DRAFTVERSIONJANUARY20,2012 PreprinttypesetusingLATEXstyleemulateapjv.03/07/07 THEEFFECTOFABSORPTIONSYSTEMSONCOSMICREIONIZATION MARCELOA.ALVAREZ1 ANDTOMABEL2 DraftversionJanuary20,2012 ABSTRACT Weuselarge-scalesimulationstoinvestigatethemorphologyofreionizationduringthefinal,overlapphase. Ourmethodusesanefficientthree-dimensionalsmoothingtechniquewhichtakesintoaccountthefinitemean freepathduetoabsorptionsystems,λ ,byonlysmoothingoverscalesR <λ . Thelargedynamicrangeof abs s abs ourcalculationsisnecessarytoresolvetheneutralpatchesleftattheendofreionizationwithinarepresentative 2 volume; we find that simulation volumes exceeding several hundred Mpc on a side are necessary in order to 1 properlymodelreionizationwhentheneutralfractionis(cid:39)0.01−0.3. Ourresultsindicateastrongdependence 0 ofpercolationmorphologyonalargeanduncertainregionofmodelparameterspace.Thesinglemostimportant 2 parameter is the mean free path to absorption systems, which serve as opaque barriers to ionizing radiation. n If these absorption systems were as abundant as some realistic estimates indicate, the spatial structure of the a overlapphaseisconsiderablymorecomplexthanpreviouslypredicted.Inviewofthelackofconstraintsonthe J meanfreepathatthehighestredshifts,currenttheoriesthatdonotincludeabsorptionbyLyman-limitsystems, 9 andinparticularthree-dimensionalsimulations,mayunderestimatetheabundanceofneutralcloudsattheend 1 of reionization. This affects predictions for the 21 cm signal associated with reionization, interpretation of absorptionfeaturesinquasarspectraatz∼ 5−6,theconnectionbetweenreionizationandthelocaluniverse, ] O and constraints on the patchiness and duration of reionization from temperature fluctuations measured in the cosmicmicrowavebackgroundarisingfromthekineticSunyaev-Zel’dovicheffect. C Subjectheadings:cosmology: theory—darkages,reionization,firststars—intergalacticmedium . h p - 1. INTRODUCTION Directsimulationofalltheprocessesinvolvedinreioniza- o tion is not currently possible. Theoretical studies focus ei- On scales relevant to the large-scale structure of reioniza- r ther on the small scale hydrodynamics and radiative transfer t tion–hundredsofMpc–numericalcalculationscannotself- s (e.g.,Miralda-Escudéetal.2000;Gnedin2000;Haimanetal. a consistentlytrackallthesourcesandsinksofionizingradia- 2001; Shapiro et al. 2004; Ciardi et al. 2006; Pawlik et al. [ tion. ResolvingtheIGMonthesmallscalesrelevanttoQSO 2009;Raicevic&Theuns2011;McQuinnetal.2011),oron absorption systems optically-thick at the Lyman edge, also 2 thelargescalemorphologyofreionization(e.g.,Abel&Wan- known as Lyman limit systems (e.g., Weyman et al. 1981; v delt 2002; Furlanetto et al. 2004; Iliev et al. 2006; McQuinn Tytler1982;Mo&Miralda-Escudé1996),isparticularlydif- 2 etal.2007;Trac&Cen2007;Shinetal.2008;Friedrichetal. ficult. Theseabsorptionsystemswerelikelytohaveimpeded 3 2011). On the largest scales, it has been somewhat surpris- theprogressofreionization(e.g.,Miralda-Escudéetal.2000; 1 ing how well simplified “semi-numerical” approaches (e.g., 6 Gnedin&Fan2006). Zahnetal.2007;Mesinger&Furlanetto2007;Thomasetal. . Whatarelikelyvaluesforthecomovingabsorptionsystem 3 2009;Choudhuryetal.2009;Alvarezetal.2009;Santosetal. mean free path at the end of reionization, λ ? Prochaska 0 abs 2010;Zahnetal.2011a;Mesingeretal.2011a)matchmuch et al. (2009) determined the abundance of Lyman-limit ab- 0 sorption systems, dN/dz=1.9[(1+z)/4.7]5.2, over the red- morecomputationallyexpensiveradiativetransfertechniques 1 (e.g., Abel et al. 1999; Gnedin & Abel 2001; Sokasian et al. shift range 3.6 < z < 4.4, which translates into a comov- : v ing mean free path of λ = c/H(z)/(dN/dz) ∼ 415 Mpc 2001;Abel&Wandelt2002;Ilievetal.2006;McQuinnetal. i at z=3.7. This dependeanbcse on