ebook img

The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars PDF

0.69 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

DRAFTVERSIONFEBRUARY1,2016 PreprinttypesetusingLATEXstyleemulateapjv.01/23/15 THEEATINGHABITSOFMILKYWAYMASSHALOS:DESTROYEDDWARFSATELLITESANDTHEMETALLICITY DISTRIBUTIONOFACCRETEDSTARS ALISJ.DEASON,YAO-YUANMAO,RISAH.WECHSLER KavliInstituteforParticleAstrophysicsandCosmology&PhysicsDepartment,StanfordUniversity,Stanford,CA94305,USA SLACNationalAcceleratorLaboratory,MenloPark,CA94025,USA [email protected] DraftversionFebruary1,2016 6 1 ABSTRACT 0 WestudythemassspectrumofdestroyeddwarfsthatcontributetotheaccretedstellarmassofMilkyWay(MW) 2 mass(Mvir∼1012.1M⊙)halosusingasuiteof45zoom-in,dissipationlesssimulations. Empiricalmodelsare n employedtorelate(peak)subhalomasstodwarfstellarmass,andweuseconstraintsfromz=0observations a and hydrodynamicalsimulationsto estimate the metallicity distribution of the accreted stellar material. The 8 J dHoamloisnawnitthcomnotrriebuqtuoiressctoentthaecaccrectrieotnedhisstteollraiersmteansds atorehraevleatliovweleyrmmaassssivperodgweanriftosrwsi(t1h08M- st1ar0∼9M1⊙0)8,-an1d01l0oMw⊙er. 2 overallaccreted stellar masses. Ultra-faintmass (Mstar<105M⊙) dwarfscontributea negligibleamount(≪ 1%)totheaccretedstellarmassand,despitehavinglowaveragemetallicities,supplyasmallfraction(∼2- 5%) A] aomftohuenvteorfytmheetvaelr-ypomoertsatla-rpsoworitshte[Fllea/rHm]a<te-ri2a.l(D∼w4a0rf-s8w0i%th)m,aansdseesv1e0n5r<elaMtivstearl/yMm⊙et<al-1r0ic8hpdrowvairdfesawsiuthbsMtanti>al star G 108M⊙cancontributeaconsiderablefraction(∼20- 60%)ofmetal-poorstarsiftheirmetallicitydistributions . havesignificantmetal-poortails. Finally,wefindthatthegenericassumptionofaquiescentassemblyhistory h forthe MWhaloseemstobein tensionwith themassspectrumofitssurvivingdwarfs. We suggestthatthe p MWcouldbea“transientfossil”;aquiescenthalowitharecentaccretionevent(s)thatdisguisesthepreceding - o formationhistoryofthehalo. r Keywords: Galaxy: formation — Galaxy: halo — Galaxy: stellar content — galaxies: dwarf — galaxies: t s interactions—LocalGroup a [ 1. INTRODUCTION majority of the stellar material accreted by MW mass halos 1 comesfromearly, massive accretion events. However, stud- v Dark matter halos grow hierarchically over time from the ies specifically focusing on the build-up of “MW-type” ha- 5 aggregation of several lower mass “subhalos”. The rate of los are often biased to halos with quiescent accretion histo- 0 growth, and the mass spectrum of lower mass progenitors, 9 strongly depend on the mass of the host halo, as well as its ries. There is significant evidence that our Galaxy has been 7 surroundingenvironment. However,evenatfixedhalomass, largely undisturbed over the past several Gyr (e.g., Gilmore 0 thehalo-to-haloscatterislarge,reflectingthebreadthofdif- etal.2002;Hammeretal.2007),butthisbiaslimitsourabil- 1. ferentassemblyhistoriesshapingeachdarkmatterhalo. Re- itytounderstandthetruebreadthinassemblyhistoriesatMW massscales,andhowthisrelatestothemassspectrumofac- 0 latingthebuildupofcolddarkmattertothegrowthofstellar creted dwarfs. Furthermore, approximately ∼70% of MW 6 material in galaxy halos is non-trivial; the relation between mass halos likely host disk galaxies (e.g., Weinmann et al. 1 stellar and dark matter mass is highly non-linear(e.g., Con- 2006;Choietal. 2007). Thus, while restrictingto quiescent : roy & Wechsler 2009; Behroozi et al. 2013c; Moster et al. v 2013).Forexample,atlowmassestheM - M relationis accretionhistorieslikelyexcludesmostellipticalgalaxiesun- i star halo dergoing recent major mergers, a significant number of ha- X verysteep,anditislikelythatbelowsomemassthresholdstar loshostingdiskgalaxiesarelikelyalsoexcluded(cf.Stewart formationis completelysuppressedand subhalosare simply r etal. 2008). Thislimitationisimportantif wewantto place a “dark”(e.g.,Bullocketal.2000;Bensonetal.2002;Kravtsov ourownGalaxy’saccretionhistoryincontextwithother,sim- etal.2004). ilarmassdiskgalaxies. ThegrowthofstellarmassinMilkyWay(MW)masshalos In our own Galaxy, the chemical properties of halo stars isgenerallydominatedbyintrinsicstarformationinthevery have often been used to connect them to their progenitor centerofthehalo. However,stars canalso beaccretedfrom galaxies.Forexample,therelationbetween[α/Fe]and[Fe/H] thedigestionoflowermasssubhalosthathavetheirownstel- can be linked to the host galaxy’s mass (e.g., Tolstoy et al. lar populations. While this accreted componentis generally 2009).Halostarsaretypicallymoreα-enhancedatmetallici- lowerinmassthanthestarsbornin-situ(e.g.Behroozietal. ties[Fe/H]&- 1.5thanthe(classical)dwarfgalaxysatellites 2013c),thestellarmaterialsplayedoutthroughoutthehalois intheMW(e.g.,Tolstoyetal.2003;Vennetal.2004),which a remnantof the halo’s assembly history, and providesa vi- suggeststhattheirprogenitorsarenotrepresentedinthesur- sual(asopposedtodark)recordofthelowermassfragments viving dwarf galaxy population. However, Robertson et al. thathavecontributedtothehalo’sgrowthovertime. (2005)(seealsoFontetal.2006)showedthatthismismatch Several studies have attempted to connect the predictions oftheΛCDMparadigmtothevaststellarhalosthatsurround inchemicalpropertiescanbereconcilediftheprogenitorsof halostarsarebiasedtowardsearly,massiveaccretionevents, galaxies like the MW (e.g., Bullock & Johnston 2005; Pur- aspredictedfromΛCDMsimulations.Moremassiveprogen- celletal.2007;DeLucia&Helmi2008;Cooperetal.2010). itorshavealsobeenfavoredfromrecentobservationalstudies. Ageneralconsensusfromthesetheoreticalstudiesisthatthe 2 DEASON, MAO & WECHSLER Deasonetal.(2015)showedthatthe(relativelyhigh)ratioof H&#$)123& bluestragglertobluehorizontalbranchstarsinthestellarhalo favors more massive dwarfs as the “building blocks” of the stellarhalo,andFiorentinoetal.(2015)foundthattheperiod ./0123& and luminosity amplitudesof RR Lyrae stars in the halo are moreconsistentwithmassivedwarfsthanlower-massdwarfs. There is a fair amountof agreement, at least qualitatively, betweenobservationsandtheorythatrelativelymassivedwarf galaxiesarethedominantcontributorstotheoverallaccreted ?47233*+ , 647 stellarmaterialinMWmassgalaxies.However,itislessclear whatmassprogenitorssupplythemajorityoftheverymetal- poor([Fe/H].- 2)materialinthehalo. Earlystudiesofthe metallicity distributions of the classical dwarfs found a lack of very metal-poor stars in these galaxies (e.g., Helmi et al. 2006),howeverare-calibrationoftheCalciumIItripletlines atlowmetallicities(e.g.,Starkenburgetal.2010)foundthat !"#$%&’"()*+ ,- thesedwarfsarenotasdevoidoflow-metallicitystarsaspre- ("#$ ./0123&4&)3&45"%) viously thought, and their metal-poor tails are similar to the 6("4$676"()0’)89:;.+<8 ./%G6G"# MW halo stars. In fact, the abundance ratios of metal-poor *=>?8@=AB<;CDEF, stars in classical dwarfs are indistinguishable from the halo population (e.g., Tolstoy et al. 2009). Moreover, the “ultra- faint” dwarf galaxy population (Mstar .105M⊙) has similar chemicalpropertiesasmetal-poorhalostars(e.g.,Frebeletal. 2010; Norrisetal. 