ebook img

The early-type close binary CV Velorum revisited PDF

0.79 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The early-type close binary CV Velorum revisited

Astronomy&Astrophysicsmanuscriptno.5506 (cid:13)c ESO2008 February5,2008 ⋆ The early-type close binary CV Velorum revisited K.Yakut1,2,C.Aerts1,3 andT.Morel1,⋆⋆ 1 InstituutvoorSterrenkunde,KatholiekeUniversiteitLeuven,Celestijnenlaan200B,B-3001Leuven,Belgium 2 DepartmentofAstronomyandSpaceSciences,EgeUniversity,35100,˙Izmir,Turkey 3 DepartmentofAstrophysics,UniversityofNijmegen,POBox9010,6500GLNijmegen,theNetherlands 7 Received.....;accepted..... 0 0 ABSTRACT 2 Aims.Our goal was to improve the fundamental parameters of the massive close double-lined eclipsing B2.5V+B2.5V binary n CVVelorum. a Methods.Wegatherednew high-resolution e´chellespectroscopy on13 almostconsecutive nightscoveringessentiallytwoorbits. J Wecomputed asimultaneous solutiontoalltheavailable high-quality radial-velocityand light datawiththelatest versionof the 5 Wilson-Devineycode. 2 Results.Weobtainedthefollowingvaluesforthephysicalparameters:M =6.066(74)M ,M =5.972(70)M ,R =4.126(24)R , 1 ⊙ 2 ⊙ 1 ⊙ R = 3.908(27)R ,logL = 3.20(5)L ,andlogL = 3.14(5)L . Thequotederrorscontainarealisticestimateofsystematicuncer- 2 ⊙ 1 ⊙ 2 ⊙ 1 taintiesmainlystemmingfromtheeffectivetemperatureestimation.Wederivedabundancesforbothcomponentsandfoundthemto v becompatiblewiththoseofBstarsinthesolarneighbourhood.Wediscoveredlow-amplitudeperiodicline-profilevariationswiththe 2 orbitalfrequencyforbothcomponents.Theirinterpretationrequiresnewdatawithalongertimespan.Theprimaryrotatessubsyn- 4 chronouslywhilethesecondary’svsiniandradiusarecompatiblewithsynchronous rotation.Finally,weprovideanupdateofthe 7 empiricalmass-luminosityrelationformain-sequenceBstarswhichcanbeusedforstatisticalpredictionsofmassesorluminosities. 1 0 Keywords.stars:early-type–stars:oscillations–stars:eclipsingbinary–stars:fundamentalparameters–stars:individual:CVVel 7 0 / 1. Introduction tailedanalysisofCV Vel consideringalltheavailablearchival h p datatowhichweaddnewhigh-qualitye´chellespectracovering Calibratingstellar evolutionmodelsrequirestoknowthephys- - twoconsecutiveweeks.Wealsosearchforasignatureofoscilla- o ical parameters of stars with a very high accuracy. Eclipsing tionsbycarefullyanalysingthelineprofilesofthecomponents, r andspectroscopicbinarieswithdetachedcomponentsensureto t giventhattheyresideintheinstabilitystripoftheslowlypulsat- s obtain the required precise parameters. In this respect, CV Vel ingBstars. a (HD77464, Vmag = 6.7, spectral type B2.5V+B2.5V) and a : v fewothermassivebinarystarshaveanimportantplaceinastro- i physics.ThestarCVVelisoneofthewell-knowndouble-lined 2. Newspectroscopicobservations X early-typeeclipsingbinarysystems. New spectra of CV Vel were obtained using the Swiss 1.2-m r The binarity of CV Vel was originally established by van a Euler telescope at La Silla, Chile and the CORALIE spectro- Houten(1950).Thelightcurveofthesystemwasfirstobtained graph.Thesystemwasobservedon13 almostsuccessivenights by Gaposchkin(1955)photographically,leadingto the first es- in December2001and January2002. Table1 lists the spectral timate of the physical parameters of the components. The sys- lines used in our radial-velocityanalysis. The resolution of the temwasstudiedspectroscopicallybyFeast(1954)andAndersen spectra is 50000and the integrationtime was in each case one (1975). Feast (1954) obtained 34 spectra and derived the first hourtoachieveanaverageS/Nrationear200inthebluepartof spectroscopicorbitalparametersofthesystem.Hereportedthe thespectrum. spectraltypeofthecomponentsasB2V+B2V.Andersen(1975) TheCORALIEspectrawerereducedusingthestandardre- performeda spectral study of the system based on data spread ductionpipeline(Baranneetal.,1996).Forthestudyoftheor- over83daysandobtainedmuchmoreaccurateorbitalparame- bitalmotion,Gaussianfitstotheabsorptionlinesweremadein ters.Clausen &Grønbech(1977)subsequentlyobtaineda high ordertoderivetheircentralwavelengths,thustransforminginto quality light curve of CV Vel in the Stro¨mgren bandpasses. theradialvelocitiesforeachoftheconsideredlines.Toillustrate Theseauthorsderivedtheorbitalandphysicalparametersofthe the data quality, we show in Fig.1 a selection of four lines for system addingthe radialvelocitiesof Andersen(1975)to their thetwoorbitalphaseswiththelargestlineseparation.Itisclear data.Theorbitalperiodofthestaramountsto6.889494(8)days. fromthisfigurethattheprimaryhasnarrowerlinesthanthesec- CVVelisanimportantmassivebinarywhoseparameterscan ondarywhilebeingofsimilartemperature.Thismeansthatone inprinciplebeimprovedfrommodernhigh-qualitydata,which of them must be asynchronous if the radii are similar, as we iswhywerevisitedthisstarafter30years.Wepresentanewde- showisthecasebelow.WecomebacktothispointinSect.5. We list in Table2 the average value of the measured radial Sendoffprintrequeststo:[email protected] velocitiesobtainedfromthefiveleastblendedspectrallines,i.e. ⋆ BasedonspectroscopicobservationsgatheredwiththeCORALIE spectrographmountedonthe1.2mEulertelescopeatLaSilla,Chile He I 4120.993Å, Mg II 4481.327Å, Si III 4552.622Å, Si III ⋆⋆ ExternalpostdoctoralfellowoftheEuropeanSpaceAgency 4567.840Åand He I 6678.149Ålines. For each of these lines, 2 