variation of λ , which is most sorption system mean free path for the three minihalo ab- b HI abs pronouncedatx ≤0.2. Thelargevaluesofλ indicatethat sorption system models that we simulated. Models with HI b ABSORPTIONSYSTEMS&REIONIZATION 5 longer evaporation times lead to a higher abundance of ab- ume 100 Mpc/h across, and found a similar trend with de- sorption systems, and hence shorter mean free paths and a creasing λ , indicating a transition to an “outside-in” mor- abs relative delay in the time of overlap. The mean free path in phology near the end of reionization. We find that neutral the t =100 Myr model evolves from about 40 Mpc when patchesmayalsoremaininvoids, whereformationofioniz- ev x ∼0.1, to about 80 Mpc at overlap. This model is also ingsourcesisdelayedandradiationfromthenearestsources HI plottedasthesolidblacklineinFig.1,whichshowsthatthe isshielded. Previousstudiesthatmodeledthephysicalorigin instantaneous λ values for the evolving λ model roughly of absorption systems as minihalos (e.g., Ciardi et al. 2006; b abs interpolatebetweenthoseforthefixedλ models. Thiscan McQuinn et al. 2007) also found similar effects to those we abs alsobeseenbynotingthatλ ≡λ (x =0.1)fortheevolving find here, although these studies were more focused on the 0 b HI meanfreepathmodel,forwhichλ (x =0.1)(cid:39)32Mpc/h, intermediate stages of reionization and on smaller simulated abs HI isthesameasthatforthecorrespondingfixedmeanfreepath volumes, where the photon mean free path was not as small modelwithλ =32Mpc/h,λ =170Mpc. relative to the bubble sizes as we find in our low mean free abs 0 Fig. 4 shows the ionization field in a 5-Mpc/h slice at pathcasesinthefinal,percolationphase. x=0.75forM =108M ,withλ =256Mpc/h(top)and Asmentionedintheintroduction,ourapproachiscomple- min (cid:12) abs λ =8 Mpc/h (bottom). The two cases are quite different, mentarytothattakenbyCrocianietal.(2011), inwhichthe abs withmanymoresmallneutralpatchesforλ =8Mpc/hrel- semi-numericalapproachwasusedtodeterminethedistribu- abs ativetoλ =256Mpc/h.AlsoshowninFig.4isthereioniz- tion of absorbers during reionization. They found that their abs tionredshiftina0.5-Mpc/hslice. Lowervaluesofλ result spatialdistributionisquiteinhomogenous, owingbothtoin- abs inamoreextendedreionizationoverlapperiod–i.e. themax- trinsicdensityfluctuationsintheIGM,aswellasfluctuations ima in reionization redshift are higher, and the minima are in the ionizing radition field – regions far from sources have lower. a relatively low flux, resulting in a higher abundance of ab- sorbers. This affect was also pointed out by McQuinn et al. 4. DISCUSSION (2011), who used high-resolution hydrodynamic simulations Wehavecarriedoutlarge-scalesimulationsofreionization post-processed with radiative transfer to determine the mean in a 2 Gpc/h volume, including a finite mean free path to freepathasafunctionofflux,findingastronglynonlinearde- absorption systems. Absorption systems have a significant pendenceofthemeanfreepathontheemmissivityofionizing