2010; Simon etal. 2010; Lai etal. 2011) and very low average metallicities (e.g., Kirby et al. 2013). It has been suggested that these low mass ultra-faints could bethedominantsourceoftheverymetal-poorstellarmaterial intheMW(e.g.,Frebeletal.2010). However,cosmological Figure1. A schematic illustration of our definition of “destroyed” modelsquantifyingthecontributionofultra-faintmassdwarfs and“surviving”subhalos. Destroyedsubhalostypicallylose∼90% totheaccretedstellarcomponentofgalaxiesarescarce. High oftheirpeakmassbeforetheyarenolongeridentifiedbytheROCK- resolution simulations are needed to resolve down to these STARhalofinder. Survivingsubhalosarestillidentifiedby ROCK- STARatz=0. massscales,andtherelationbetweensubhalomassandstellar massattheselow-massscalesisstillratheruncertain(cf.re- cent theoreticaldeterminations, e.g., Garrison-Kimmelet al. lower mass fragments. Furthermore, the high-resolution of 2014; Hopkins et al. 2014). Furthermore, while the abun- thesezoom-insimulationsallowsusto studysubhalosdown danceoflowmasssubhalosindarkmatteronlysimulationsis totheultra-faintmassdwarfscaleinafullycosmologicalcon- veryhigh, itislikely thatonlya smallfractionofthese sub- text. The paper is arranged as follows. Section 2 describes haloshostluminousgalaxies(e.g.,Sawalaetal.2014). oursimulationsuiteandoutlineshowweassignstellar mass Itisclearthatthereissomebiasincomparingthesurviving todarkmattersubhalos.InSection3weinvestigatethestellar dwarfgalaxypopulationwiththedwarfsthatweredestroyed massspectrumofdestroyeddwarfsinMWmassgalaxies,and severalGyrago. Thesurvivorsaregenerallylowermassand relate the dominantcontributorsof the accreted stellar mass have likely experienced more prolonged star formation than tothehosthaloassemblyhistories. We use constraintsfrom theirdestroyedcounterparts. However,themassspectrumof z=0observationsandhydrodynamicalsimulationsinSection survivingsatellitegalaxiesatthegroup/clustermass-scalehas 4topredictthemetallicitydistributionoftheaccretedstellar oftenbeenrelatedtotheassemblyhistoriesoftheirhalos(e.g., material, and we estimate the contribution of different mass Conroyetal.2007;Dariushetal.2010;Deasonetal.2013b). dwarfstothemetal-poorstellarcomponent. InSection5we Forexample,the“magnitude-gap”statistic, thedifferencein relate the most massive surviving dwarf satellite galaxies to absolutemagnitudebetweenthemostmassivesatellitegalaxy themassspectrumofdestroyeddwarfs. Finally, wesumma- andthecentralgalaxy,isoftenusedtodistinguishold,quies- rizeourmainconclusionsinSection6. centhalos(i.e.,fossilgroups)fromgroupsundergoingrecent majormergers.However,ongalaxyscalestherelation,ifany, 2. SIMULATIONS between the halo assembly histories and the mass spectrum ofsurvivingdwarfsisrelativelyunexplored. Furthermore,if We use a suite of 45 zoom-in simulations of MW mass boththesurvivinganddestroyeddwarfsaresignpostsofhalo halos (Mao et al. 2015). The halos are selected from accretionhistories,weshouldbemoreinvested,bothobserva- a low-resolution dark matter only cosmological simulation tionallyandtheoretically,infindingalinkbetweenthedwarfs (c125-1024 box) with cosmological parameters Ω = m thatsurvivedandthosethatperished. 0.286, ΩΛ =0.714, h=0.7, σ8 =0.82, and ns =0.96. The Inthiscontribution,weemployasuiteof45zoom-insim- low-resolutionbox has 10243 particles with a side length of ulationstoinvestigatethemassspectrumofdestroyeddwarfs 125Mpch- 1, and was run using L-GADGET (Springelet al. that contribute to the accreted stellar mass of MW mass ha- 2001;Springel2005). los. Oursimulationsuitespansanarrowmassrange(M ∼ The selected halos fall in the narrow mass-range M = vir vir 1012.1±0.03M ), but has a wide range of accretion histories. 1012.1±0.03M in the c125-1024 box. The initial condi- ⊙ ⊙ This allows us to focus solely on the relation between halo tionsofthezoom-insimulationsaregeneratedusing MUSIC assemblyhistoryandthegrowthofstellarmassfromaccreted (Hahn & Abel 2011), and the Lagrangian volume enclosing THE EATINGHABITS OF MILKY WAY MASS HALOS 3 the highest-resolutionparticles is set by the rectangularvol- however,itisworthbearinginmindthatthederivedtime of ume that the particles within 10R of the z=0 halo occu- subhalodestructiondoesdependonouradopteddefinition. vir pied at z=99. The mass resolution in the zoom regions is Inouranalysis,weonlyconsidersubhalosthatareprogen- 3.0×105M⊙h- 1, and the softening length is 170 pch- 1 co- itorsofthehosthalo.Thus,wedonottakeintoaccount“sub- moving. Notethatthezoom-insimulationsarenotrandomly subhalos” that can be destroyed within the virial radius of chosen from the mass-selected sample in the c125-1024 theprogenitorsubhalosbeforetheythemselvesaredestroyed. box. Thezoom-insareslightlybiasedtowardsearlyforming Thepopulationofsub-subhaloscanbesignificant,especially halos,butspanawiderangeofaccretionhistories. atthelow-massend(e.gWetzeletal.2015a). Toinvestigate Dark matter subhalos are identified using the six- thepotentialeffectofthispopulation,wetrackeachhosthalo dimensionalhalofinder ROCKSTAR (Behroozietal. 2013a), progenitorbacktoits(first)infallontothehosthalo,andcon- and merger trees were constructed by CONSISTENT TREES sideritsownsubhalopopulationatinfall.Thosesub-subhalos (Behroozietal.2013b)with235snapshotsbetweenz=0and that get destroyed within the virial radius of the progenitor 19, equallyspaced in logarithmicscale factor. Halosare as- subhalosafterinfallontothehosthalocanbecountedasad- signedavirialmass,M ,andradius,R ,usingtheevolution ditional progenitorsof the host halo. However, we find that vir vir ofthe virialrelationfromBryan& Norman(1998). Forour theinclusionofthispopulationmakeslittledifferencetoour cosmologythiscorrespondstoanoverdensityof∆ =99.2 results,sowedonotincludethesedestroyedsub-subhalosin crit at z=0. Host halos are defined as isolated halos than can theremainderoftheanalysis. hostlowermasssubhaloswithintheirvirialradii,andsubha- Notethatinthiswork,wedonotconsiderthesubhalosof losaredefinedashalosthatarewithinR ofamoremassive progenitors that are destroyed before these progenitors fall vir hosthalo. Wecomputethepeakmass,M ofeachsubhalo into the host halos. For example, a massive dwarf that is peak as the maximummass that a subhalo everreachedalong the eventually destroyed in a MW-mass halo has its own accre- mainbranchofitsprogenitor. tion history while it is an isolated halo (i.e., before infall), andseveralsmallermassdwarfsmayhavecontributedtothe 2.1. IdentifyingDestroyedSubhalos mass of this massive dwarf. In this study, we only consider Wetracebacktheprogenitorsofhosthalosateachsimula- themass-spectrumofsubhalosdestroyedwithinthevirialra- tion time step, and identify all progenitors that are not the diusofthemain(MW-mass)hosthalo,which,bydefinition, most massive progenitor as the “destroyed” (sub)halos. In excludesanysubhalosorsub-subhalosdestroyedbeforeinfall otherwords,whena(sub)haloisnolongertrackedbythehalo ontothehost. finder, it is considered “destroyed”. All other subhalos are Throughoutour analysis, we only consider subhalos with “surviving” subhalos, i.e., those subhalos which are tracked Mpeak > 108M⊙ (Vmax & 9 km s- 1). Mao et al. (2015) es- by the halo finder down to z=0. A cartoon illustrating our timate that this a conservative lower limit for convergence definition of “destroyed”and “surviving”subhalosis shown of the zoom-in MW simulations. For one of our host halos inFigure1. Withtheabovedefinition,itisclearthatthetime (Halo 937), we have a higher resolution run (particle mass whenasubhaloisdestroyeddependsonhowthehalofinder =4×104M⊙h- 1) that we can use to test for numerical con- identifiessubhalosandhowthetreebuilderlinksprogenitors. vergence. By directly comparingthis higher resolutionsim- Forexample,adjustingtheparameter“unboundthreshold”in ulation with its lower resolution counterpart (particle mass ROCKSTARwouldaffecthowlongamerged,strippedsubhalo =3×105M⊙h- 1), we confirm that our results are robust to istracked.Asasanitycheck,weapplytheiterativeunbinding numericalresolutioneffects. procedureinROCKSTARdevelopedbyGriffenetal.