K.Yakut,C.AertsandT.Morel:Theearly-typeclosebinaryCVVelorumrevisited Table 2. Radial velocity values for CV Vel computed in this study. HJD(2452000+) Phase V O-C V O-C 1 1 2 2 272.6910 0.000 20.1 -3.7 272.8130 0.017 -2.5? -8.0 39.0 0.9 273.6340 0.137 -76.9 -1.4 123.6 3.1 273.8430 0.167 -87.2 2.0 135.2 0.9 274.6680 0.287 -100.2 0.8 149.8 3.6 274.8110 0.308 -95.4 0.5 142.3 1.2 276.6810 0.579 83.0 -0.9 -39.1 2.4 276.7990 0.596 95.8 0.4 -52.9 0.3 277.5890 0.711 145.5 0.6 -103.1 0.4 277.7320 0.731 148.4 0.7 -107.9 -1.7 278.5650 0.852 120.5 -1.1 -78.0 1.8 278.7740 0.883 104.8 -0.3 -65.4 -2.5 279.5940 0.002 17.5? -7.9 279.7250 0.021 0.9 -2.0 39.2 -1.5 279.8420 0.038 -8.4 1.9 54.0 -0.1 280.5550 0.141 -78.9 -1.1 122.6 -0.2 280.6970 0.162 -87.2 -0.1 132.8 0.6 280.7620 0.171 -88.9 1.9 136.2 0.3 281.5540 0.286 -100.7 0.4 146.3 0.0 281.6820 0.305 -96.6 0.1 140.0 -1.9 281.7840 0.320 -91.5 0.5 134.4 -2.7 Fig.1.ObservedMgII4481,SiIII 4552,Hα andHeI 6678line 282.5610 0.433 -26.7 1.6 73.7 1.2 profilesatorbitalphases0.29and0.75. 282.6970 0.452 -12.8 0.9 59.3 1.7 283.5830 0.581 85.1 -0.1 -46.8 -4.0 Table1. Wavelengthrangesandthespectrallinesconsideredin 283.6840 0.596 95.3 0.3 -54.4 -1.6 ourstudy. 283.8000 0.612 105.9 0.4 -62.9 0.5 284.5480 0.721 147.3 0.8 -103.6 1.5 λ λ consideredlines 284.6990 0.743 148.8 0.6 -103.2 3.6 start end 4102 4148 HeIλ4121,HeIλ4126,SiIIλ4128,SiIIλ4131, 284.7720 0.753 149.0 0.8 -103.0 3.8 HeIλ4144 285.6550 0.882 107.4 1.6 -65.7 -2.0 4464 4514 HeIλ4471,MgIIλ4481 4530 4581 SiIIIλ4553,SiIIIλ4568,SiIIIλ4575 6528 6600 Hα first regardedas a free parameter,its value always appeared to 6671 6745 HeIλ6678 bezero,withintheerrorrange,sowedonotlistitinTable3. The fifth columnofTable4 givesthe orbitalsolutionfrom the averaged radial velocities of our study. The average radial- theorbitwassolvedseparatelyandtheobtainedresultsaresum- velocity values are plotted versus the orbital phase for each of marizedin Table3. Theinternalprecisionof a single observa- thecomponentsinFig.2.Thephaseswerecalculatedusingthe tion amountsto ∼ 1.0 kms−1 for the primary and ∼ 2.0kms−1 ephemerisgivenbyClausen&Grønbech(1977): for the secondary.We note a quite significant deviationamong the V values derived from the different lines. This is not un- Pri.Min.=HJD2442048d.66894(14)+6d.889494(8)×E. (1) 0 common in this part of the HR diagram (e.g. Mathias et al. (1994)foradiscussion).Itisinterpretedinvariousways,among whichunknownblendswithinthelines,anasymmetricStarkef- 3. Simultaneousradial-velocityandlightcurve fectamongdifferentlines(Struve&Zebergs1960)orthepres- analysis ence of a so-calledVanHoofeffect (Van Hoof1975)in pulsat- ing stars. The latter effect is due to the fact that spectral lines To measure the Pω(O−C)2 values, givenin Table4, we have formindifferentlineformingregionsinthestellaratmosphere, re-analyzedthedataofFeast(1954)andAndersen(1975).This suchthatarunningwavenatureoftheoscillationsimpliesashift showed that the data of Andersen (1975) and those of our pa- in phase during the velocity cycle. Such an effect has clearly perhavesimilarqualitywhilethoseofFeast(1954)haveclearly beendetectedinthepulsatingBstarsBWVulpeculaeandαLupi lower quality, as already emphasised by Andersen (1975). For (Mathias & Gillet 1993). Our data have insufficient time base thisreason,weomittedFeast’sdataintheremainingofthispa- and temporal resolution to test the presence of a Van Hoof ef- per. fectinCVVel(seealsoSection6).EvenifaVanHoofeffectis We combined the newly obtained radial-velocity values present,itwouldnotexplainthedifferenceinV forthetwoSi (Table2) with those previously obtained by Anderson (1975). 0 linesofthesametriplet(SiIIIλ4553andSiIIIλ4568).Asimilar Thisgaveatotalof62radial-velocityvaluesforeachofthecom- unexplainedaveragevelocityshiftbetweenthesamelinesinthis ponentstowhichweassignedequalweights.Ascanbeseenin SitripletwasencounteredbyDeCatetal.(2000)intheiranaly- Table4,wefindanoffsetinaveragevelocityV betweenthetwo 0 sisofseveralhundredline-profiledata,ofveryhighS/N,ofthe radial-velocitysets. Thiscouldbedueto thedifferenceinused B0.5IIIstarεPer.Asthere,weareunabletoofferagoodinter- spectrallinesinthetwostudies,butitmayalsobethatwefind pretationofthisshift.Wewilltakeitintoaccountasasystematic adownwardtrendinV overtimeduetothepresenceofathird 0 uncertaintyin thederivationoftheorbitalandfundamentalpa- body.WehavetoofewepochstomodelanyV trendforthetime 0 rametersofthestar(seebelow).Thoughtheeccentricity,e,was being.Forthisreason,weshiftedthedatatowardstheCORALIE K.Yakut,C.AertsandT.Morel:Theearly-typeclosebinaryCVVelorumrevisited 3 Table3.SpectroscopicorbitalelementsofCVVelfordifferentspectrallines.Seetextfordetails.Theformalstandarderrorsσare giveninparenthesesinthelastdigitquoted. Ion Lines K K m sin3i m sin3i a sini a sini V 1 2 1 2 1 2 0 Å kms−1 kms−1 M M R R kms−1 ⊙ ⊙ ⊙ ⊙ HeI 4120.993 126.8(5) 128.6(5) 5.988 5.904 17.261 17.545 16.2(2) MgII 4481.327 126.9(4) 128.6(4) 5.993 5.913 17.290 17.528 18.2(2) SiIII 4552.622 125.2(6) 128.2(6) 5.876 5.739 17.037 17.447 23.5(3) SiIII 4567.840 127.0(5) 128.2(5) 5.960 5.904 17.315 17.473 24.7(3) HeI 6678.149 127.0(4) 128.6(4) 5.997 5.923 17.287 17.498 24.2(2) Table4.SpectroscopicorbitalparametersofCVVel.Thestandarderrorsσaregiveninparenthesesinthelastdigitquoted. Parameter Unit Feast(1954) Andersen(1975) Thispaper Thispaper+Andersen(1975) K