effect on the characteristic scales at the end of reionization. radiation. FortheThomsonscatteringopticaldepthreportedbyWMAP, These effects imply an important improvement to our τ (cid:39)0.09, we find that the characteristic bubble size when model is not only a time-varying mean free path, but also a es the universe is 90 per cent ionized is quite sensitive to λ , spatially varying one. To accomplish this, more work will abs withλ ∼440Mpcforλ =256Mpc/handM =109M , needtobedoneonthe“sub-grid”physicsduringreionization, 0 abs min (cid:12) whileλ ∼94Mpcforλ =8Mpc/handM =108M . usingtheresultsofhigh-resolutioncosmologicalsimulations 0 abs min (cid:12) Calculations using a sharp k-space filter lead to a more with radiative transfer of a background radiation field, cou- modestextensionofthepercolationphase(seeTable1)com- pled to the hydrodynamics of the gas. However, given that pared to the reionization history obtained by the solution of thefinalpatchestobeionizedarethosemostdistantfromthe equation(1),onwhichthereionizationhistoriesshowninFig- most luminous sources, the delay in the very end of reion- ure1arebased. Forτ (cid:39)0.09,thedifferenceintheredshift ization that we find here is likely to persist when the inho- es when the universe is 90 per cent ionized between the λ = mogeneity of the IGM opacity due to absorption systems is abs 8 Mpc/h and λ =256 Mpc/h cases is only ∆z ∼0.3, properlytakenintoaccount. abs 0.9 while the corresponding case using a sharp real space filter The lingering neutral clouds we find would further com- andequation(1)is∆z ∼0.7. Thedelayintheoverlaptime plicate interpretation of quasar absorption spectra at z ∼ 6 0.9 inbothcasesis∆z ∼1.5. (e.g., Bolton & Haehnelt 2007a; Lidz et al. 2007; Alvarez ov Using either sharp k-space smoothing or equation (1) to & Abel 2007; Wyithe et al. 2008; Furlanetto & Mesinger model the effect of absorption systems on the reionization 2009).AsdiscussedbyMesinger(2009),gapsinquasarspec- history has drawbacks. While equation (1) conserves pho- tra can come from either these neutral clouds or mostly ion- tons in the long mean free path limit, a mean flux and opac- izedbutoptically-thickabsorptionsystems. Theline-of-sight ity are assumed, and further work will be necessary to vali- abundanceoftheseneutralcloudsatfixedionizedfractionin- date and/or improve upon the approach layed out in section creaseswithdecreasingabsorptionsystemmeanfreepath. 2.1. Usingasharpk-spacefilterresultsinareionizationhis- As shown by Weinmann et al. (2007) and Alvarez et al. torywhichalsoconservesphotonsinthelongmeanfreepath (2009),theLocalGroupmayhavebeenreionizedbyexternal limit(k −→0),butattheexpenseofusinganoscillatoryfil- sources,i.e. theprogenitorsoftheVirgoClusteratadistance F ter which can “leak” photons from high density regions into of ∼ 20 Mpc. If λ <20 Mpc, however, local reionization abs lower density ones, and for which there is no unique choice wouldhavebeendelayeduntilLocalGroupprongenitorshad