redshift is steeper than re- 2007; Trac & Cen 2007). In order to efficiently survey the X wideparameterspaceofλ andfocusonthelargescalemor- portedpreviously(e.g.,Storrie-Lombardietal.1994),andim- abs ar plies λabs ∝(1+z)−6.7. However, Songaila & Cowie (2010) pthheosloimgyplainfidedovseemrail-lnpurmogerreicssaloafprperiooancizha.tOiounr,wimephleamveenchtaotsioenn extended the constraints out to z∼6, finding a much shal- lower dependence, λ ∝ (1+z)−3.44, with a measurement is similar to that of Zahn et al. (2007), with the the addition abs ofatreatmentofphotonconsumptioninabsorptionsystems. of λ (cid:39)34 Mpc at z∼5.7. Comparison of the absorption abs Ourapproach,inwhichwetreatabundanceofabsorbersasan spectraandhydrodynamicsimulationscanalsoconstrainλ , abs input parameter, is complementary to that taken by Crociani with Bolton & Haehnelt (2007b) reporting 20 < λ < 50 abs et al. (2011), where the semi-numerical approach was used Mpc at z∼6. The evolution of the mean free path at z<6 to determine the large scale distribution of absorbers, rather leavesopenawiderangeofpossiblevaluesduringthereion- than to model the effect of the absorbers on the progress of izationepoch, fromseveraltohundredsofMpc. Ourgoalis reionization,aswedohere. todeterminethesensitivityofthehistoryandmorphologyof Our results are parametrized by different values of for the reionizationtothiswiderangeofpossiblemeanfreepaths. minimum source halo mass, ionizing efficiency of collapsed Electronicaddress:[email protected] matter, and the absorption system mean free path. We de- 1CanadianInstituteforTheoreticalAstrophysics,UniversityofToronto, scribeoursimulations in§2, followedbythemain resultsin 60St.GeorgeSt.,Toronto,ONM5S3H8,Canada §3,endingwithadiscussionin§4.Allcalculationsweredone 2KavliInstituteforParticleAstrophysicsandCosmology,StanfordUni- using(Ω ,Ω ,h,σ ,n )=(0.27,0.73,0.72,0.8,0.96),consis- versity,MenloPark,CA94025,USA m Λ 8 s tentwithWMAP7-yeardata(Komatsuetal.2011). Alldis- 2 ALVAREZ&ABEL TABLE1 SIMULATIONPARAMETERS τes Mmin λabs tev ζ z1/2 z0.9 zov λ0 [M(cid:12)] [Mpc/h] [Myr] [Mpc] 0.06 108 8 - 20 8.1 5.9 4.3 87 0.06 108 32 - 16 8 6.3 5 181 0.06 108 256 - 14.5 8 6.8 6.2 294 0.06 109 8 - 78 8.2 6.6 5.6 98 0.06 109 32 - 60 8.1 6.8 6 210 0.06 109 256 - 40 8.1 7.24 6.9 375 0.09 108 8 - 137 11 9.2 8 94 0.09 108 32 - 110 10.9 9.5 8.5 201 0.09 108 256 - 98 10.9 9.9 9.5 345 0.09 109 8 - 1200 11.1 9.8 9.1 105 0.09 109 32 - 920 11 10 9.3 232 0.09 109 256 - 820 11 10.3 10 443 0.12 108 8 - 1050 13.5 12.5 11.1 99 0.12 108 32 - 850 13.5 12.2 11.4 216 0.12 108 256 - 750 13.4 12.6 12.2 396 0.12 109 8 - 2.2e4 13.5 12.5 11.9 109 0.12 109 32 - 1.7e4 13.5 12.6 12.1 248 0.12 109 256 - 1.5e4 13.5 12.9 12.7 500 0.09a 108 8 - 102 10.9 9.7 8.3 - FIG. 1.—Bubblemeanfreepath,λb,asafunctionofmeanneutralfrac- 0.09a 108 32 - 94 10.8 9.9 9.6 - tion,xHI. Allmodelsexhibitacharacteristicscaleof∼10Mpcatthehalf- 0.09a 108 256 - 92 10.8 10 9.8 - ionizedepoch. Duringpercolation,lowervaluesofλabs leadtolowerval- 0.06 108 - 10 15 8.2 6.9 6.4 300 ues of λb. The solid line corresponds to the evaporating minihalo model 00..0066 110088 -- 15000 1155 88..10 66..41 55..63 216740 λwbith∝txevH−2I=/3.100 Myr. At xHI <0.1 the relation approaches approximately theedgeofabubbleisλ /λ ,andtheionizationrateissup- aObtainedusingsharpk-spacefiltering abs b pressed. tancesarecomoving. A more realistic treatment would involve allowing F, λ , b andλ tovaryspatially,obtainingaspatially-dependentso- 2. SIMULATIONS abs lutionofequation(1),whichcanthenbeaveragedtofindthe Table 1 shows our simulation parameters: ζ, the ioniz- globalreionizationhistory. Wehavechosenthesimpleruni- ing efficiency, λ , the comoving absorption system mean abs formmodelofequation(1)asastartingpoint. Althoughthis free