kms−1 122.2(6) 127.0(3) 126.5(3) 127.0(2) 1 K kms−1 126.6(6) 129.2(4) 128.6(3) 129.1(2) 2 V kms−1 27.9(1.1) 24.3(5) 21.7(2) 21.7(1) 0 q m /m 0.965 0.983 0.984 0.984 2 1 asini R 33.72 34.87 34.722 34.857 ⊙ m sin3i M 5.61 6.07 5.974 6.021 1 ⊙ m sin3i M 5.41 5.96 5.876 5.927 2 ⊙ P(O−C)2 0.08 0.01 0.01 0.01 (second column of Table5). Clausen & Grønbech (1977) have used a linear limb-darkeninglaw, fixing the temperatureof the primary star at the value 18300 K. They determined solutions foreachcolour,assumingdifferentvaluesfork = r2 (see,their r1 Table4).Inthiswork,thelightandradial-velocitycurveswere analyzed simultaneously using the 2005 September version of the Wilson-Deviney code (hereafter WD, Wilson & Devinney 1971; Wilson 1994). Mode 2 of the WD code, which assumes that both of the componentsare detached, was adopted. In the final solution, we fixed the following parameters: the limb- darkeningcoefficients (takenfrom Diaz-Cordoves& Gimenez 1992, see Table5), the values of the gravity darkening coeffi- cientsandthealbedos.Theadjustableparametersare theincli- nation i, the temperature of the secondary component T , the 2 luminosities L and L , andthesurfacepotentialsΩ andΩ . 1b 1y 1 2 The differential correction(DC) code was ran until the correc- tionstotheinputparameterswerelowerthantheirerrors. To obtain a simultaneous solution, different possibilities weretested.Wevariedtheprimary’stemperatureintherangeof 17800K-19000Kwith50KstepsandfoundthatT =18000K 1 gavethe bestsolutionwith the lowestformalerrorsforthe un- Fig.2.TheradialvelocityobservationsofCVVelversustheor- knownquantitiesandthelowestP(O−C)2.However,thesolu- bitalphase.Thefilledandopencirclescorrespondtotheveloci- tionswithT between18000Kand19000Kwerealmostindist- 1 tiesoftheprimaryandthesecondary,respectively.Thedataare inghuishable.Thisisinagreementwiththesolutionproposedby listedinTable2andthesinecurvecorrespondstotheelements Clausen&Grønbech(1977),whoassignedT =18200Ktothe 1 giveninTable4.Thecenter-of-massvelocityisindicatedbythe meancomponentofthesystemandconsideredanuncertaintyof dashed-dottedline. 500K. In selecting the bestsolution,we first assumedthe sys- temto beeccentricleavingthee andωvaluesfree.Asa result we obtained always e ≤ 0.001. The final results are given in V value,keepinginmindthatthissystematicuncertaintyadds Table5foreachbandseparately,aswellasforthesimultaneous 0 totheuncertaintyoftheoverallsolution. solutionincludingallphotometricdata.Wefindasimilarorbital These62radial-velocityvalueswerethencombinedwiththe inclination value than Clausen & Grønbech (1977). The com- lightcurvesobtainedintheStro¨mgren(ubvy)filtersbyClausen puted light and radial-velocity curves for the parameters given & Grønbech (1977), kindly made available to us by these au- in Table5 are shown by the solid lines, and are comparedwith thors. Theubanddatashowasomewhatlargerscatterthanthe alltheobservations,inFig.3. other filters so we used different weights. We determined the weightsfor the uvbybandsfromthe observingerrorsgivenby 4. Abundancedetermination Clausen&Grønbech(1977),resultinginthevalues1.7,2.5,2.0, and2.0foru,v,bandy,respectively. Our spectra are of sufficient quality, and cover a wide enough The previous light curve analyses of the system have been wavelength range, to undertake an abundance analysis for the done using the WINK method by Clausen & Grønbech(1977) two componentsof the CV Vel system. The non-localthermo- 4 K.Yakut,C.AertsandT.Morel:Theearly-typeclosebinaryCVVelorumrevisited Table 5. Orbitalparametersand photometricelements, with their formalerrors,of CV Vel. See textfor details. CG: Clausen & Grønbech(1977),theothercolumnsrepresentresultsobtainedinthiswork.Theparameterswithasuperscript∗werekeptfixed. CG u v b y ubvy Parameter Value(σ) Value(σ) Value(σ) Value(σ) Value(σ) Value(σ) Geometricparameters: i(◦) 86.59(5) 86.66(2) 86.62(2) 86.62(2) 86.62(2) 86.63(2) Ω - 9.500(9) 9.445(9) 9.451(9) 9.445(9) 9.456(10) 1 Ω - 9.852(11) 9.807(11) 9.805(11) 9.794(11) 9.804(12) 2 a - 34.897(19) 34.896(19) 34.891(19) 34.898(19) 34.899(20) q - 0.9837(9) 0.9842(9) 0.9845(9) 0.9838(9) 0.9835(10) Fractionalradiioftheprimary r - 0.1172(4) 0.1180(3) 0.1181(3) 0.1182(3) 0.1172(1) 1pole r - 0.1177(4) 0.1186(3) 0.1186(3) 0.1187(3) 0.1184(1) 1point r - 0.1174(4) 0.1182(3) 0.1183(3) 0.1184(3) 0.1181(1) 1side r - 0.1176(4) 0.1185(3) 0.1186(3) 0.1186(3) 0.1184(1) 1back r 0.117(1) 0.1175(4) 0.1183(3) 0.1184(3) 0.1185(3) 0.1182(1) 1mean Fractionalradiiofthesecondary r - 0.1113(4) 0.1117(3) 0.1118(3) 0.1118(3) 0.1117(2) 2pole r - 0.1117(4) 0.1122(3) 0.1122(3) 0.1123(3) 0.1121(2) 2point r - 0.1115(4) 0.1119(3) 0.1119(3) 0.1120(3) 0.1119(2) 2side r - 0.1117(4) 0.1121(3) 0.1121(3) 0.1122(3) 0.1121(2) 2back r 0.113(1) 0.1115(4) 0.1120(3) 0.1120(3) 0.1121(3) 0.1119(2) 2mean Radiativeparameters: T ∗(K) 18200 18000 18000 18000 18000 18000 1 T (K) 18060 17813(50) 17703(50) 17818(50) 17815(50) 17790(50) 2 Albedo∗(A =A ) 1.0 1.0 1.0 1.0 1.0 1.0 1 2 Limbdarkeningcoefficients∗: SquareLaw: xbol - 0.054 0.054 1u xbol - -0.089 -0.089 1v xbol - -0.078 -0.078 1b xbol - -0.067 -0.067 1y xbol - 0.059 0.059 2u xbol - -0.073 -0.073 2v xbol - -0.078 -0.078 2b xbol - -0.067 -0.067 2y ybol - 0.492 0.492 1u ybol - 0.718 0.718 1v ybol - 0.666 0.666 1b ybol - 0.581 0.581 1y ybol - 0.550 0.550 2u ybol - 0.611 