fortherelationbetweenλ andk . Whileourresultsforthe formedinsufficientnumber(e.g.,Muñozetal.2009). Since abs F timingandphotonconsumptionoftheendofreionizaitonare the satellite population is sensitive to the timing of reioniza- obtained from equations (1) and (9), it is important to note tion (Busha et al. 2010), lower values of λ could imply a abs thatmoreworkwillbenecessarytotesttheiraccuracy. How- higherlocalsatelliteabundance. ever,resultsforthemorphologyofreionization(Figures1and Finally, our results have important implications for the in- 4)donotdependonthemodelfortheglobalhistory,andare terpretation of temperature fluctuations in the cosmic mi- thereforemorerobust. crowave background at multipoles l ∼ 3000 (Das et al. Our results are consistent with those of Furlanetto & Oh 2011; Reichardt et al. 2011), through the kinetic Sunyaev- (2005), in which consumption of ionizing photons in dense Zel’dovich(kSZ)effect(e.g.,McQuinnetal.2005;Ilievetal. systemsextendstheendofreionizationconsiderably. Choud- 2007). Inparticular, Mesingeretal.(2011b)usednearlythe huryetal.(2009)usedthesemi-numericalapproachinavol- samethreeparametersandapproachasweusedherefortheir 6 ALVAREZ&ABEL FIG. 4.—left:Reionizationredshiftina0.5Mpc/h-thickslicefortheλabs=256Mpc/hsimulation(top)andtheλabs=8Mpc/hsimulation(bottom). Both caseswereforτes=0.09andMmin=108M(cid:12).Clockwisebeginningfromtop-left,regionsshownare2Gpc/h,500Mpc/h,and125Mpc/hacross.Theradiiof thecirclescorrespondtoλabs.right:Sameasleftpanelsbutfortheprojectedionizedfractionina5Mpc/h-thicksliceatatimewhenthemeanvolume-weighted ionizedfractionis0.75.Notethattheionizationfieldcontainsconsiderablymoresmallscalestructureintheλabs=8Mpc/hcase. parameter study of the dependence of the kSZ signal on the R.Thomas,G.Vasilforusefuldiscussions,andJ.Chlubafor reionization scenario. Reducing the mean free path shifts providing the diffusion solver from CosmoRec. The simu- powertohighermultipolesbecauseoftheaccompanyingde- lations in this paper were performed on the GPC supercom- crease in the bubble size that we find. Although the kSZ ef- puter at the SciNet HPC Consortium. SciNet is funded by: fectisonlyjustbeginningtoconstrainthedurationofreion- the Canada Foundation for Innovation under the auspices of ization(Zahnetal.2011b),moredetailedfutureobservations Compute Canada; the Government of Ontario; Ontario Re- and analysis will begin to provide constraints on the patchi- search Fund - Research Excellence; and the University of ness in addition, and understanding the effect of absorption Toronto. ThisworkwaspartiallysupportedbyNASAATFP systemsonreionizationwillbecrucial. grant NNX08AH26G, NSF AST-0807312, and NSF AST- 0808398. We thank M. Haehnelt, M. McQuinn, A. Mesinger, REFERENCES Abel,T.&Mo,H.J.,1998,ApJ494,151 Dijkstra,M.,Haiman,Z.,Rees,M.J.,Weinberg,D.H.,2004,ApJ,601,666 Abel,T.,Norman,M.L.,&Madau,P.1999,ApJ,523,66 Friedrich,M.M.,Mellema,G.,Alvarez,M.A.,Shapiro,P.R.,Iliev,I.T., Abel,T.