path, t , the photoevaporation time for the evolving ev choice does not affect our results on the morphology of the λ models, and M , the minimum halo mass of galaxies. abs min ionizationfieldatfixedionizedfraction,theassumptionsun- Alsoshownaretheredshiftswhentheglobalionizedfraction derlyingequation(1)shouldbekeptinmindwheninterpret- equals0.5,0.9,and1–z ,z ,andz ,respectively,andthe 0.5 0.9 ov ingthereionizationhistoryandphotonconsumptionrateswe bubblemeanfreepathwhentheneutralfractionis0.1, λ ≡ 0 find. λ (x =0.1). TheparameterswerevariedtogiveaThomson b HI scatteringopticaldepthof(τ−,τ0,τ+)=(0.06,0.09,0.12),corre- 2.2. Spatialvariations sponding to the 2-σ constraint from WMAP (Komatsu et al. Our three-dimensional model is based on that of Furlan- 2011),withtheHeIfractiontrackingHI,andinstantaneous HeIIreionizationatz=3. Allsimulationsused40963cellsin ettoetal.(2004),laterextendedtothreedimensionsbyZahn etal.(2007). Itsmainassumptionisthataregionisfullyion- a2Gpc/hbox. ized if its collapsed fraction is greater than some threshold, 2.1. Meanreionizationhistory ζfcoll >1. As shown in Alvarez et al. (2009), by smoothing the linear density field over a range of scales, one can effi- Wemodelthemeanreionizationhistorywtihtwospatially ciently determine when each point is first reionized, z . We uniformmeanfreepaths: thatcorrespondingtoionizedbub- r do not smooth over scales with radii larger than λ , since bles, λ , and Lyman-limit systems, λ . Ionizing radiation abs b abs absorptionsystemsshieldradiationfromthesedistances. We isattenuatedbytheirsuperposition,sothatλ−1 =λ−1+λ−1. mfp b abs assumethattheabsorptionsystemscontributeaspatiallyuni- The spatially averaged ionizing flux is F(z) = λ (z)(cid:15)(z), mfp formopacity,andthereforethescalebeyondwhichwedonot where (cid:15)(z) is the ionizing photon emissivity. We set (cid:15)(z)= smoothisthesameeverywhere. ζnH,0f˙coll(z), whereζ isnumberofionizingphotons percol- Thisapproachisdesirablebecausetheorderinwhichpoints lapsed hydrogen atom, corrected for recombinations outside are ionized is the same as that in which the Furlanetto et al. ofabsorptionsystems. Themeanionizationrateis (2004)criterionisfirstmetaroundeachpoint. However, the reionizationredshiftsdonotgenerallyresultinthecorrectav- dx λ (z) =ζf˙ (z) abs . (1) erage ionization fraction for a sharp smoothing filter in real dt coll λ (z)+λ (x) abs b space(seebelowforsolutionsusingasharpfilterink-space, When λ (cid:29)λ , photons typically reach the edges of bub- which does conserve photons; Zahn et al. 2007). To obtain abs b bleswithoutbeingabsorbedbyinterveningLyman-limitsys- a self-consistent solution, we determine a correction to the tems, and the photoionization rate is equal to the emission reionization redshift at each point, z (z ), by matching the r,c r rate. When λ (cid:28)λ , the probability of a photon reaching simulated reionization history to the global reionization his- abs b ABSORPTIONSYSTEMS&REIONIZATION 3 FIG. 2.—Globalreionizationhistories(bottom)andphotonconsumption(top). Differentcolorsindicatedifferentvaluesofλabs,whilethepanelsindicate differentThomsonscatteringopticaldepths,τes=0.06,0.09,and0.12,fromlefttoright. Notethatinallcasestheearlypartofthereionizationhistoryis insensitivetoλabs,whenthebubblesarerelativelysmaller.Lowervaluesofλabsdelaytheendofreionization. tory, giventhatwewanttoexcludescalesR >λ . However,for f abs (cid:90) ∞dp (cid:90) ∞dxdt comparisonwehavecalculatedafewcaseswithsharpk-space dz= dz, (2) filtering,showninTable1. dz dt dz zr zr,c The ionization history is found by integrating a diffusion where dp/dz is the distribution of uncorrected simulated equationforthedistributionindensityofpointsthathavenot reionization redshifts, and dx/dt is given by equation (1). crossedthebarrier(Bondetal.1991), Thiscalibrationproceduredoesnotchangetheoveralltopol- ∂Π(Λ,δ˜,z) 1∂2Π ∂δ˜∂Π ogy we find at fixed ionized fraction, but does change the = − , (3) overallreionizationhistory. ∂Λ 2 ∂δ˜2 ∂Λ ∂δ˜ Wecalculateλb(x)byrandomraytracing. Ifaraystartsin with boundary condition Π(Λ,0,z)=0, where δ˜≡B(Λ,z)− an ionized region, it is extended in a random direction until δ, δ is the density contrast, B(Λ,z) = δ (z)−erf−1(1− it reaches a neutral cell. The bubble mean free path is then c (cid:113) the average over the lengths of all such rays. The average ζ−1) 2(σ2 −Λ)isthebubblebarrier(Furlanettoetal.2004), convergeswithontheorderof104rays. min andσ2 isthevarianceofthez=0lineardensityfieldatthe About30logarithmically-spacedsmoothingscalesaresuf- min scaleofM ,withthegrowthofstructureencodedinthetime ficienttoconvergeonthereionizationmorphology. Because min dependenceofδ (z). we determine the reionization redshifts simultaneously, the c Wesmoothonlyoverscaleslargerthanλ bystartingin- amountofdatastoredandtheoperationcountaregreatlyre- abs tegrationofequation3atΛ ≡σ2(λ )–thevarianceonthe duced compared to determining the ionization field at each i abs scale of the mean free path is matched to the one obtained redshift. Since the assumption that points are either highly- usingatop-hatfilterinrealspace–withinitialcondition ionized or neutral is made in both cases, no information is lostbyfollowingthemoreefficientapproach. 1 (cid:34) (δ˜−B(Λ,z))2(cid:35) Π(Λ,δ˜,z)= √ exp − i . (4) 2.3. Sharpk-spacefiltering i 2πΛi 2Λi Using a sharp k-space filter leads to a method which does The total ionized fraction is obtained by integrating over the conserve photons (Zahn et al. 2007) in the long mean free distributionatΛ=σ2 , min pathlimit,attheexpenseofusinganunphysicalfilterwhich (cid:90) ∞ “rings” in real space, and an ambiguity in the assignment of x(z)=1− Π(σ2 ,δ˜,z)dδ˜. (5) a smoothing scale R to the filter k – particularly troubling min f f 0 4 ALVAREZ&ABEL IftheinitialconditionforΠisspecifiedatΛ=0,(i.e. starting atascale→∞),thenthiscorrespondstosmoothingoverall scales,and (cid:20) (cid:113) (cid:21) x(z)=ζerfc δ (z)/ 2σ2 =ζf (z). (6) c min coll 2.4. Evolvingλ duetominihalos abs To model an evolving value of λ , we assume that the abs absorption systems are minihalos(e.g., Abel & Mo 1998). Given that the halo cross section increases as M2/3, while dn/dlnM ∝ M−1, small objects should dominate the mean free path, subject to photoevaporation effects (e.g., Haiman etal.2001;Shapiroetal.2004). Consider a uniform distribution of dark matter halos with anumberdensityn (z)≡dn/dlnM . Wewillassumethatin h h neutralregions, halosatmassM havegasfractionsofunity h and would serve as Lyman-limit absorptions systems, while in ionized regions, such halos survive for a time t before ev beingevaporatedbytheionizingbackground. Thenumberof absorptionsystemsevolvesaccordingto ddnazbs = ddlnzx(nh−nabs)+ξev(1+z)−5/2nabs(z), (7) eFlsIGco.n3s.i—der(etdoph)eNree,uitnraaldfrdaictitoionntvost.hreedrsehfeifrtefnocrethceasteh,refeorevwohlvicinhgλλababss→mo∞d- (right-mostdottedcurve). (bottom)Absorptionmeanfreepathvs. redshift. whereξ ≡(H Ω1/2t )−1(cid:39)260(t /100Myr)−1. Wechoose As the last neutral patches are cleared away, so are the last reservoirs of ev 0 m ev ev coldneutralgasinwhichtheminihaloscansurviveasabsorptionsystems,so Mh =5.7×103M(cid:12)[(1+z)/10]3/2, corresponding to the cos- λabsincreasesattheendofreionization. Astheevaporationtimedecreases, mological Jeans mass, and consider three models, in which thedestructionrateofabsorptionsystemsincreases,leadingtolongermean t =10, 50, and 100 Myr. These timescales are relatively freepaths. AlsoshownaretheconstraintsonλabsfromBolton&Haehnelt ev (2007b)atz=5and6. long compared with the rather short photoevaporation times simulation volumes in excess of several hundred Mpc on a forlow-masshalosfoundbyShapiroetal.