0.611 2v ybol - 0.663 0.663 2b ybol - 0.583 0.583 2y Gravitybrightening∗(g =g ) 1.0 1.0 1.0 1.0 1.0 1.0 1 2 Luminosityratio ( L1 ) 0.519(20) 0.533(13) 0.534(13) L1+L2 u ( L1 ) 0.517(20) 0.531(12) 0.528(12) L1+L2 v ( L1 ) 0.517(20) 0.532(12) 0.532(12) L1+L2 b ( L1 ) 0.516(20) 0.531(12) 0.532(12) L1+L2 y P(O−C)2 - 0.028 0.026 0.023 0.025 0.064 dynamic equilibrium (NLTE) abundancesof He, C, N, O, Mg, essentiallythesameeffectivetemperature,sothatthesecorrect- Al, Si, S and Fe were calculated using the latest versions of ingfactorscanbeconsideredindependentofwavelength. thelineformationcodesDETAIL/SURFACEandplane-parallel, fullyline-blanketedKuruczatmosphericmodels(Kurucz1993). We first computed the abundances assuming the logg and Curve-of-growth techniques were used to determine the abun- T valuesobtainedfromthe lightcurveanalysis(Table7), but eff dances using the equivalent widths (EWs) of a set of spectral foundthatthe Si/ ionizationbalanceis notwellfullfilled in linesmeasuredonameanspectrumcreatedbyaveragingthefive thatcase.Instead,aslightlyhighervalueofT =19000±500K eff CORALIEspectratakenatφ∼0.73(seeMoreletal.2006forthe is neededfor both components.Because of this ambiguitysur- line list used). These EWs were subsequently corrected to ac- roundingthetemperaturedetermination,wehaveestimatedthe countforthedilutionbythecompanion’scontinuum,assuming abundances using both the photometric and the spectroscopic theluminosityratiogiveninTable7.Thetwocomponentshave values (hereafter T and T , respectively).The uncer- photo ionization taintiesontheelementalabundanceswerecalculatedbyadding inquadraturetheinternalerrors(i.e.theline-to-linescatter)and K.Yakut,C.AertsandT.Morel:Theearly-typeclosebinaryCVVelorumrevisited 5 Therefore,there is no convincingevidencefor departuresfrom a scaled solar composition. The nominal abundancevalues are systematically higher in the secondary than in the primary. As the chemical composition of the two components is expected to be identicalfor such a young,detachedsystem with no past orongoingepisodesofmasstransfer,thisstronglyarguesfora highermicroturbulentvelocityinthesecondary.Thisdifference is,however,notsufficienttoexplainthediscrepantrotationrates ofthetwocomponents(seeSection6below). Recent works point to the existence of a population of slowly-rotating B-type (magnetic) pulsators exhibiting an un- expected nitrogen excess at their surface, which could possi- blybeattributedtodeepmixingordiffusioneffects(Briquet& Morel2007; Morelet al. 2006). A similar phenomenoncannot befirmlyestablishedineitherofthetwocomponentsofCVVel: whiletheratiooftheabundancesofNandC([N/C])iscompa- rable to the values previouslyreportedfor the N-rich β Cephei andslowlypulsatingBstars,the[N/O]ratioisindistinguishable fromsolar.Thisconclusionholdsirrespectiveofthetemperature scaleadopted. Regarding the derivation of the physical parameters of the componentstars,wearethusleftwiththeconclusionthatasec- ond systematic uncertainty occurs, besides the one induced by the offsetin V . We forcedthe effectivetemperatureof the pri- 0 mary to 19000 K and checked the orbital solutions from WD discussedintheprevioussection.Asalreadymentioned,thedif- ferencesintheorbitalparametervaluesaresmallandcompatible with the uncertainties listed there. While deriving the physical parametersofthesysteminthenextsection,wepropagatedthe errorscausedbythesystematicuncertaintyineffectivetemper- atureinordertoachieverealisticerrors. 5. Physicalparametersofthesystem ThephysicalparametersofCVVelfirstobtainedbyGaposchkin (1955)wereM =5.618M ,M =5.418M ,R =4.26R ,and 1 ⊙ 2 ⊙ 1 ⊙ R = 4.16R . Andersen (1975) reported the parametersof the 2 ⊙ componentsas M = 6.05M , R = 4.05R , andlog T = 1,2 ⊙ 1,2 ⊙ eff Fig.3. The observed and computed (a) light and (b) radial- 4.26.Clausen&Grønbech(1977)subsequentlyobtained M = 1 velocitycurvesofCVVel.Thecurveintheu,bandybandsare 6.10M⊙, M2 = 5.99M⊙, R1 = 4.10R⊙, R2 = 3.95R⊙, T1 = moved by +0.25, -0.25 and -0.50, respectively, in intensity for 18200KandT =18060K. 2 goodvisibility.Circlesandsquaresdenotethedatainthisstudy, Wesummarizetheobtainedparametersofthesystemandof andAnderson(1975)respectively. Thecenter-of-massvelocity the components obtained from our simultaneous fit in Table7. isindicatedbythedashed-dottedline.(c)3-Drepresentationof In computing them, we took the values of the light curve esti- CVVelatphases0.00,0.25and0.50. matesfortheeffectivetemperatureofthecomponents.Weargue thatthe photometricdata are ofhigh qualitywhile the spectro- scopictemperatureestimatessufferfromtheunknownmicrotur- theerrorsarisingfromtheuncertaintyonthemicroturbulentve- bulence.However,wetakeintoaccountasystematicuncertainty locity, ξ. The latter quantity is usually inferred in B stars by of500Kforthetemperature.Thisequalstheuncertaintyderived requiring no dependence between the abundances yielded by fromthesiliconionisationbalanceandisafactortenhigherthan linesofanionicspecieswithstrongfeatures(e.g.O)andtheir theformalerrorthatresultedfromourWDanalysis,sowecon- strength.However,mostmetalliclinesareintrinsicallyweakin siderthistobeasafeconservativeapproach.Wepropagatedthis therelevanttemperaturerange(measuredEWs.20mÅ),such uncertaintyforallthederivedquantitiesrelyingontheeffective that it is virtually impossible to constrain the