&Wandelt,B.D.2002,MNRAS,330,L53 2011,MNRAS,413,1353 Alvarez,M.A.&Abel,T.2007,MNRAS,380,L30 Furlanetto,S.R.&Mesinger,A.2009,MNRAS,394,1667 Alvarez,M.A.,Busha,M.,Abel,T.,&Wechsler,R.H.2009,ApJ,703,L167 Furlanetto,S.R.&Oh,S.P.2005,MNRAS,363,1031 Bolton,J.S.&Haehnelt,M.G.2007b,MNRAS,382,325 Furlanetto,S.R.,Oh,S.P.,&Briggs,F.H.2006,Phys.Rep.,433,181 —.2007a,MNRAS,374,493 Furlanetto,S.R.,Zaldarriaga,M.,&Hernquist,L.2004,ApJ,613,1 Bond,J.R.,Cole,S.,Efstathiou,G.,Kaiser,N.1991,ApJ,379,440 Gnedin,N.Y.2000,ApJ,542,535 Busha,M.T.,Alvarez,M.A.,Wechsler,R.H.,Abel,T.,&Strigari,L.E. Gnedin,N.Y.&Abel,T.2001,NewAstronomy,6,437 2010,ApJ,710,408 Gnedin,N.Y.&Fan,X.2006,ApJ,648,1 Choudhury,T.R.,Haehnelt,M.G.,&Regan,J.2009,MNRAS,394,960 Haiman,Z.,Abel,T.,&Madau,P.2001,ApJ,551,599 Ciardi,B.,Scannapieco,E.,Stoehr,F.,Ferrara,A.,Iliev,I.T.,&Shapiro, IlievI.T.,PenU.-L.,BondJ.R.,MellemaG.,ShapiroP.R.,2007,ApJ,660, P.R.2006,MNRAS,366,689 933 Crociani,D.,Mesinger,A.,Moscardini,L.,Furlanetto,S.,2011,MNRAS, Iliev,I.T.,Mellema,G.,Pen,U.-L.,Merz,H.,Shapiro,P.R.,&Alvarez, 411,289 M.A.2006,MNRAS,369,1625 Das,S.,etal.,2011,ApJ,729,62 Komatsu,E.etal.2011,ApJS,192,18 ABSORPTIONSYSTEMS&REIONIZATION 7 Lidz,A.,McQuinn,M.,Zaldarriaga,M.,Hernquist,L.,&Dutta,S.2007, Santos,M.G.,Ferramacho,L.,Silva,M.B.,Amblard,A.,Cooray,A.,2010, ApJ,670,39 MNRAS,406,2421 McQuinnM.,FurlanettoS.R.,HernquistL.,ZahnO.,ZaldarriagaM.,2005, Shin,M.,Trac,H.,Cen,R.,2008,ApJ,681,756 ApJ,630,643 Songaila,A.&Cowie,L.L.2010,ApJ,721,1448 McQuinn,M.,Lidz,A.,Zahn,O.,Dutta,S.,Hernquist,L.,&Zaldarriaga,M. Sokasian,A.,Abel,T.,&Hernquist,L.E.2001,NewAstronomy,6,359 2007,MNRAS,377,1043 Storrie-Lombardi,L.J.,McMahon,R.G.,Irwin,M.J.,&Hazard,C.1994, McQuinn,M.,Oh,S.P.,Faucher-Giguere,C.,2011,ApJ,743,82 ApJ,427,L13 Mesinger,A.2009,MNRAS,submitted,arXiv:0910.4161 Thomas,R.M.,etal.,2009,MNRAS,393,32 Mesinger,A.&Furlanetto,S.2007,ApJ,669,663 Trac,H.&Cen,R.2007,ApJ,671,1 Mesinger,A.,Furlanetto,S.,&Cen,R.2011,MNRAS,411,955 Tytler,D.,1982,Nature,298,427 Mesinger, A., McQuinn, M., Spergel, D. N., 2011, MNRAS, submitted, Weinmann,S.M.,Macciò,A.V.,Iliev,I.T.,Mellema,G.,&Moore,B.2007, arXiv:1112.1820 MNRAS,381,367 Miralda-Escudé,J.,Haehnelt,M.,Rees,M.J.2000,ApJ,530,1 Weymann,R.J.,Carswell,R.F.,Smith,M.G.,1981,ARA&A,19,41 Mo,H.&Miralda-Escudé,J.,1996,ApJ,469,589 Wyithe,J.S.B.,Bolton,J.S.,&Haehnelt,M.G.2008,MNRAS,383,691 Muñoz,J.A.,Madau,P.,Loeb,A.,&Diemand,J.2009,MNRAS,400,1593 Zahn,O.,Lidz,A.,McQuinn,M.,Dutta,S.,Hernquist,L.,Zaldarriaga,M., Pawlik,A.H.,Schaye,J.,vanScherpenzeel,E.,2009,MNRAS,394,1812 &Furlanetto,S.R.2007,ApJ,654,12 Prochaska,J.X.,O’Meara,J.M.&Worseck,G.2010,ApJ,718,392 Zahn,O.,Mesinger,A.,McQuinn,M.,Trac,H.,Cen,R.,&Hernquist,L.E., Prochaska,J.X.,O’Meara,J.M.,&Worseck,G.2009,ApJ,705,113 2011a,MNRAS,414,727 Raicevic,M.&Theuns,T.,2011,MNRAS,412,16 Zahn,O.,etal.,2011b,ApJ,submitted,arXiv:1111.6386 Reichardt,C.L.,etal.,2011,ApJ,submitted,arXiv:1111.0932 Shapiro,P.R.,Iliev,I.T.,&Raga,A.C.2004,MNRAS,348,753

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.