(2015)to a high resolution(particle mass =4×104M⊙h- 1) version of 2.2. AssigningStellarMasstoSubhalos oneofthehosthalos(Halo937).Wefindthattheinclusionof We assign stellar mass to subhalos using the M - M star peak iterativeunbindingincreasesthemedianmass-lossofsubha- relationderivedbyGarrison-Kimmeletal. (2014);these au- loswithMpeak>108M⊙ beforedestructionto97%(cf. 90% thorsshowedthatthisrelationagreeswellwithnumbercounts forthefiducialruns). However,wefindthattheinclusionof of z=0 localgroupdwarfs. We apply0.2 dex scatter in log this algorithm does not significantly affect our main results. MstaratfixedlogMpeak forMpeak>1011M⊙ and0.3dexscat- Differenthalofindersandtreebuilderscouldalsoproducedif- terforlowermasssubhaloswithMpeak<1011M⊙. Ourlower ferentresults; we referthereadertoAvila etal. (2014)fora mass threshold of Mpeak >108M⊙ for subhalos corresponds detailed comparison. Nevertheless, in our analysis, the con- toastellarmasslimitofMstar&102.6M⊙. servative resolution criterion we have applied helps to mini- We assume no redshift evolution in the M - M rela- star peak mizetheimpactoftheseuncertainties. tion. This assumption is motivated by the lack of evidence Subhalos can lose a significant amount of mass (∼90%) forastrongredshiftevolutionondwarfmass-scalesfromei- beforetheyare“destroyed",butthisdefinitionofdestruction thertheoretical(Hopkinsetal.2014;Grausetal.2015),em- is a good proxy for when the stellar mass associated with a pirical (e.g. Behroozi et al. 2013c), or observational (Wake subhalo is liberated into the host halo (see e.g., Peñarrubia etal.2011;Leauthaudetal.2012;Hudsonetal.2015)studies. et al. 2008; Wetzel & White 2010). Note, however, that the However,wedocheckthatemployingtheredshift-dependent true definition of when the stellar material from subhalos is M - M relationsderivedbyBehroozietal.(2013c)and star halo liberated into the main halo is highly uncertain, and likely Moster et al. (2013) makes little difference to our main re- dependentontheorbitalpropertiesandmassofthesubhalos sults. Notethatwhenweadopttheseredshift-dependentrela- aswellasthesubhalofinderusedintheanalysis. Moreover, tionsweusethemassandredshiftatinfallontothehosthalo even observationally, it is unclear when a dwarf undergoing whenassigningstellarmasstosubhalos. tidalstrippingshouldnolongerbeidentifiedasadistinctob- OurprescriptionassumesthatallsubhalosdowntoM ∼ peak ject(cf.theSagittariusdwarfintheMW).Inouranalysis,we 108M (theresolutionlimitofthesimulations)hostacentral ⊙ use the simple definitiondescribedabovefor destroyedsub- (dwarf) galaxy. However, several studies (e.g., Okamoto & halosandfocusontherelativedifferencesbetweenhosthalos, Frenk2009;Nickersonetal.2011;Shenetal.2014;Sawala 4 DEASON, MAO & WECHSLER etal.2014)haveshownthatreionizationcanpreventstarfor- log10 Mpeak/MO • mationinhalosbelow∼109.5M⊙ (Mstar∼105M⊙). Thus,at 8.0 9.0 10.0 11.0 12.0 the ultra-faint dwarf mass scale, not all subhalos will form log ÆM /Mæ stars. Our implementation will therefore overestimate the 10 star,dest O • numberofultra-faintdwarfsinthesimulations,andthustheir 11..000000 contribution to the accreted stellar mass (see Section 4.3) is 7.8 8.4 9.0 9.6 10.2 likelyanupperlimit. Note that we use the term “dwarf” to describe the stellar M)star 1cclo0um9dMeps⊙ona)esnthmtaaotlflwanolulumlsdubbenrhoagtlaonlsaoxwrimeistahlwlyMithpbeeasktec>lolan1rs0imd8eMarse⊙sde.saT(sMhdisstwarain&rf- d(log 10 00..110000 df / d(log10 Mpeak) galaxies. For our purposes, we use this loose definition of df / “dwarf” to describe the galaxies less massive than the main 00..001100 hostthroughoutthepaper,butcautionthereaderthatthisdef- initiondoesincludeahandfulofmoremassivegalaxies(par- ticularlyinrecentmajormergers). Inthefollowingsections,weconsiderthestellarmassthat 00..000011 isaccretedbyMWmasshalosfromdwarfprogenitors1. We 22 44 66 88 1100 note that this does not include any of the stellar mass born log10 Mstar/MO • in situ in the central galaxy, which generally comprises the Figure2. The differential contribution to the accreted stellar mass majorityofthestellarmassbudgetonthesemassscales. Fur- fromdestroyeddwarfswithstellarmassM asafunctionofM . star star thermore, the accreted stellar mass need not reside solely in Thethincoloredlinesshowthedifferentialmassfractionsforeach thegalaxystellarhalos,asasignificantfractioncanendupin of the 45 host halos. The colors indicate the average mass of the thedisk/bulge(Readetal.2008;Cooperetal.2010;Pillepich dwarf contributors, weighted by stellar mass (darker/blue = low etal.2015). Wherepossible,wemakeapproximatecompar- masses,lighter/yellow=highmasses). Medianvaluesforeachhost isons with observations of stellar halos, but note that direct distribution are indicated by the arrows, these range from Mstar ∼ comparisonsshouldbetakenwithahealthygrainofsalt. 108- 1010M⊙. Thethicksolidblacklineshowstheaverageprofile overall45hosthalos. Thethickdashedblacklineshowstheaver- Throughoutthisworkweconsider“mass-weighted”quan- ageprofileforthesampleof19“quiescent”hosthalos,whichhave tities, which will naturally bias us towards the inner regions notundergoneamajormergersincez=2;here,thedifferentialmass ofobservedhalos(.20kpc).However,whileitisbeyondthe contributionisbiasedtowardslowerdwarfmasses.Wealsoshowthe scopeofthisworktoproberadialtrendsingalaxyhalos(see differentialcontributionofpeaksubhalomasses(M )withthedot- peak e.g., recent work by Amorisco 2015 and Rodriguez-Gomez tedline. Thisprofilediffersfromthestellarmassowingtothesteep etal.2015),wedofocusontheregionwheremostoftheac- decline in the stellar mass–halo mass relation at low halo masses cretedstellarmassresides. (Mpeak.1011M⊙). 