microturbulence. temperature. Weadoptinthefollowingacanonicalvalueξ=5±5kms−1,with Wederivedthecomponent’sbolometriccorrectionsfromthe thelargeconservativeerrorbarsencompassingallplausibleval- temperatures using the interpolation formula given by Balona uesforBdwarfs.Thistranslatesintopoorlydefinedabundances (1994)forG5toearly-typestars.Inordertofindthedistanceof fortheelementssolelyexhibitingrelativelystronglines,inpar- thesystem,weusedtheE(B-V)valueof0m.08fromSavageetal. ticularHe,SiandMg. (1985)resultingind =553pc. TheresultsforthetwochoicesofT areprovidedinTable6. Ourresultsareinverygoodagreementwiththoseobtained eff No abundances are found to deviate at more than the 3σ level byClausen&Grønbech(1977).Wewereunabletoachievemore from the typical values found for early B dwarfs in the solar precisevaluesthantheydid,duetotheuncertaintyontheeffec- neighbourhood(Daflon& Cunha2004) forbothT estimates. tivetemperatureresultingfromourspectroscopicanalysis. eff 6 K.Yakut,C.AertsandT.Morel:Theearly-typeclosebinaryCVVelorumrevisited Table6.MeanNLTEabundancesoftheprimaryandsecondarycomponentsofCVVel(onthescaleinwhichlogǫ[H]=12),along with the total 1-σ uncertainties. The number of used lines is given in brackets. We quote the values obtained when using the temperaturesderivedfromthelightcurveanalysis(T )orfromtheionizationbalanceofsilicon(T ).Thegravityisfixed photo ionization in both cases to the values quoted in Table7 and the microturbulentvelocity, ξ, to 5 km s−1. For comparison purposes, the first columngivesthetypicalvaluesfoundfornearbyBdwarfs(Daflon&Cunha2004).Wedefine[N/C]and[N/O]aslog[ǫ(N)/ǫ(C)] andlog[ǫ(N)/ǫ(O)],respectively. T ≡T =18000K T ≡T =19000K eff photo eff ionization OBstars Primary Secondary Primary Secondary He/H 0.085 0.053±0.029(6) 0.097±0.033(6) 0.040±0.022(6) 0.073±0.031(6) logǫ(C) ∼8.2 8.08±0.10(4) 8.29±0.17(2) 7.89±0.07(4) 8.11±0.17(2) logǫ(N) ∼7.6 7.93±0.13(7) 8.16±0.16(6) 7.69±0.13(7) 7.92±0.17(6) logǫ(O) ∼8.5 8.74±0.18(8) 8.85±0.20(4) 8.44±0.17(8) 8.55±0.19(4) logǫ(Mg) ∼7.4 7.01±0.40(1) 7.26±0.45(1) 7.13±0.40(1) 7.39±0.39(1) logǫ(Al) ∼6.1 6.32±0.18(3) 6.48±0.17(3) 6.12±0.18(3) 6.27±0.17(3) logǫ(Si) ∼7.2 6.97±0.44(7) 7.15±0.61(7) 6.93±0.28(7) 7.11±0.44(7) logǫ(S) ∼7.2 7.02±0.21(5) 7.25±0.23(2) 7.08±0.19(5) 7.29±0.25(2) logǫ(Fe) ∼7.3a 7.20±0.20(3) 7.46±0.18(2) 7.05±0.15(3) 7.34±0.23(2) [N/C] ∼–0.6 –0.15±0.17 –0.13±0.24 –0.20±0.15 –0.19±0.25 [N/O] ∼–0.9 –0.81±0.23 –0.69±0.26 –0.75±0.22 –0.63±0.26 aFromMoreletal.(2006). Table 7. AbsoluteparametersforCV Vel.The errorsare givenin parenthesesand takeintoaccountthesystematic uncertainties encounteredforV andfortheeffectivetemperatureofthecomponents.TheeffectivetemperatureoftheSunwastakenas5780K, 0 itsbolometricabsolutemagnitudeas4.75maganditsbolometriccorrectionas–0.07mag. Unit primarycomponent secondarycomponent Mass(M) M 6.066(74) 5.972(70) ⊙ Radius(R) R 4.126(24) 3.908(27) ⊙ Effectivetemperature(logT ) K 4.255(12) 4.250(12) eff Luminosity(logL) L 3.204(48) 3.137(48) ⊙ Surfacegravity(logg) cgs 3.99(6) 4.03(6) Bolometriccorrection(BC) mag -1.68(5) -1.66(5) Absolutebolometricmagnitude(M ) mag -3.26(3) -3.09(3) bol Absolutevisualmagnitude(M ) mag -1.58(6) -1.43(5) V Semi−majoraxis(a) R 34.90(15) ⊙ Distance(d) pc 553(32) WeconfrontedourobservationalresultsforCVVelwithevo- preventedusfromconstrainingtheovershootparametersforthe lutionarymodelscomputedbyDeCatetal.(2006)withtheCode components of CV Vel. We derive an age of about 40 million Liege´ois d’E´volution Stellaire (CLE´S, Scuflaire 2005). These years for the system. Clausen & Grønbech (1977) reported an computationsweredoneusingthe newsolar abundancesasre- ageofonlyabout30millionyears,buttheyusedofcoursemuch ported by Asplund et al. (2005) and a standard mixing length oldermodelswithsomewhatdifferentinputphysics(e.g.,older description of convectionwith ℓ = 1.75 times the local pres- opacityvalues). m sure scale height. The use of these models is appropriate for the components of CV Vel. Indeed, the Z-values we obtained for the primary and secondary are Z = 0.0119 ± 0.0028 and 6. Studyoftheline-profilevariability Z = 0.0160± 0.0040 for the case of an effective temperature of 18000K and where we have taken the standard abundances The componentsof CV Velreside in the instability strip of the of Grevesse & Sauval (1998) for the elements not included in slowly pulsating B stars, not far away from the βCephei strip Table6. The metallicities we getare thus consistentwith those (Fig.4). It is therefore worthwhile to search for short-period used in the model computations by De Cat et al. (2006). The spectroscopicvariationsofthecomponents.Percy&Au-Young tracksforM =5.9,6.0,6.1M⊙areshowninFig.4fortwocases: (2000)reportedthepossibilityofa variationwithanamplitude nocoreovershootandanovershootof0.2timesthelocalpres- of0.02magandaperiodof0.25dayintheHipparcosphotom- surescaleheight.WeoverplottedthepositionofCVVel’scom- etry.However,theydidnotstudyCVVelindetail.Clausen(pri- ponentsaccordingtoourresultsmentionedinTable7. Itcanbe vatecommunication)wasunabletofindshort-periodvariations seen that the agreement between our observational results and inhisextensivephotometricdata. the evolutionarymodelsis satisfactory.Recentresults from as- InFig.5aweplottheMgII4481Ålinesofthecomponents teroseismologyhaveshownthatasmallcoreovershootvalueis obtained