(2004). However, sidearenecessaryinordertoproperlymodelthelasttenper if reionization is “photon-starved”, as observations are sug- gesting(e.g.,Bolton&Haehnelt2007b), thenthefluxcould centofthereionizationprocess. AtxHI<0.1, λb∼xH−2I/3, in be low at the end of reionization, leading to longer evapora- agreementwiththemodelofMiralda-Escudéetal.(2000),in tiontimes. whichaconstantnumberofneutralcloudsdecreaseinsizeat Themeanfreepathis thesamefractionalrateattheendofreionization. The reionization history for all of the fixed λ models is abs λ−1(z)=πR2 (z)n (z), (8) shown in Fig. 2. The early evolution is not sensitive to λ , abs vir abs abs becausethephotonmeanfreepathisdeterminedbythesize whereR correspondstothehalovirialradius. However,the vir of the ionized bubbles themselves. At later times, when the boundariesoftheabsorptionsystemsarenotwell-defineddue bubblesizesbecomecomparabletoλ ,thereionizationhis- to hydrodynamic effects and departures from spherical sym- abs toryissensitivetoλ ,ascanbeseenbycomparingtheevo- metry.Forourpurposes,theminihalomodelwedescribehere abs lution for the bracketing values of 8 Mpc/h and 256 Mpc/h. is sufficient to incorporate the effect of an evolving absorp- Fortheλ =8Mpc/hcase,theredshiftatwhichtheoverlap tionsystemmeanfreepathinourcalculations. Moreaccurate abs occursisdelayedby∆z∼1.5, relativetoλ =256Mpc/h, modelingofabsorptionsystemsduringreionizationwillneed abs forτ =0.09(seealsothe“z ”entriesinTable1). to incorporate the radiative transfer of ionizing radiation in es ov AlsoshowninFig.2isthenumberofionizingphotonsper cosmological hydrodynamics simulations which resolve the ionizedatom, Jeansmass. poWinetssttoarctrowsisththaenbianrirtiiearlagtuseosmsefosrcaλleabsa(nz)d, roendlsyhiaftlloifwtihnagt nγ(z) = ζfcoll(z) =1+ 1 (cid:90) x(z) λb(x(cid:48)) dx(cid:48). (9) n (z) x(z) x(z) λ (x(cid:48)) scaleisbelowthecurrentvalueofλ . Thevaluesobtained HII 0 abs abs forλ (x)fromthesimulatedionizationfieldarethenfedback As λ →∞, x→ζf and n /n →1. We only count b abs coll γ HII into equations 1, 7, and 8, and the process is reapeated until photons up to the moment of overlap (x=1), as we are con- convergenceisreached. cerned here with the consumption of ionizing photons dur- ing the reionization process. This integral converges, since 3. RESULTS attheendofreionizationweexpectλ (x)∝(1−x)−2/3 asthe b Fig. 1 shows the bubble mean free path as a function of remaining diffuse neutral hydrogen patches dissappear. For the neutral fraction for several parameter choices. At the λ =8 Mpc/h, about 3 photons per atom are consumed in abs half-ionized epoch, all models exhibit a characteristic bub- theabsorptionsystemsbyz . Inthelongestmeanfreepath ov blescaleofλ (cid:39)10Mpc,withmodelswithrarersources(i.e. case,λ =256Mpc/h,thecorrespondingfractionisabouta b abs increasing efficiency of ionizing radiation) leading to some- half. what larger bubbles. During percolation, most of the varia- ShowninFig.3istheevolutioninneutralfractionandab- tion in λ (x ) comes from variation of λ , which is most sorption system mean free path for the three minihalo ab- b HI abs pronouncedatx ≤0.2. Thelargevaluesofλ indicatethat sorption system models that we simulated. Models with HI b ABSORPTIONSYSTEMS&REIONIZATION 5 longer evaporation times lead to a higher abundance of ab- ume 100 Mpc/h across, and found a similar trend with de- sorption systems, and hence shorter mean free paths and a creasing λ , indicating a transition to an “outside-in” mor- abs relative delay in the time of overlap. The mean free path in phology near the end of reionization. We find that neutral the t =100 Myr model