3. MASSSPECTRUMOFDESTROYEDDWARFS InthisSection, we investigatethe “mass-spectrum”ofde- stroyeddwarfsofour45MW-masshalos.Weshowthediffer- The thick black line shows the average distribution. The entialcontributiontotheaccretedstellarmassfromdestroyed dotted line shows the differential contribution of dark mat- dwarfswithstellarmassM asafunctionofM inFigure terM . ThesteepM - M relationatlowmassscales star star peak star peak 2. (M ∝M1.9 ) suppresses the contribution of subhalos with star peak The mass weighted average stellar mass for destroyed lowM totheaccretedstellarmass. peak dwarfsgivesthetypicaldwarfmassofcontributorstothetotal We also define a subsample of host halos with a “quies- accretedstellarmass. cent” accretion history, defined as having no major mergers (dark matter mass ratio > 0.3) since z = 2. Note that we P Mi ×Mi hM i= i star,dest star,dest (1) only consider major mergers with dwarfs that are now de- star,dest P Mi stroyed;survivingsatellitesarenotincluded. Only40%(19) i star,dest of the whole sample pass this cut. This quiescent criteria is Here, the sum is performed over all destroyed dwarfs with generally used to define samples of “Milky Way type” ha- Mpeak>108M⊙. Similarly,wecandefinethemassweighted los in simulations (e.g., Bullock & Johnston 2005; De Lu- averagetimewhenthesedwarfsaredestroyed: cia & Helmi 2008; Cooper et al. 2010). However, while P Ti ×Mi there is plenty of observationalevidence suggesting that the hT i= i dest star,dest (2) MW has undergone a relatively quiescent accretion history dest PiMsitar,dest (e.g.,Gilmoreetal.2002;Hammeretal.2007;Deasonetal. The thin colored lines in Figure 2 show the differential 2013a, 2014; Ruchti et al. 2015), approximately ∼70% of contributionsto the accreted stellar mass for each hosthalo. halos with Mhalo ∼1012M⊙ are expected to host disk galax- The lines are colored according to hM i (darker/blue = ies(e.g.,Weinmannetal.2006;Choietal.2007). Thus,the star,dest low mass, lighter/yellow = high mass), and hM i for strictcriteriaforaquiescentaccretionhistorylikelyexcludes star,dest each host halo is indicated by the black arrows. The typi- severalhalosthatcouldhostdisk galaxieswith similar mass calhMstar,destirangesfrom108- 1010M⊙,butthehalo-to-halo totheMW. scatterislarge. Thedistributionforthequiescentsampleisshownwiththe thick dashed black line in Figure 2; this sample is biased to 1Notethatthisdoesnotincludethestellarmassresidinginsurvivingz=0 lowerhMstar,destivalues,typically.109M⊙. Thetypicalmass dwarfsatellites. dwarfsthatareaccretedbythesequiescenthalosareingood THE EATINGHABITS OF MILKY WAY MASS HALOS 5 z log10 Mpeak/MO • 0.30 Median = 27..12ee++0098 MMO O •• Median = 12..50 11..004.02.0 1.0 0.5 0.1 n 11..00 ÆTde1stæ0.0 11.0 12.0 0.25 00..88 ctio 00..88 < 4 Gyr a N/Ntot 000...112050 fstar,dest0000....4646 ative mass fr 0000....4646 0.05 00..22 mul 00..22 u 0.00 00..00 C 00..00 8 9 1 0 0 1 2 3 4 5 6 1122 1100 88 66 44 22 00 55 66 77 88 99 1100 1111 log10 S i Mistar,dest/MO • Nprog = S i Mistar,dest/ÆMstar,destæ Tdest [Gyr] log10 Mstar/MO • Figure3. Left panel: The distribution of total stellar masses con- 4.02.0 1.0z 0.5 0.1 10.0log10 M1p1ea.k0/MO • 12.0 tributedbydestroyeddwarfs. Themedianvalueforall45hostha- 11..00 11..00 ÆT æ gl1l1aoe90rsn8mqii-stuoa12irse0ss×s1ect0hs.e15.an0Mtt9Rc⊙Mhiog)o⊙n.hstt,Ttribphhbuaeautnltgoeterhslat;:eoythAthdhaenalesoseeht-otseogttdia-emhllniaaaenlctroeeaclrssolehcyftaoettwhdtheasesrvtteniehsluelllmoaadrwrbigmseeterrrai(soabrscfua,cntddirgoweeintfinaegnrfdfoefrdsprtotrebhomlye-- fstar,dest000000......468468 ve mass fraction 000000......468468 =4-d8es tGyr Npoprsoigt=thPemiMajositrari,tdyesto/fhaMcsctarre,dteesdti.stTeyllpaircmalalys,s1o-nt2odtheesthrooysetdhadlwosa.rfsde- 00..22 mulati 00..22 u C 00..00 00..00 1122 1100 88 66 44 22 00 55 66 77 88 99 1100 1111 agreementwith thefindingsofpreviousworksattemptingto Tdest [Gyr] log10 Mstar/MO • model stellar halos of MW type galaxies (e.g., Bullock & z log10 Mpeak/MO • Johnston2005;DeLucia&Helmi2008;Cooperetal.2010). 4.02.0 1.0 0.5 0.1 10.0 11.0 12.0 11..00 11..00 ÆT æ The left-hand panel of Figure 3 shows the distribution of n dest totalstellarmassescontributedbydestroyeddwarfsforeach 00..88 ctio 00..88 > 8 Gyr a mh2o0as1st3she).salroTa.hnTegihnqeguhifearslocome-ntot1-0hh8aaMlloo⊙sscataomttp1erl0e1i0sg.5leManreg⊙rea,(lclwyf.ithChaostooltpoaelwrseteretltlaoalr-. fstar,dest0000....4646 ve mass fr 0000....4646 t3alshaocwcrsettehdetsyteplilcaarlmnuamssbees.roTfhperorgigehnti-tohrasnfdorpaenaeclhohfosFtighualroe 00..22 umulati 00..22 e(Nraplrloyg,=1P- 2iMdwsitaar,rdfesstc/ohMmsptarri,sdeesttih,ecfm.aCjoooriptyeroefttahle.2s0te1l0la)r.mGeanss- 00..001122 1100 88 66 44 22 00 C 00..0055 66 77 88 99 1100 1111 contributedbydestroyeddwarfgalaxies. Tdest [Gyr] log10 Mstar/MO • Figure4. Left panels: The cumulative fraction of accreted stellar 3.1. DependenceonAccretionHistory massfromdestroyed dwarfs asafunction of lookback time. Each rowshowsthecumulativefractionsforarangehT i,wherehT i Wenowconsiderhowthemassspectrumofaccreteddwarfs dest dest is the average time the dwarfs were destroyed, weighted by their dependsontheaccretionhistoriesofthehosthalos.InFigure stellarmass. Thus,haloswithmorequiescentaccretionhistories(or 4 we show the cumulative fraction of accreted stellar mass largerhT i)areshowninthebottomrow. Rightpanels: Thecu- dest from destroyed dwarfs as a function of lookback time (left mulativefractionofaccretedstellarmassfromdestroyeddwarfsas panels) and dwarf mass (right panels). Each row shows the afunctionofdwarfmass. TherowsaresplitbyhT iinthesame dest cumulativefractionsforarangehT i. wayastheleft-handpanels. Halosthataccretemostoftheirstellar dest HaloswithearlieraccretionepochsandthusearlierhT i massatearliertimes,dosowithlowermassdwarfs,whilethemain dest values,tendtobuild-uptheiraccretedstellarmassfromlower contributorsforhalosthataccretemostoftheirstellarmassatlater timesaregenerallymoremassivedwarfs. Notethatthisdistinction mass dwarfs. Halos undergoing recent merger events have betweenlate-andearly-forminghalosislargelydrivenbytheaddi- larger contributions from more massive dwarfs. Thus, the tion(orabsence)of∼1- 2massivedwarfsatlatetimes. “mass-spectrum”ormassesofthemostdominantprogenitors, dependstronglyontheepochatwhichmostofthestellarmass isaccreted.Notethatthisdistinctionbetweenlate-andearly- values(.109M ),whilehalosundergoingmorerecentmajor ⊙ forming halos is largely due to the addition (or absence) of mergershavesignificantcontributionstotheiraccretedstellar ∼1- 2massivedwarfsatlatetimes(e.g.,recentmajormerg- massbymoremassivedwarfs(∼109- 1010M⊙). ers). As shown in Figure 2, our quiescentsample of host halos 4. METALLICITYOFDESTROYEDDWARFS arebiasedtowardsloweraverage(massweighted)destroyed In this Section, we consider the metallicity distribution of dwarf masses (hM i). In Figure 5 we show explicitly star,dest accretedstellarmaterialcontributedbydestroyeddwarfs. howhM idependsonthetimeofthelastmajormerger star,dest ofthehosthalos. Here, weonlyconsidermergersofdwarfs 4.1. EmpiricalModel thateventuallygetdestroyed(i.e.,wedonotincludesurviving satellites), and we use a (dark matter) mass ratio threshold We employ empirical models to estimate the metallicity >0.3todefinemajormergers.Thefilledsymbolsarecolored of the destroyed dwarfs in the simulations. For complete- byhT i. The dottedline indicatesthe z=2 boundaryused ness, the left-handpanelof Figure 6 showsthe stellar mass- dest todefinethequiescentsampleofhalos. Asalludedtoin