at the phases outside of the eclipses. This line is the necessary to bring observed and identified oscillation frequen- bestonetostudyline-profilevariabilitybecauseitisoneofthe cies in agreementwith evolutionarymodels (Aerts et al. 2003; deeperonesandhasthebestS/Nlevel.Weshiftedallthelinesto Pamyatnykhetal.2004)inthispartoftheHRdiagram.Thesys- thecommoncenterofmass.TheboldcontinuouslineinFig.5b tematicuncertaintyforthetemperatures(andthusluminosities) istheaverageprofile.InFig.5c, theresidualsofeachlinewith K.Yakut,C.AertsandT.Morel:Theearly-typeclosebinaryCVVelorumrevisited 7 Fig.4. ThecomponentsofCVVelintheHRdiagramwitherror bars.Theupperpointrepresentstheprimarywith M = 6.07M ⊙ andthelowerpointindicatesthesecondarywith M = 5.97M ⊙ (seeTable7).ThefullthicklineindicatestheβCepheiinstability strip,thefulldashedlineistheinstabilitystripoftheslowlypul- satingBstars.Bothstripswerecomputedwiththenon-adiabatic oscillation code MAD (Dupret, 2001) assuming that no core Fig.5.(a)NormalizedMgII(λ4481)lineprofilesoftheprimary overshootoccurs.EvolutionarytrackscomputedwithCLE´Sare (leftpanel)andthesecondary(rightpanel).Phaserunsfromthe shown for M = 5.9,6.0,6.1M , and for zero core overshoot ⊙ toptothebottom.(b)Lineprofilessuperimposed.Thefullthick (thin full lines) as well as a core overshootof 0.2 (thin dashed line is the average profile. (c) Residual profiles with respect to lines). theaverage respecttotheaverageareshown.Itisapparentfromthisfigure ponentandasimilarorbitalperiod,e.g.inthebinaryηOriwith thattheprimaryshowsline-profilevariations. apulsatingcomponent(DeMeyetal.1996). We first of all estimated the rotational and thermal broad- Wetriedtoquantifytheline-profilevariabilityofbothcom- ening from the average profiles shown in Fig.5b. It is evident ponentsbycomputingthelinemomentvariationsinthedefini- fromthisfigure,aswellasfromFig.1,thatthesecondaryrotates tion of Aerts et al. (1992) for the 23 spectra shown in Fig.5a. faster than the primarysince both componentsessentially have These line diagnosticsstand for the centroidvariation(< v >), the same thermalbroadening.This is in contrastto Andersen’s thevariationinthe linewidth (< v2 >) andthevariationin the (1975) conclusion that the componentshave equal rotation ve- lineskewness(<v3 >).Theyarespecificallypowerfultounravel locity.We computedtheoreticalMgII profilesforGaussian in- low-degree(ℓ ≤ 4)non-radialoscillationmodes.Weperformed trinsic broadening as well as rotational broadening and find a frequencysearch with the Scargle method (Scargle 1982) on vsini = 19 ± 1kms−1 for the primary and 31±2kms−1 for < v >intherange[0.0,3.4]cd−1,wheretheupperlimitofthis the secondary. Assuming the orbital and rotational axes to be interval correspondsto the Nyquist frequency.As a result, our aligned,and using the radiusestimates fromTable6, we find a dataset is not suitable to detect p-mode oscillations in B2.5V rotation period of 11.0 (±0.6) days for the primary and of 6.4 starsbecausethosehavefrequenciesoftypically4to8cd−1 for (±0.4)daysforthesecondary. Itisnoteworthythattheprimary slowrotators(e.g.Aerts&DeCat2003).Weshouldbeableto rotatessubsynchronously,whilethesecondary’srotationperiod findasignatureofg-modeswithamplitudesofafewkms−1 as is compatible with the orbital period within the errors. Tidal inslowlypulsatingBstars(e.g.DeCat&Aerts2002). theory (e.g., Zahn 1975, 1977) predicts the occurrence of syn- The highest frequency peak in the Scargle periodogram of chronisationbeforecircularisation,andbothto happenon time < v >fortheprimaryoccursat f = 0.166±0.009cd−1,withan scales shorter than about half the main-sequence duration, de- amplitudeof 2.2±0.4kms−1. This frequencyhasa variancere- pending on the birth values of the eccentricity and orbital pe- ductionof54%,whichimpliesadecreaseinthestandarddevia- riod. Deviations from synchronisation in circularised binaries tionfrom2.3to1.5kms−1.Itreachesa levelof3.8S/N, where havebeenreportedbeforeforclosebinarieswithaB-typecom- theS/NlevelwascomputedfromanoversampledScargleperi- 8 K.Yakut,C.AertsandT.Morel:Theearly-typeclosebinaryCVVelorumrevisited Table8.ObservedparametersforB-typemain-sequencedouble-linedeclipsingbinarystars. Star Sp.T P M M R R logT logT logL logL Ref 1 2 1 2 e1 e2 1 2 AHCep B0.5Vn+B0.5Vn 1.78 15.4 13.6 6.38 5.86 4.476 4.456 4.465 4.314 1 CWCep B0.5V+B0.5V 2.73 13.484 12.05 5.685 5.177 4.452 4.442 4.27 4.15 2 QXCar B2V+B2V 4.48 9.245 8.46 4.289 4.051 4.377 4.354 3.72 3.58 2 V497Cep B3V+B3V 1.20 6.89 5.39 3.69 2.92 4.290 4.249 3.265 2.860 3 V539Ara B3V+B4V 3.17 6.239 5.313 4.432 3.734 4.26 4.23 3.29 3.02 2 CVVel B2.5V+B2.5V 6.89 6.066 5.972 4.126 3.908 4.255 4.250 3.20 3.14 4 AGPer B4V+B5V 2.03 5.36 4.9 2.99 4.297 4.260 4.241 2.95 2.75 5 UOph B5V+B5V 1.68 5.186 4.672 3.438 3.005 4.22 4.199 2.91 2.7 2 DIHer B4V+B5V 10.55 5.173 4.523 2.68 2.477 4.23 4.179 2.73 2.46 2 V760Sco B4V+B4V 1.73 4.968 4.609 3.013 2.64 4.228 4.21 2.82 2.63 2 GGLup B7V+B9V 1.85 4.155 2.532 2.411 1.753 4.176 4.041 2.42 1.61 2 ζPhe B6V+B8V 1.67 3.92 2.545 2.851 1.853 4.163 4.076 2.51 1.79 2 χ2Hya B8V+B8V 2.27 3.605 2.631 4.384 2.165 4.066 4.041 2.5 1.79 2 IQPer B8V+B6V 1.74 3.513 1.732 2.446 1.503 4.09 3.885 2.09 0.85 2 PVCas B9.5V+B9.5V 1.75 2.82 2.761 2.243 2.287 4.000 4.000 1.65 1.67 2 V451Oph B9V+A0V 2.20 2.769 2.36 2.64 2.03 4.033 3.991 1.93 1.53 6 GGOri B9.5V+B9.5V 6.63 2.342 2.338 1.852 1.830 3.9978 3.9978 1.480 1.470 7 ReferencesforTable7.:1Holmgrenetal.