evolves from about 40 Mpc when patchesmayalsoremaininvoids, whereformationofioniz- ev x ∼0.1, to about 80 Mpc at overlap. This model is also ingsourcesisdelayedandradiationfromthenearestsources HI plottedasthesolidblacklineinFig.1,whichshowsthatthe isshielded. Previousstudiesthatmodeledthephysicalorigin instantaneous λ values for the evolving λ model roughly of absorption systems as minihalos (e.g., Ciardi et al. 2006; b abs interpolatebetweenthoseforthefixedλ models. Thiscan McQuinn et al. 2007) also found similar effects to those we abs alsobeseenbynotingthatλ ≡λ (x =0.1)fortheevolving find here, although these studies were more focused on the 0 b HI meanfreepathmodel,forwhichλ (x =0.1)(cid:39)32Mpc/h, intermediate stages of reionization and on smaller simulated abs HI isthesameasthatforthecorrespondingfixedmeanfreepath volumes, where the photon mean free path was not as small modelwithλ =32Mpc/h,λ =170Mpc. relative to the bubble sizes as we find in our low mean free abs 0 Fig. 4 shows the ionization field in a 5-Mpc/h slice at pathcasesinthefinal,percolationphase. x=0.75forM =108M ,withλ =256Mpc/h(top)and Asmentionedintheintroduction,ourapproachiscomple- min (cid:12) abs λ =8 Mpc/h (bottom). The two cases are quite different, mentarytothattakenbyCrocianietal.(2011), inwhichthe abs withmanymoresmallneutralpatchesforλ =8Mpc/hrel- semi-numericalapproachwasusedtodeterminethedistribu- abs ativetoλ =256Mpc/h.AlsoshowninFig.4isthereioniz- tion of absorbers during reionization. They found that their abs tionredshiftina0.5-Mpc/hslice. Lowervaluesofλ result spatialdistributionisquiteinhomogenous, owingbothtoin- abs inamoreextendedreionizationoverlapperiod–i.e. themax- trinsicdensityfluctuationsintheIGM,aswellasfluctuations ima in reionization redshift are higher, and the minima are in the ionizing radition field – regions far from sources have lower. a relatively low flux, resulting in a higher abundance of ab- sorbers. This affect was also pointed out by McQuinn et al. 4. DISCUSSION (2011), who used high-resolution hydrodynamic simulations Wehavecarriedoutlarge-scalesimulationsofreionization post-processed with radiative transfer to determine the mean in a 2 Gpc/h volume, including a finite mean free path to freepathasafunctionofflux,findingastronglynonlinearde- absorption systems. Absorption systems have a significant pendenceofthemeanfreepathontheemmissivityofionizing effect on the characteristic scales at the end of reionization. radiation. FortheThomsonscatteringopticaldepthreportedbyWMAP, These effects imply an important improvement to our τ (cid:39)0.09, we find that the characteristic bubble size when model is not only a time-varying mean free path, but also a es the universe is 90 per cent ionized is quite sensitive to λ , spatially varying one. To accomplish this, more work will abs withλ ∼440Mpcforλ =256Mpc/handM =109M , needtobedoneonthe“sub-grid”physicsduringreionization, 0 abs min (cid:12) whileλ ∼94Mpcforλ =8Mpc/handM =108M . usingtheresultsofhigh-resolutioncosmologicalsimulations 0 abs min (cid:12) Calculations using a sharp k-space filter lead to a more with radiative transfer of a background radiation field, cou- modestextensionofthepercolationphase(seeTable1)com- pled to the hydrodynamics of the gas. However, given that pared to the reionization history obtained by the solution of thefinalpatchestobeionizedarethosemostdistantfromthe equation(1),onwhichthereionizationhistoriesshowninFig- most luminous sources, the delay in the very end of reion- ure1arebased. Forτ (cid:39)0.09,thedifferenceintheredshift ization that we find here is likely to persist when the inho- es when the universe is 90 per cent ionized between the λ = mogeneity of the IGM opacity due to absorption systems is abs 8 Mpc/h and λ =256 