the peakhalomassrelationthatwehaveadoptedtoassignstellar previoussection, thequiescentsamplehavelowerhM i masstosubhalos(seeSection2.2). Torelatethisstellarmass star,dest 6 DEASON, MAO & WECHSLER z theredshiftevolutionthatMa etal. (2015)derive: ∆ [Fe/H] 0.1 0.5 1.0 2.0 4.0 =0.67(cid:2)exp(- 0.5z)- 1(cid:3). Ouradoptedstellarmass–metallicity relation for a range of redshifts is shown by the black lines in Figure6. Note thatouradoptedredshiftdependenceisin 11001100 goodagreementwithobservationalstudiesprobingthemetal abundances of Mstar >109M⊙ galaxies at different redshifts (e.g.Rodriguesetal.2008;Zahidetal.2011). æM/MO •star, dest 110099 esavmoWleveepnewoatikethsturhebadhtsaohluiofrtm.aaTssshsuumass,edaaddMwwsataarrrff- sthMuarpvteiawvkianrsegdlateotsidotranoyydweodietsh∼nt1ho0et Æ Gyr ago, is assigned the same stellar mass. This may seem 110088 ÆTdestæ [Gyr] counterintuitive,asthedwarfsurvivingtodaycould,presum- ably,haveformedmorestars. Inpractice,oursimpleprescrip- 12 9 6 3 0 tionassumesthatbothofthesedwarfsformthesameamount 110077 ofstars,butoververydifferenttimescales,i.e.,thedwarfthat 00 22 44 66 88 1100 1122 wasdestroyed∼10Gyragoformedthesameamountofstars T last MM [Gyr] asthesurvivingdwarf,butoverashortertimescale. Thissim- plification, although crude, does naturally take into account Figure5. Theaverage,massweighted,accretedstellarmassfromde- thefactthatstarformationratesarehigherathigherredshifts. stroyeddwarfsforeachhaloasafunctionofthetimeofitslastmajor merger(darkmattermassratio>0.3). Theerrorbarsshowthe1σ Furthermore, as noted in Section 2.2, we do ensure that our uncertaintyduetothescatterintheM - M relation.Thecolors results are not significantly affected if we instead adopt the indicate the average time the dwarfspweakere dsetasrtroyed, weighted by redshift-dependentMstar- MhalorelationsderivedbyBehroozi theirstellarmass(dark/blue=earlytimes,light/yellow=latetimes). etal.(2013c)andMosteretal.(2013). Thedottedlineindicatesthethreshold forour quiescent sampleof Toapplyourprescriptiontothesubhalosinsimulationswe haloswithzLMM>2.Haloswithmorerecentmajormergersaccrete mustdefineanappropriateredshiftinthesubhalo’sevolution moremassivedwarfs(Mstar>109M⊙).Theaccretedstellarmaterial when we define the metallicity of the dwarf. For example, inquiescent halostypicallycomesfromdwarfswithstellarmasses we could use the redshiftwhen the subhalo reachesits peak of108- 109M⊙. mass(z ) orwhenitfirstinfallsontothehosthalo(z ), peak infall andassumenostarformationoccursafterthispoint.Forsim- plicity,we assignanaveragemetallicitytoeachdwarfatthe to an average metallicity ([Fe/H]) we adopt a stellar mass- redshift it gets destroyed (z ). This is the minimum red- dest metallicityrelation.Ourstartingpointisthez=0relationfor shiftwecouldapply,andallowsustonaturallyagreewiththe dwarf galaxies, which is well-defined over several orders of z=0relationforthesurvivingdwarfs. Inpractice,itisworth magnitudeinstellarmass(e.g.,Kirbyetal.2013). Thisrela- noting that adopting z or z would lower our derived infall peak tionisshowninthemiddlepanelofFigure6;thethickblack averagemetallicitiesby∼0.2dex,butdoesnotsignificantly lineshowsthebest-fitrelationderivedbyKirbyetal.(2013). affectourconclusions. Thisisprobablybecausemostdwarfs ThedatapointsaremainlyfromtheKirbyetal.(2013)sample aredestroyedrelativelyrapidlyafterfallingintothehostMW (blackdiamonds).Wealsoshowvaluesformassivedwarfsin halos. M31(Hoetal.2015,greenstars)andtheMagellanicClouds The appropriate redshift at which star formation ceases (LMC/SMC, Carrera et al. 2008; Parisi et al. 2010, purple likely requires different definitions depending on the stel- filledcircles). Theerrorbarsontheobservedsampleinclude lar mass of the dwarf galaxy. For example, Wetzel et al. the intrinsic spread in metallicity for individualdwarfs. We (2015b) and Fillingham et al. (2015) recently showed that also show the relation for slightly more massive dwarfs de- environmental quenching is much more efficient for dwarfs rived by Gallazzi et al. (2005) for local Sloan Digital Sky with Mstar . 108M⊙ than for more massive dwarfs. We Survey galaxies with the blue lines. The approximate scat- find that varying the redshift at which we apply the mass- terin[Fe/H]atfixedstellarmassis∼0.4dex(shownbythe metallicity relation (e.g., zinfall for Mstar < 108M⊙ and zdest grayshadedregion). forMstar>108M⊙)makeslittledifferencetoourresults. Fi- Atfixedstellarmass,agalaxyathigherredshifthas,onav- nally,we note thatthe z=0 ultra-faintdwarfgalaxypopula- erage,alowermetallicitythanoneatlowerredshift(e.g.,Erb tionlikelystoppedformingstarsseveralGyrago(e.g.,Brown et al. 2006; Mannucciet al. 2010; Henry et al. 2013; Zahid et al. 2012), thusthe ultra-faintdwarfs destroyedin the past etal. 2013). Thisredshiftevolutionis well-studiedobserva- maylookverysimilar(atleastintermsofmetallicity)tothe tionally for Mstar &109- 10M⊙, but is poorly understood for z=0 population. Thus, it may be more appropriate to sim- dwarfgalaxieswithMstar.109M⊙. Withnoobservationsto plyusetheobservedz=0stellarmass-metallicityrelationfor guideus,weadopttherelationsrecentlyderivedbyMaetal. theseverylow-massdwarfs. However,wefindthatassuming (2015)fromhydrodynamicalsimulations. Thesesimulations no redshift evolution in the stellar mass-metallicity relation havebeensuccessfulinmatchingmanyobservationalproper- for dwarfs with Mstar <105M⊙ does not significantly affect tiesondwarfmassscales,suchasthestellarmass–halomass ourresults. Thisisbecausemostoftheaccretedstellarmate- relation(Hopkinsetal.2014),thestellarmass-metallicityre- rial,evenatrelativelylowmetallicity,comesfrommoremas- lation(Maetal.2015)andthepresenceofdarkmattercores sivedwarfs(seeSection4.3). (Oñorbe et al. 2015). The Ma et al. (2015) redshift evolu- Inadditiontoanaveragemetallicity,weassumeaGaussian tion of the [Fe/H]–M relation is shown in the right-hand metallicity distribution function (MDF) for each dwarf with star panel of Figure 6 with the red dashed lines. We adopt the standarddeviationof0.4 dex, motivatedby the observedin- Kirbyetal.(2013)relationatz=0,whichisslightlyshallower trinsicscatterforindividualdwarfsatz=0. Introducingthis thantherelationgivenbyMaetal.(2015). However,weuse intrinsic dispersionis an importantcomponentof our model THE EATINGHABITS OF MILKY WAY MASS HALOS 7 z = 0 z > 0 1010 0 D = 0.67[exp(-0.5z)-1] H15 )ZO • MO • 108 (Z/g10 -1 K13 G05 MK1135 adjusted M/star 106 ~H] lo -2 SMC/LMC e/ 104 [F 0 -3 1 2 102 4 108 109 1010 1011 1012 104 106 108 1010 104 106 108 1010 M /M M /M M /M peak O • star O • star O • Figure6. Left panel: Stellar mass-peak subhalo mass relation adopted in this work. We follow the same prescription as Garrison-Kimmel et al. (2014) assuming 0.2 dex scatter in logMstar at fixed logMpeak for Mpeak >1011M⊙, and 0.3 dex scatter for low mass subhalos with Mpeak<1011M⊙. OurmodelassumesnoredshiftevolutionintheMstar- Mpeak relation. Middlepanel: Thestellarmass–metallicityrelation forLocalGroupdwarfs(K13: Kirbyetal.2013). TheblackdiamonddatapointsarefromKirbyetal.