(1990); 2Andersen(1991)andreferencestherein;3Yakutetal.(2003);4Thisstudy;5Gimenez& Clausen(1994);6Clausenetal.(1986);7Torresetal.(2000) between5.7and6.4days.Thisisalmostequaltotheorbitalpe- riod.Moreover,thequotedfrequencyerrorisaformal1σleast- squareserror, and is an underestimationof the true error given thatwe coveredless thantwofullcycleswith unblendedMgII lines.Itthereforeseemsthatline-profilevariabilityoccurswith aperiodverycloseorequaltotheorbitalone.Thisispotentially interesting as it could point towards the excitation of a tidally inducedg-modeoscillationinthe components.However,given thephaserelationweobtained,andtheabsenceofanyperiodic signature in < v2 >, it is more likely that a reflection and/or variable limb-darkeningeffect lies at the origin of the detected variability.Weneedamoreextensivedatasettofirmlyestablish thecorrectinterpretationofCVVel’sline-profilevariability. 7. Summary From combined existing light and old and new radial-velocity Fig.6.Thefirstmomentvariationasafunctionoforbitalphase curves, we have obtained a full solution of the double-lined fortheprimary(◦)andsecondary(△).Thefulllineswithcorre- eclipsing binary CV Vel. The system’s center-of-massvelocity spondingsymbolsarealeast-squaressinefit. (V0)obtainedbyFeast(1954),Andersen(1975)andinthisstudy are 27.9(1.1), 24.3(5), and 21.7(2)kms−1, respectively. These threedifferentanddecreasingvaluesmayindicatethepresence odogramoftheresidualsovertheentireinterval[0.0,3.4]cd−1. ofadistantthirdbodyorbitingthebinarysystem.Forthcoming We recoverthe same frequency f in < v3 >. We do not, how- observationsofthesystemarenecessarytoevaluatethishypoth- ever,findanyperiodicphenomenonin<v2 >.Apulsationmode esis. We checked but did not find a significant orbital period would imply the occurrence of f and/or 2f in < v2 > as well change. (Aertsetal.1992,DeCatetal.2005).Itmaybethatourdataset WehavecorrectedfortheoffsetinV inAndersen’s(1975) 0 istoolimitedinqualitytodetectafrequencyin<v2 >giventhat andour dataand mergedthese two high-qualityradial-velocity theevenmomentsarealwaysnoisierthantheoddones(Aertset curves to improve our knowledge on the fundamental param- al.1992). eters of the components. In order to achieve this, we comple- For the secondary, we find f′ = 1.168±0.009cd−1. This mented the spectroscopic data with the high-quality 4-colour is a one-day alias of f. Forcing f leads to an amplitude of (uvby) lightcurves obtained by Clausen & Grønbech (1977). 1.8±0.4kms−1 (at level 4.1S/N) and a variance reduction of Thesephotometricandradial-velocitydatawerethensolvedsi- 51%, bringing the standard deviation from 1.5 to 0.9kms−1. multaneously.Theeclipsinganddetachedpropertiesofthesys- This time, we cannot recover any frequencies in < v2 > or temhaveledtoreliableorbitalandphysicalparametersinagree- < v3 >.We showin Fig.6thecentroidvelocity< v >forboth ment with the values obtained earlier by Clausen & Grønbech theprimaryandsecondary,foldedwiththefrequency f,aswell (1977). as their least-squaresfit. We find thatthe primary’s< v > lags Wepresentedforthefirsttimeanabundanceanalysisforthe behindaquarterofaphasecomparedtotheoneofthesecondary. system and found results in agreement with those for B stars Weconcludetohavefoundevidenceofperiodicline-profile in the solar neighbourhood for both components. This analy- variabilityintheprimaryandsecondaryofCVVelwithaperiod sis led to a systematic uncertaintyof some500K forthe effec- K.Yakut,C.AertsandT.Morel:Theearly-typeclosebinaryCVVelorumrevisited 9 tive temperatures of the components. Thus, these two parame- tersof thisseeminglywell-knownsystem remainuncertainde- spite our detailed analysis based on e´chelle spectroscopy. It is not uncommon to find systematic uncertainties and deviations betweenphotometricallyandspectroscopicallyderivedeffective temperatures of B-type stars (e.g. De Ridder et al. 2004 for a discussion), and even to have uncertainties of order 500K for suchstarsamongmethodsbasedonthesamedata(e.g.Smalley & Dworetsky 1995, Morel et al. 2006, Kaiser 2006). Previous works on CV Vel did not include a spectroscopic temperature estimate and were thus not able to estimate the systematic un- certaintyofthecomponent’stemperatures. Finally, we discovered line-profile variability in both com- ponents.Thevariabilityismostprominentintheprimary.From the characteristics of the line profile moments, we tentatively interpreted this variability as due to an extrinsic orbital effect ratherthananintrinsicoscillation.Anyfinalinterpretationofthe detectedline-profilevariabilityrequiresa muchmoreextensive dataset,however. OurresultsshowthatCVVelconsistsofyoungstarswhich are about half-way in their central hydrogen burning phase. Though the orbit is circular, the components clearly have dif- ferentrotationspeeds.Wethusconcludethatthetidalforceshad insufficienttimesofartobringthesystemtoacircularorbitwith Fig.7.Mass-Luminosityrelationforwell-knownB-typeeclips- co-rotatingcomponents,i.e. the circularisation processis com- ing binaries. The filled and open circles represent the primary pletedbutnotthesynchronisationone. andthesecondarycomponentsrespectively.Thecomponentsof Observational tests of stellar evolution models have been