Mpc/h cases is only ∆z ∼0.3, properlytakenintoaccount. abs 0.9 while the corresponding case using a sharp real space filter The lingering neutral clouds we find would further com- andequation(1)is∆z ∼0.7. Thedelayintheoverlaptime plicate interpretation of quasar absorption spectra at z ∼ 6 0.9 inbothcasesis∆z ∼1.5. (e.g., Bolton & Haehnelt 2007a; Lidz et al. 2007; Alvarez ov Using either sharp k-space smoothing or equation (1) to & Abel 2007; Wyithe et al. 2008; Furlanetto & Mesinger model the effect of absorption systems on the reionization 2009).AsdiscussedbyMesinger(2009),gapsinquasarspec- history has drawbacks. While equation (1) conserves pho- tra can come from either these neutral clouds or mostly ion- tons in the long mean free path limit, a mean flux and opac- izedbutoptically-thickabsorptionsystems. Theline-of-sight ity are assumed, and further work will be necessary to vali- abundanceoftheseneutralcloudsatfixedionizedfractionin- date and/or improve upon the approach layed out in section creaseswithdecreasingabsorptionsystemmeanfreepath. 2.1. Usingasharpk-spacefilterresultsinareionizationhis- As shown by Weinmann et al. (2007) and Alvarez et al. torywhichalsoconservesphotonsinthelongmeanfreepath (2009),theLocalGroupmayhavebeenreionizedbyexternal limit(k −→0),butattheexpenseofusinganoscillatoryfil- sources,i.e. theprogenitorsoftheVirgoClusteratadistance F ter which can “leak” photons from high density regions into of ∼ 20 Mpc. If λ <20 Mpc, however, local reionization abs lower density ones, and for which there is no unique choice wouldhavebeendelayeduntilLocalGroupprongenitorshad fortherelationbetweenλ andk . Whileourresultsforthe formedinsufficientnumber(e.g.,Muñozetal.2009). Since abs F timingandphotonconsumptionoftheendofreionizaitonare the satellite population is sensitive to the timing of reioniza- obtained from equations (1) and (9), it is important to note tion (Busha et al. 2010), lower values of λ could imply a abs thatmoreworkwillbenecessarytotesttheiraccuracy. How- higherlocalsatelliteabundance. ever,resultsforthemorphologyofreionization(Figures1and Finally, our results have important implications for the in- 4)donotdependonthemodelfortheglobalhistory,andare terpretation of temperature fluctuations in the cosmic mi- thereforemorerobust. crowave background at multipoles l ∼ 3000 (Das et al. Our results are consistent with those of Furlanetto & Oh 2011; Reichardt et al. 2011), through the kinetic Sunyaev- (2005), in which consumption of ionizing photons in dense Zel’dovich(kSZ)effect(e.g.,McQuinnetal.2005;Ilievetal. systemsextendstheendofreionizationconsiderably. Choud- 2007). Inparticular, Mesingeretal.(2011b)usednearlythe huryetal.(2009)usedthesemi-numericalapproachinavol- samethreeparametersandapproachasweusedherefortheir 6 ALVAREZ&ABEL FIG. 4.—left:Reionizationredshiftina0.5Mpc/h-thickslicefortheλabs=256Mpc/hsimulation(top)andtheλabs=8Mpc/hsimulation(bottom). Both caseswereforτes=0.09andMmin=108M(cid:12).Clockwisebeginningfromtop-left,regionsshownare2Gpc/h,500Mpc/h,and125Mpc/hacross.Theradiiof thecirclescorrespondtoλabs.right:Sameasleftpanelsbutfortheprojectedionizedfractionina5Mpc/h-thicksliceatatimewhenthemeanvolume-weighted ionizedfractionis0.75.Notethattheionizationfieldcontainsconsiderablymoresmallscalestructureintheλabs=8Mpc/hcase. parameter study of the dependence of the kSZ signal on the R.Thomas,G.Vasilforusefuldiscussions,andJ.Chlubafor reionization scenario. Reducing the mean free path shifts providing the diffusion solver from CosmoRec. The simu- powertohighermultipolesbecauseoftheaccompanyingde- lations in this paper were performed on the GPC supercom- crease in the bubble size that we find. Although the kSZ ef- puter at the SciNet HPC Consortium. SciNet is funded by: fectisonlyjustbeginningtoconstrainthedurationofreion- the Canada Foundation for Innovation under the auspices of ization(Zahnetal.2011b),moredetailedfutureobservations Compute Canada; the Government of Ontario; Ontario Re- and analysis will begin to provide constraints on the patchi- search Fund - Research Excellence; and the University of ness in addition, and understanding the effect of absorption Toronto. ThisworkwaspartiallysupportedbyNASAATFP systemsonreionizationwillbecrucial. grant NNX08AH26G, NSF AST-0807312, and NSF AST- 0808398. We thank M. Haehnelt, M. McQuinn, A. Mesinger, REFERENCES Abel,T.&Mo,H.J.,1998,ApJ494,151 Dijkstra,M.,Haiman,Z.,Rees,M.J.,Weinberg,D.H.,2004,ApJ,601,666 Abel,T.,Norman,M.L.,&Madau,P.1999,ApJ,523,66 Friedrich,M.M.,Mellema,G.,Alvarez,M.A.,Shapiro,P.R.,Iliev,I.T., Abel,T.&Wandelt,B.D.2002,MNRAS,330,L53 2011,MNRAS,413,1353 Alvarez,M.A.&Abel,T.2007,MNRAS,380,L30 Furlanetto,S.R.&Mesinger,A.2009,MNRAS,394,1667 Alvarez,M.A.,Busha,M.,Abel,T.,&Wechsler,R.H.2009,ApJ,703,L167 Furlanetto,S.R.&Oh,S.P.2005,MNRAS,363,1031 Bolton,J.S.&Haehnelt,M.G.2007b,MNRAS,382,325 Furlanetto,S.R.,Oh,S.P.,&Briggs,F.H.2006,Phys.Rep.,433,181 —.2007a,MNRAS,374,493 Furlanetto,S.R.,Zaldarriaga,M.,&Hernquist,L.2004,ApJ,613,1 Bond,J.R.,Cole,S.,Efstathiou,G.,Kaiser,N.1991,ApJ,379,440 Gnedin,N.Y.2000,ApJ,542,535 Busha,M.T.,Alvarez,M.A.,Wechsler,R.H.,Abel,T.,&Strigari,L.E. Gnedin,N.Y.&Abel,T.2001,NewAstronomy,6,437 2010,ApJ,710,408 Gnedin,N.Y.&Fan,X.2006,ApJ,648,1 Choudhury,T.R.,Haehnelt,M.G.,&Regan,J.2009,MNRAS,394,960 Haiman,Z.,Abel,T.,&Madau,P.2001,ApJ,551,599 Ciardi,B.,Scannapieco,E.,Stoehr,F.,Ferrara,A.,Iliev,I.T.,&Shapiro, IlievI.T.,PenU.-L.,BondJ.R.,MellemaG.,ShapiroP.R.,2007,ApJ,660, P.R.2006,MNRAS,366,689 933 Crociani,D.,Mesinger,A.,Moscardini,L.,Furlanetto,S.,2011,MNRAS, Iliev,I.T.,Mellema,G.,Pen,U.-L.,Merz,H.,Shapiro,P.R.,&Alvarez, 411,289 M.A.2006,MNRAS,369,1625 Das,S.,etal.,2011,ApJ,729,62 Komatsu,E.etal.2011,ApJS,192,18 ABSORPTIONSYSTEMS&REIONIZATION 7 Lidz,A.,McQuinn,M.,Zaldarriaga,M.,Hernquist,L.,&Dutta,S.2007, Santos,M.G.,Ferramacho,L.,Silva,M.B.,Amblard,A.,Cooray,A.,2010, ApJ,670,39 MNRAS,406,2421 McQuinnM.,FurlanettoS.R.,HernquistL.,ZahnO.,ZaldarriagaM.,2005, Shin,M.,Trac,H.,Cen,R.,2008,ApJ,681,756 ApJ,630,643 Songaila,A.&Cowie,L.L.2010,ApJ,721,1448 McQuinn,M.,Lidz,A.,Zahn,O.,Dutta,S.,Hernquist,L.,&Zaldarriaga,M. Sokasian,A.,Abel,T.,&Hernquist,L.E.2001,NewAstronomy,6,359 2007,MNRAS,377,1043 Storrie-Lombardi,L.J.,McMahon,R.G.,Irwin,M.J.,&Hazard,C.1994, McQuinn,M.,Oh,S.P.,Faucher-Giguere,C.,2011,ApJ,743,82 ApJ,427,L13 Mesinger,A.2009,MNRAS,submitted,arXiv:0910.4161 Thomas,R.M.,etal.,2009,MNRAS,393,32 Mesinger,A.&Furlanetto,S.2007,ApJ,669,663 Trac,H.&Cen,R.2007,ApJ,671,1 Mesinger,A.,Furlanetto,S.,&Cen,R.2011,MNRAS,411,955 Tytler,D.,1982,Nature,298,427 Mesinger, A., McQuinn, M., Spergel, D. N., 2011, MNRAS, submitted, Weinmann,S.M.,Macciò,A.V.,Iliev,I.T.,Mellema,G.,&Moore,B.2007, arXiv:1112.1820 MNRAS,381,367 Miralda-Escudé,J.,Haehnelt,M.,Rees,M.J.2000,ApJ,530,1 Weymann,R.J.,Carswell,R.F.,Smith,M.G.,1981,ARA&A,19,41 Mo,H.&Miralda-Escudé,J.,1996,ApJ,469,589 Wyithe,J.S.B.,Bolton,J.S.,&Haehnelt,M.G.2008,MNRAS,383,691 Muñoz,J.A.,Madau,P.,Loeb,A.,&Diemand,J.2009,MNRAS,400,1593 Zahn,O.,Lidz,A.,McQuinn,M.,Dutta,S.,Hernquist,L.,Zaldarriaga,M., Pawlik,A.H.,Schaye,J.,vanScherpenzeel,E.,2009,MNRAS,394,1812 &Furlanetto,S.R.2007,ApJ,654,12 Prochaska,J.X.,O’Meara,J.M.&Worseck,G.2010,ApJ,718,392 Zahn,O.,Mesinger,A.,McQuinn,M.,Trac,H.,Cen,R.,&Hernquist,L.E., Prochaska,J.X.,O’Meara,J.M.,&Worseck,G.2009,ApJ,705,113 2011a,MNRAS,414,727 Raicevic,M.&Theuns,T.,2011,MNRAS,412,16 Zahn,O.,etal.,2011b,ApJ,submitted,arXiv:1111.6386 Reichardt,C.L.,etal.,2011,ApJ,submitted,arXiv:1111.0932 Shapiro,P.R.,Iliev,I.T.,&Raga,A.C.2004,MNRAS,348,753