(2013). ValuesfortheLMCandSMC areshownwiththepurplefilledcircles(Carreraetal.2008; Parisietal.2010), andthegreenstarsshow M31dwarfsfromHoetal.(2015) (H15).Theerrorbarsincludetheintrinsicspreadinmetallicityforindividualdwarfs.ThethickbluelineshowstherelationderivedbyGallazzi etal.(2005) (G05) forlocal SloanDigitalSkySurveygalaxies. Thethinner bluelinesshow the16thand 84thpercentiles, respectively. A well-definedstellarmass-metallicityrelationatz=0existsover6ordersofmagnitude instellarmass. Theapproximate standarddeviation of the observed metallicity distribution functions for each dwarf is ∼0.4 dex over a wide range in stellar mass (cf. Ho et al. 2015 Figure 6); thisisindicated by the gray band around themean relation. Right panel: TheMa et al. (2015) (M15) stellar mass–metallicity relation as a function of redshift is shown with the red dashed lines (thicker to thinner linesshow z=0,1,2,4). We adopt the redshift dependence foundinthiswork(∆[Fe/H]=0.67(cid:2)exp(- 0.5z)- 1(cid:3)),butweusethez=0Kirbyetal.(2013)relationasthezero-point. Theadjustedstellar mass–metallicity–redshiftrelationisshownwiththesolidblacklines(thickerlinesfordecreasingredshift). asamoremassivedwarfwithhigheraveragemetallicitythan ourfiducialassumption of Gaussian metallicity distributions a lower mass dwarf can still contribute more stellar mass at withσ=0.4dex,butwealsocommentonhowourresultsare lowermetallicitiesowingtothelowmetallicitytailofitsdis- affectedbyouradoptedσ. tribution. Of course, the MDFs for individual dwarfs (even atfixedstellarmass)canvarywidely(e.g.,Kirbyetal.2013; 4.2. MetallicitydependenceoftheMassSpectrum Hoetal.2015),butouroursimpleassumptionofaGaussian Afterapplyingourempiricalmodels(describedabove),we distributionwithfixeddispersionisagoodapproximationfor caninvestigatetheapproximatemetallicityofthestellarma- the“average”MDFatagivenstellarmass(seebelow). terialaccretedbydestroyeddwarfs. InthetoppanelofFigure7weshowtheformofourfiducial The left-hand panel of Figure 8 shows the average (mass GaussianMDF(σ=0.4dex)withthegrayfilledregion. The weighted) metallicity of the accreted stellar component in blackdottedlineshowsanarrowerGaussianwithσ=0.2dex. eachhosthaloagainsttheaverage(massweighted)destroyed The thick purple and green lines show the combined MDFs dwarfstellar mass(hM i). Thecolorsindicatetheaver- forluminousdwarfspheroidalgalaxies(dSphs)andluminous star,dest age (massweighted)lookbacktime whenthese dwarfswere dwarfirregulargalaxies(dIrrs)fromKirbyetal.(2013)(see destroyed. This relation reflects our adopted stellar mass- theirFig. 12). ThecombinedMDFsfortheobserveddwarfs metallicity-redshift relation, whereby more massive dwarfs only include galaxieswith 106<Mstar/M⊙ <108, and each have higher metallicities, and dwarfs destroyed at earlier individualgalaxy’sMDFwascenteredatitsmean[Fe/H]be- timeshavelowermetallicities. foretheMDFswerestackedtogether. TheaverageMDFfor We can use the average metallicities of the destroyed dSphsisnarrowerandmorepeakedthantheaverageMDFfor dwarfs, and their intrinsic scatter (0.4 dex) to estimate the dIrrs.OurmodelMDFisingoodagreementwiththeaverage fraction of the total accreted stellar mass that is low metal- dIrr MDF. The model is less peaked than the average dSph licity ([Fe/H] <- 1) or very low metallicity ([Fe/H] <- 2). MDF,butisagoodapproximationtothemetal-poortailofthe This is shown in the middle panel of Figure 8 as a function observeddistribution. In contrast, a narrowerGaussian with of hM i. The total stellar mass (black circles) and to- σ=0.2doesnotagreewellwiththeobserveddistributions. tal lowstamr,deesttallicity ([Fe/H] <- 1, red triangles) stellar mass InthebottompanelsofFigure7weshowschematicallythe increaseswith hM i. However, the total stellar mass of affectofvaryingthedispersionoftheMDFs. Here,weadopt very low metallicisttyar,dsetsatrs ([Fe/H] <- 2, blue squares) stays the z= 0 mass-metallicity relation (Kirby et al. 2013), and approximatelyconstant with hM i. Thus, regardless of show Gaussian MDFs for LMC mass (Mstar =1.5×109M⊙, the average (mass weighted) masstasr,doesftthe destroyed dwarfs, solidblacklines),Fornaxmass(Mstar=2.5×107M⊙,dashed approximatelythesamemassofverylowmetallicitystarsis red lines) and ultra-faintmass (Mstar=1×104M⊙, blue dot- accretedbyeachhalo. dashedlines) dwarfs. The dispersionin [Fe/H] we adoptdi- In the right-hand panel of Figure 8 we show the total rectlyaffectsthecontributionofdifferentmassdwarfstothe accreted stellar mass against the average metallicity of the metal-poorcomponentoftheaccretedstars(seeSection4.3). accreted material. For comparison, we show the approx- Mostimportantly,themetal-poortailsoftheMDFsformore imate observational constraints for the stellar halos of the massivedwarfsare vital. Below, we outlineourresultswith MW(Mstar,halo∼3.7±1.2×108M⊙;Belletal.2008,[Fe/H] 8 DEASON, MAO & WECHSLER agreementwithourmodels. 2.0 dSph The stellar halo masses and average metallicities of the dIrr s =0.4 dex MW and M31 halos can be used to roughly estimate the 1.5 H] s =0.2 dex dominant contributors to their accreted stellar components. e/ The MW seems to favor relatively low-mass progenitors F N / d[ 1.0 hmMosrtear,cdoesntisi∼ste1n0t8wMit⊙ha(nSMorCde/Sraogfimttaarginuistumdaeslsa)r,gwerhpirleogMen3i1toriss d 0.5 hMstar,desti∼109M⊙(LMCmass).Notethattheverylowstel- larhalomassrecentlymeasuredbyvanDokkumetal.(2014) 0.0 forM101suggestsrelativelylow-massprogenitors(similarto -1 .5 -1 .0 -0 .5 0 .0 0. 5 1 .0 1. 5 theMWorlower)andalsopredictsalowaveragemetallicity. [Fe/H] - Æ[Fe/H]æ While we only make rough comparisons with observations s = 0.4 dex s = 0.2 dex here,oursimplemodelsshowthatthedominanthaloprogen- LMC itorscanbeinferredfrommeasurementsofthestellarmassin 108 FUoFrnax thehaloofgalaxiesand/ortheiraveragemetalcontent. Both oftheseobservationalmeasurementsare, orwillbe, feasible 106 formanyMW-massgalaxiesinthenearbyUniverse. N 104 4.3. Contributionsfrom“Classical”and“Ultra-Faint” 102 Dwarfs 100 Wenowusetheempiricalmodelsdevelopedintheprevious -3 -2 -1 0 -3 -2 -1 0 section(s)toestimatethecontributionsfromlowmassdwarfs [Fe/H] [Fe/H] (Mstar<108M⊙)andultra-faintdwarfs(Mstar<105M⊙)tothe Figure7. Toppanel: WeshowourGaussianmodelmetallicitydis- accretedstellarmaterial. tributionfunction(MDF)withthegrayfilledregion (σ=0.4dex). We also consider the contributions from different mass AnarrowerGaussianMDFwithσ=0.2dexisshownwiththedot- dwarfs to the metal-poor accreted stellar material. Naively ted black line. Average observed MDFs for dSph and dIrr galax- onemayexpectthatthemostmetal-poorstarscomefromthe ies(106 <Mstar/M⊙ <108) inthe local group are shown with the the lowest mass dwarfs with the lowest average metallicity. thickpurple and green lines, respectively (Kirbyet al.2013). Our However,althoughtheaveragemetallicitiesofmoremassive fiducialmodel(withσ=0.4dex)agreeswellwiththeaveragedIrr dwarfsarehigherthanlowmassdwarfs,thetailoftheirMDFs MDF, and although less peaked, our model is a good approxima- can still contribute more metal-poor stars because they con- tion to the metal-poor tail of the