CVVelareindicatedasPandS. done by many authors previously (Pols et al. 1997, Young et al. 2001, Lastennet & Valls-Gabaus 2002, Young & Arnett 2005, and references therein). To determine the masses and S.Hony,M.Reyniers,H.VanWinckelandB.Kalomenifortheirsupport.The radii of stars independently from models, one should use de- authorsaresupportedbytheResearchCounciloftheUniversityofLeuvenunder grantandGOA/2003/04andaDBfellowship.Weareverygratefultoananony- tached, eclipsing double-lined binaries and compute a simul- mousrefereefornumerouscommentsandhelpfulconstructive remarkswhich taneoussolutiontotheirradial-velocityandmulti-colourcurves. helpedustoimprovethepaper. Unfortunately, accurate physical parameters are only available for very few systems with early-type components. Andersen (1991) compiled a list of stars whose physical parameters are References well defined, with relative mass and radius uncertainties less Aerts,C.,DePauw,M.,Waelkens,C.,1992,A&A,266,294 than2%.Wecollectedallthewell-knowndetachedeclipsingbi- Aerts C., Thoul A., Daszyn´ska J., Scuflaire R., Waelkens C., Dupret M.A., narieswithmain-sequenceB-typecomponentssince thenfrom NiemczuraE.,NoelsA.,2003,Sci,300,1926 theliterature(Table8)andaddedournewestimatesofCVVel. Aerts,C.,DeCat,P.,SpaceScienceReviews,105,453 Andersen,J.,1975,A&A,44,355 While we obtain a mass estimate with a relative precision of Andersen,J.,1991,A&ARv,3,91 1.2%, the systematic uncertainty for the effective temperature Asplund,M.,Grevesse,N.,Sauval,A.J.,ASPConferenceSeries,Vol.336,25 that we derived from our high-quality spectra implies an un- Balona,L.A.1994,MNRAS,268,119 certainty of some 12% on the luminosities of the components. Baranne, A.,Queloz, D.,Mayor, M.,Adrianzyk, G.,Knispel, G.,Kohler, D., Lacroix,D.,Meunier,J.-P.,Rimbaud,G.,Vin,A.1996,A&AS,119,373 Nevertheless,thevaluesweobtainedforCVVelarefullycom- Briquet,M.,&Morel,T.2007,CoAst,inpress patiblewithevolutionarymodelsandwiththoseofsimilarsys- Clausen,J.V.,Grønbech,B.1977,A&A,58,131 temswhoseparametersareknownwithbetterprecision. Clausen,J.V.,Gimenez,A.,Scarfe,C.,1986,A&A,167,287 The stars given in Table8 are drawn in a mass-luminosity Daflon,S.,&Cunha,K.2004,ApJ,617,1115 plotinFig.7.FromTable8wefindthefollowingupdateofthe DeCat,P.,Aerts,C.,2002,A&A,393,965 DeCat,P.,Briquet,M.,Aerts,C.,etal.2007,A&A,463,243 mass-luminosityrelationforthemain-sequenceB-typestars: DeCat,P.,Telting,J.,Aerts,C.,Mathias,P.2000,A&A,359,539 DeCat,P.,Briquet,M.,Daszynska-Daszkiewicz,J.,Dupret,M.A.,DeRidder, log(L/L )=3.724(80)log(M/M )+0.162(57). (2) ⊙ ⊙ J.,Scuflaire,R.,Aerts,C.,A&A,432,1013 DeMey,K.,Aerts,C.,Waelkens,C.,VanWinckel,H.1996,A&A,310,164 Previously, Hilditch & Bell (1987) presented a similar relation DeRidder,J.,Telting,J.H.,Balona,L.A.,etal.2004,MNRAS,351,324 for O and B systems. The rms error in log(L) they found was Diaz-Cordoves,J.,&Gimenez,A.1992,A&A,259,227 0.17 whereas it is only 0.11 for our Eq.(2) because we con- Dupret,M.-A.,2001,A&A,366,166 sider onlybinarieswith B star componentshere.Thisequation Feast,M.W.,1954,MNRAS,114,246 Gaposchkin,S.,1955,MNRAS,115,391 isusefultopredictmassesfromluminosities,orviceversa,for Gimenez,A.,Clausen,J.V.,1994,A&A,291,795 main-sequenceBstars. Grevesse,N.,Sauval,J.,1998,SSRv,85,161 Hilditch,R.W.,Bell,S.A.,1987,MNRAS,229,529 Acknowledgements. TheauthorsareverymuchindebtedtoProf.J.V.Clausen Holmgren,D.E.,Hill,G.,Fisher,W.,1990,A&A,236,409 forsharinghisphotometricdataofCVVelwithus,forencouragingustostudy Hubscher,J.2005,InformationalBulletinonVariableStars,5643 CVVelspectroscopically andtoperformanabundanceanalysisfromournew Kaiser,A.,2006,ASPC,349,257 data.Dr.B.Vandenbusscheisacknowledged forperformingtheobservations, Kurucz, R. L. 1993, ATLAS9 Stellar Atmosphere Programs and 2 kms−1 Dr.M.BriquetforthehelpinthedatapreparationandDr.P.DeCatforputting grid. Kurucz CD-ROM No. 13. Cambridge, Mass.: Smithsonian hisgridofseismicmodelsatourdisposal.kYwouldliketothankwarmlyDrs AstrophysicalObservatory,1993,13 10 K.Yakut,C.AertsandT.Morel:Theearly-typeclosebinaryCVVelorumrevisited Lastennet,E.,Valls-Gabaud,D.,2002,A&A,396,551 Leung,K.-C.,Zhai,D.,&Zhang,Y.1985,AJ,90,515 Mathias,C.,Aerts,C.,DePauw,M.,Gillet,D.,Waelkens,C.,1994,A&A,283, 813 Mathias,P.,Gillet,D.,1993A&A,278,511 Morel,T.,Butler,K.,Aerts,C.,Neiner,C.,&Briquet,M.2006,A&A,457,651 PamyatnykhA.A.,HandlerG.,DziembowskiW.A.,2004,MNRAS,350,1022 Percy,J.R.&Au-Yong,K.,2000,InformationalBulletinonVariableStars,4825 Pols,O.R.,Tout,C.A.,Schroder,Klaus-Peter,Eggleton,P.P.,Manners,J.,1997, MNRAS,289,869 Savage,B.D.,Massa,D.,Meade,M.,Wesselius,P.R.,1985,ApJS,59,397 ScargleJ.D.,1981,ApJS,45,1 Scuflaire,R.,2005,CLE´SUserManual,Version18,Lie`geUniversity,Belgium Smalley,B.,&Dworetsky,M.M.1995,A&A,293,446 Struve,O.,Zebergs,V.1960,ApJ,130,87 Torres,Guillermo,Lacy,ClaudH.Sandberg,Claret,Antonio,Sabby,JeffreyA., 2000,AJ,120,3226 VanHoof,A.,1975,PASP,69,308 vanHouten,C.J.,1950,Ann.Sterrew.Leiden,20,223 Wilson,R.E.,&Devinney,E.J.1971,ApJ,166,605 WilsonR.E.1994,PASP,106,921 Yakut,K.,Tarasov,A.E.,˙Ibanoglu,C.,Harmanec,P.,Kalomeni,B.,Holmgren, D.E.,Bozic,H.,Eenens,P.,2003,A&A,405,1087 Young,P.A.,Mamajek,E.E.,Arnett,D.,Liebert,J.,2001,ApJ,556,230 Young,P.A.&Arnett,D.,2005,ApJ,618,908 Zahn,J.-P.1975,A&A,41,329 Zahn,J.-P.1977,A&A,57,383

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.