dSph distribution. Bottom pan- tainmanymorestars(seeFigure7). els: Schematic MDFsto show the affect of varying the dispersion Figure9 showsthe fractionalcontributionfrom ultra-faint in[Fe/H] at fixedstellar mass. Weshow threeGaussian MDFs of LMC mass (Mstar =1.5×109M⊙, solid black lines), Fornax mass (top panel) and low-mass dwarfs (bottom panel) as a func- (Mstar=2.5×107M⊙,dashedredlines)andultra-faintmass(Mstar= tion of the average (mass weighted) destroyed dwarf stellar 1×104M⊙, blue dot-dashed lines) dwarfs, respectively. The aver- mass(hMstar,desti). Theblackcirclesarefortheoverallstellar age metallicitiesare chosen from the z=0 stellar mass-metallicity massand the red trianglesand blue squaresshow the metal- relation (Kirby et al. 2013). The y-axis is logarithmic in order to poor([Fe/H]<- 1)andverymetal-poor([Fe/H]<- 2)com- comparemassesover5ordersofmagnitude.Thecontributionsfrom ponents,respectively. more massive dwarfs to the metal-poor component is strongly re- Ultra-faint dwarfs contribute very little to the accreted latedtothemetal-poortailsoftheirMDFs. IftheMDFsarenarrow stellar mass regardless of the mass spectrum of destroyed (right-panel) dwarfs withhigh average metallicitieswillcontribute dwarfs. Even at very low metallicities, they only contribute verylittletothemetal-poorcomponent. ∼2- 5% of the accreted stellar mass. On the other hand, low-mass“classical”dwarfs(105<Mstar/M⊙<108)cancon- tribute a significant amount to the overall accreted material ∼- 1.3 to - 2.2; Carollo et al. 2010), M31 (M ∼2± if hM i is low. Furthermore, regardless of the mass- star,halo star,dest 1×109M⊙; Williams et al. 2015, [Fe/H] ∼ - 0.5 to - 1.3; spectrum, they contribute a significant amount of the very Kaliraietal.2006),andthenearbygalaxyM101(M = metal-poor stars (∼ 40- 80%). It is worth remarking that star,halo 1p.r7e+-tt31y..47r×em1a0r8kMab⊙l;e,veasnpDecoikalkluymgivetenalt.h2e0s1i4m)p.lTichietyaogfreoeumremnotdis- msigonreifimcaanstsiavmeoduwnatr(f∼s2(M0-sta6r0>%1)0to8Mth⊙e)vcearynmsteiltlalc-opnotorribmutaetea- els. However, it is worthcautioningthat ouraccretedstellar rial,eventhoughtheiraveragemetallicitiesare[Fe/H]≫- 2. masses are onlyan approximaterepresentationof the stellar Furthermore, they are generally the main contributorsto the halosofgalaxies. Thisisbecausesomeoftheaccretedmate- stellarmaterialwith- 2<[Fe/H]<- 1. rialcanendupinthedisk/bulgeandasignificantfractionof As shown in Figure 7, the intrinsic scatter of the dwarf the observedmasses couldbe contributedbyhalo stars born MDFs is important when considering the contributions to in-situ(e.g.,Zolotovetal.2009;Fontetal.2011). Nonethe- the metal-poor component of the accreted stars. We find less,itisreassuringthatoursimpleempiricalmodelsprovide that adopting a narrower dispersion (σ = 0.2 dex) has lit- areasonableagreementwiththeavailableobservationalcon- tle affect on the contributions to the accreted material with straints,and,perhapsmoreimportantly,wecanreproducethe [Fe/H] > - 2, but has a non-negligible affect at the low- relative difference between the MW and M31 stellar halos. est metallicities. With less intrinsic scatter, more massive Thisdifferenceis,atleastinpart,likelyindicativeoftheirre- dwarfs (Mstar > 108M⊙) contribute significantly less stellar spectiveaccretionhistories. We alsonotethatthemodelsby material with [Fe/H] < - 2, and the majority (& 95%) of Purcelletal.(2008)finddiffuseintrahalolightmetallicitiesof the lowest metallicity stellar mass comes from dwarfs with log10Z/Z⊙∼- 1.0±0.5for1012M⊙masshosthalos,ingood Mstar <108M⊙. However, the contribution from ultra-faint THE EATINGHABITS OF MILKY WAY MASS HALOS 9 All [Fe/H] -0.5 1010 [Fe/H] < -1 [Fe/H] < -2 MO • æ[Fe/H] -1.0 iM/star,dest 109 Æ -1.5 i 108 M101 ÆT æ [Gyr] S dest MW 107 M31 -2.0 12 9 6 3 0 108 109 1010 108 109 1010 -2.0 -1.5 -1.0 -0.5 ÆM /Mæ ÆM /Mæ Æ[Fe/H]æ star,dest O • star,dest O • Figure8. Leftpanel:Theaveragemetallicityofaccretedstellarmaterialineachhaloasafunctionofthemass-weightedaveragedestroyeddwarf mass.Thepointsarecolorcodedaccordingtothemassweightedaveragetimeofdestruction.Thisrelationreflectsthestellarmass-metallicity- redshiftmodelthatwehaveadopted. Thedashedblacklineshowsthez=0stellarmass-metallicityrelationfromKirbyetal.(2013). Middle panel: Thetotalaccretedstellarmassasafunctionofthemassweightedaveragedestroyeddwarfmass. Halosbuiltupfrommoremassive dwarfshavemoremassiveaccretedstellarcomponentsatz=0. Theredtrianglesandbluesquaresshowthetotalaccretedmetal-poor([Fe/H] <- 1)andverymetal-poor([Fe/H]<- 2)stellarmass,respectively. Thetotalmassoftheverymetal-poorcomponentoftheaccretedstarsis approximatelyindependent ofthetypicalmassdwarfthatbuilt-upthehalo. Rightpanel: Thetotalaccretedstellarmassasafunctionofthe averagemetallicityoftheaccretedmaterialfromdestroyed dwarfs. Thepinkstarandgreensquare symbolsindicateapproximate observed valuesfortheMWandM31,respectively. ThesolidnavylineshowstheestimatedstellarhalomassfortheforthenearbygalaxyM101,and thedottednavylineshowsthe1σupperlimit. mass dwarfs is still not dominant, with typical fractions of viving dwarf with a mass comparable to the LMC (M > star ∼10%andamaximumfractionof∼20%. 109M⊙), compared to 30% for the non-quiescent sample. Itisworthre-emphasizingthatouradoptedmodelassumes Moreover, none of the quiescent halos have an LMC-mass thatallsubhaloswithMpeak>108M⊙hostluminousgalaxies. dwarfatz=0andasecondmostmassivedwarfwithMstar> Given that it is likely that a significant fraction of subhalos 108M . This suggests some potential tension between the ⊙ withMpeak.109.5M⊙donotformanystars(seeSection2.2), general assumption of a quiescent MW mass halo and the we are likely overestimating the contributionto the accreted massspectrumofitssurvivingz=0dwarfs.Notethat20%of stellarmaterialfromtheultra-faintmassdwarfs. the overall sample of MW-mass halos at z=0 host a dwarf Finally, we note that we cannot rule out that ultra-faint satellite with Mstar > 109M⊙, and 7% host a second most dwarfs may be major contributors to galaxy stellar halos at massive satellite with Mstar > 2×108M⊙. These fractions large radii, but their contribution in the inner regions of the are in good agreement with the numbers of LMC and SMC halo, where the majority of the stellar halo mass resides, analogues in 1012M halos found by Boylan-Kolchin et al. ⊙ is likely piddly. Furthermore, they may be the dominant (2011) and Busha et al. (2011) using the Millennium II and sourceofrare,extremelymetal-poorstarsingalaxyhaloswith Bolshoisimulationsuites,respectively.Observationalstudies [Fe/H]≪- 3. byLiuetal.(2011),Tollerudetal.(2011)andRobothametal. (2012) using spectroscopic samples from the Sloan Digital 5. SURVIVINGANDDESTROYEDDWARFS SkySurveyandtheGalaxyAndMassAssemblyproject,also In this final section, we consider the relation between the findcomparablefractionsofLMC-andSMC-masssatellites survivingdwarfpopulationatz=0 and the dwarfsthathave tothesesimulations2. Thus,althoughourresultsarebasedon sincebeendestroyed. arelativelysmallnumberofhosthalos,ourstatisticsofmas- Figure10 showsthe average(massweighted)stellar mass sive satellites are in agreement with larger samples in both of destroyed dwarfs against the mass of the most massive simulationsandobservations. (toppanel)andsecondmostmassive(bottompanel)surviving Themassspectrumofsurvivingdwarfstodaycanbecom- dwarfatz=0.Thefilledsymbolsarecolorcodedaccordingto paredto the “mass-gap”statistic oftenused ongroup/cluster the mass weightedaveragetime of destructionfordestroyed scales to classify fossil groups (e.g., Ponman et al. 1994; dwarfs. The black circles indicate the subset of halos with Jonesetal. 2003). Here, haloswith moremassive satellites, quiescentaccretionhistories. Solidlinesindicatetheapproxi- and thus smaller logarithmic “gaps” between the host halo matestellarmassesoftheLargeandSmallMagellanicclouds mass and most massive satellite mass, tend to have younger (LMC/SMC,McConnachie2012),andthedottedlineshows and less concentrated dark matter halos. Fossil groupshave the approximate lower limit on the Sagittarius dwarf galaxy large mass-gaps and tend to be old and highly concentrated stellar mass derived by Niederste-Ostholt et al. (2010). We (e.g.,D’Onghiaetal.2005;vonBenda-Beckmannetal.2008; also indicate the stellar mass of the Fornax dwarf, the most Dariushetal.2010;Deasonetal.2013b).Again,scalingthese massiveclassicaldwarf,withthedashedblackline. relations down to MW mass scales presents somewhat of a Halos that typically destroyed less massive dwarfs (. conundrum, as the MW halo is likely old and perhaps even 109M ), tendtohavelessmassivesurvivingsatellitestoday. ⊙ Halosthathavedestroyedmoremassivedwarfstendtohave 2 These studies use different selection criteria, though identical criteria moremassivesurvivingsatellites,butthereisalotofscatter. wereused incomparing the simulated study ofBusha et al. (2011) to the Only one (∼6%) of the quiescent halo sample has a sur- observationalstudyofLiuetal.(2011) 10 DEASON, MAO &WECHSLER Mstar < 105 M O• vationalevidencethattheLMCandSMCwereprobablyac- arfs 10-1 c2r0e1te3d),vietrsyeeremcsenlitklyel(ye.tgh.a,tBtehselaMetWal.is2o0n0e7;oKfathlleivsaeysaoli-lceatllaeld. w d transientfossils. nt 10-2 The “uniqueness” of the MW is an important topic to ad- ai dress,asourGalaxyisoftenviewedasabenchmarkL⋆galaxy -f a that we use to compare with both observations of external r ult 10-3 galaxiesand simulations. It is well-knownthat less massive m MW halos are less likely to host LMC/SMC mass satellites o r at z=0 (e.g., Boylan-Kolchin et al. 2010). Thus, the com- on f 10-4 binationof a relativelylow MW halo mass(∼1012M⊙) and cti a quiescent accretion history would suggest that the MW is a evenmoreofanodditythanpreviouslythought.Thepresence Fr 10-5 ofanLMC/SMChasbeenusedtoprobabilisticallydetermine 108 109 1010 themassoftheMWusinglargesamplesofhalosinnumeri- Æ Mstar,dest/M O•æ calsimulations(e.g.,Busha et al.2011; Cautunetal. 2014). M < 108 M Ourresultssuggestthattheinclusionofaproxyforaccretion star O• arfs 100 hthisetsoeryinifnerseuncchesc.alculationscouldhaveasignificantaffecton w s d 6. CONCLUSIONS s ma 10-1 Weusedasuiteof45zoom-insimulationsofMWmassha- lostostudythemassspectrumofdestroyeddwarfsthatcon- - w tributetotheaccretedstellarmassofthehalos.Thehaloshave o m l a narrow mass range, Mvir =1012.1±0.03M⊙, which allows us ro 10-2 tofocusonthevariationinassemblyhistoriesofthehostha- n f All [Fe/H] los. Empiricalmodelsareusedtorelate(peak)subhalomass actio [[FFee//HH]] << --12 tcoalssteimllaurlamtioasnss,aasnwdewlleaussze=co0nostbrsaeinrvtsatfioronms tohyedsrtoimdyanteamthie- Fr 10-3 metallicity distribution of the accreted stellar material. Our 108 109 1010 mainconclusionsaresummarizedasfollows: Æ M /Mæ star,dest O• • Typically,1- 2destroyeddwarfswithstellarmassesof Figure9. Thefractionalcontributiontothetotalaccretedstellarmass 108- 1010M⊙ contribute the majority of the accreted from ultra-faint dwarfs (Mstar <105M⊙, top panel) and low-mass stellarmassofMWmasshalos.Themass-weightedav- dwarfs(Mstar<108M⊙,bottompanel)asafunctionoftheaverage eragestellarmassesofdestroyeddwarfsarestronglyre- mass weighted stellar mass of destroyed dwarfs, hMstar,desti. The latedtotheassemblyhistoryofthehosthalos. Theac- black circles, redtriangles andblue squares show thefractions for cretedstellarmassofhosthaloswithquiescenthistories the accreted stellar component with all [Fe/H], metal-poor [Fe/H] arebuiltupfromlowermassdwarfs(108- 109M )and <- 1andverymetal-poor[Fe/H]<- 2,respectively.Thesolidlines ⊙ havelowertotalaccretedstellarmassesatz=0. Halos indicatethemedianvaluesoverall45hosthalosin(0.25dex)bins undergoingrecent major mergershave larger total ac- ofhM i. Ultra-faintdwarfscontributeverylittleaccretedmass star,dest cretedstellarmasses,andaredominatedbymoremas- atallmetallicities.Evenforthemostmetal-poorcomponent([Fe/H] <- 2) thecontributionfromultra-faintsissmall(∼2- 5%). Most sivedestroyeddwarfs(&109M⊙). Thedominantcon- ofthestellarmasscomesfromdwarfswithMstar>108M⊙,however tributorsto the accreted stellar mass are, for all halos, low-mass dwarfs (105 <Mstar/M⊙ <108) contribute a significant relativelyhighmass(&108M⊙)dwarfsduetothesteep amount(∼40- 80%)totheverylowmetallicitycomponent. relationbetweenMstarandMpeakatlowhalomasses. • The average metallicity of the accreted stellar mate- rialreflectsthemassspectrumofthehaloprogenitors, highly concentrated (e.g., Battaglia et al. 2005; Smith et al. as well as the time at which these dwarfs were de- 2007; Deason et al. 2012), despite having a massive LMC stroyed. Lowmassdwarfsdestroyedatearlytimesare satellite. However,this extrapolationcompletelyignoresthe lower metallicity than higher mass dwarfs destroyed scatterinthemass-gap—haloagerelation,whichcanbecon- relatively recently. Our derived relation between the siderable. Forexample,Deasonetal.(2013b)showedthata averagemetallicityofaccretedstellarmassandtheto- significantfraction(∼ 20%) of groupswith large mass-gaps tal accreted stellar mass at z=0 is in good agreement areyoung,andlikely experienceda recentmajormergerbe- withobservationalconstraintsforthestellarhalosofthe tweenamassivesatellitesubhaloandthecentralsubhalo(cf. MWandM31. Accretedcomponentswithloweraver- the halo in Figure 10 with hMstar,desti∼1010M⊙, hTdesti∼4 agemetallicityandlowertotalmass,arelikelypresent Gyr, and Max(Mstar,z=0sat) ∼106M⊙). Conversely, there are in host halos with more quiescent accretion histories. halosthathaverecentlyaccreteda massivesatellite subhalo, Thus, the higher average metallicity and total stellar buthavehadlittle“action”priortothisevent. Thus,thetran- halomassofM31relativetotheMWsuggestsamore sient nature of the halo mass-gapstatistic leads to a popula- active,recentaccretionhistoryfortheM31galaxy.We tion of halos that can be labeled as “transient fossils”; these notethatemployingstringentconstraintsontheassem- are haloswith a recentmergeror accretioneventthat masks blyhistoriestoselect“MW-type”galaxies(i.e.,noma- theprecedingformationhistoryofthehalo. Giventheobser- jormergerssincez=2)canintroduceseverebiases,and

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.