A&A469,861–872(2007) Astronomy DOI:10.1051/0004-6361:20077407 & (cid:1)c ESO2007 Astrophysics (cid:1) The dynamical status of the galaxy cluster Abell 115 R.Barrena1,W.Boschin2,3,M.Girardi3,4,andM.Spolaor3,5 1 InstitutodeAstrofísicadeCanarias,C/VíaLácteas/n,38200LaLaguna,Tenerife,Spain e-mail:[email protected] 2 FundaciónGalileoGalilei-INAF,C/AlvarezdeAbreu70,38700SantaCruzdeLaPalma,CanaryIslands,Spain 3 DipartimentodiAstronomiaoftheUniversitàdegliStudidiTrieste,viaTiepolo11,34131Trieste,Italy 4 INAF–OsservatorioAstronomicodiTrieste,viaTiepolo11,34131Trieste,Italy 5 CentreforAstrophysics&Supercomputing,SwinburneUniversity,Hawthorn,VIC3122,Australia Received5March2007/Accepted19April2007 ABSTRACT Aims.Wepresent the results of a new spectroscopic and photometric survey of the hot, binary X-ray cluster A115 at z = 0.193, containingaradiorelic. Methods.OuranalysisisbasedonnewspectroscopicdataobtainedattheTelescopioNazionaleGalileofor115galaxiesandonnew photometricdataobtainedattheIsaacNewtonTelescopeinalargefield.Wecombinegalaxyvelocityandpositioninformationto select85galaxiesrecognizedasclustermembers,determineglobaldynamicalpropertiesanddetectsubstructures. Results.WefindthatA115appearsasawellisolatedpeakintheredshiftspace,withagloballine-of-sight(LOS)velocitydispersion σ =1362+126 kms−1.Ouranalysisconfirmsthepresenceoftwostructuresofcluster-typewellrecognizableintheplaneofthesky v −108 andshowsthattheydifferof∼2000kms−1 intheLOSvelocity.Thenorthern,highvelocitysubcluster(A115N)islikelycentredon thesecondbrightestcluster galaxy(BCM−A,coincident withradiosource3C28) andthenorthernX-raypeak. Thesouthern, low velocitysubcluster(A115S)islikelycentredonthefirstbrightestclustergalaxy(BCM−B)andthesouthernX-raypeak.Weestimate thatA115SisslightlydynamicallymoreimportantthanA115Nhavingσv =900−1100kms−1 vs.σv =750−850kms−1.Moreover, wefindevidencefortwosmallgroupsatlowvelocities.Weestimateaglobalclustervirialmassof2.2−3.5×1015 h−701 M(cid:3). Conclusions.Our results agree with a pre-merging scenario where A115N and A115S are colliding with a LOS impact velocity ∆v ∼ 1600kms−1.Themostlikelysolutiontothetwo-bodyproblemsuggeststhatthemergingaxisliesat∼20degreesfromthe rf planeoftheskyandthatthecoreswillcrossafter∼0.1Gyr.Theradiorelicwithitslargestdimensionperpendiculartothemerging axisislikelyconnectedtothismerger. Keywords.galaxies:clusters:general–galaxies:clusters:individual:Abell115–galaxies:distancesandredshifts– cosmology:observations 1. Introduction thatappeartobeassociatedwithveryrichclustersthathaveun- dergonerecentmergersandthusit hasbeensuggestedbyvari- The evolutionof clustersof galaxiesas seen in numericalsim- ousauthorsthatclusterhalos/relicsarerelatedtorecentmerger ulations is characterized by the asymmetric accretion of mass activity(e.g.,Tribble1993;Burnsetal.1994;Feretti1999). clumps from surrounding filaments (e.g. Diaferio et al. 2001). Nearbyclustersarecharacterizedbyavarietyofmorphologies, The synchrotronradio emission of halosand relics demon- indicativeofdifferentdynamicalproperties,elongateddistribu- strates the existence of large scale cluster magnetic fields, of tion,tracedbyseveralgalaxyclumps(e.g.,Barrenaetal.2002; the order of 0.1−1 µG, and of widespread relativistic particles Boschin et al. 2006; Sauvageot et al. 2005; Yuan et al. 2005). of energy density 10−14−10−13 ergcm−3. The difficulty in ex- Thepresenceofsubstructureisindicativeofaclusterinanearly plaining halos/relics arises from the combination of their large phase of the process of dynamical relaxation or of secondary size and the short synchrotronlifetime of relativistic electrons. infall of clumps into already virialized clusters (see Girardi & Theexpecteddiffusionvelocityoftheelectronpopulationison Biviano2002,forareview). the order of the Alfvén speed (∼100 km s−1) making it diffi- An interesting aspect of these investigationsis the possible cult for the electronsto diffuse overa megaparsec-scaleregion connectionofclustermergerswiththepresenceofextended,dif- within their radiative lifetime. Therefore, one needs a mecha- fuseradiosources.Thesesourcesarelarge(upto∼1h−1Mpc), nismbywhichtherelativisticelectronpopulationcanbetrans- 70 amorphous cluster sources of uncertain origin and generally ported over large distances in a short time, or a mechanism by steep radio spectra (Hanisch 1982; see also and Giovannini & which the localelectronpopulationisreacceleratedandthe lo- Feretti 2002, fora review).Theyare classified as halos,if they cal magnetic fields are amplified over an extended region. The arelocatedintheclustercentre,orrelics,iftheyappearinthepe- cluster-cluster merger can potentially supply both mechanisms ripheralregionsofthecluster.Halosandrelicsareraresources (e.g.,Giovanninietal.1993;Burnsetal.1994;Röttgeringetal. 1994; see also Feretti et al. 2002; Sarazin 2002, for reviews). (cid:2) Figures1,2andTable1areonlyavailableinelectronicformat However, the question is still debated since the diffuse radio http://www.aanda.org sources are quite uncommon and only recently we can study Article published by EDP Sciences and available at http://www.aanda.orgor http://dx.doi.org/10.1051/0004-6361:20077407 862 R.Barrenaetal.:ThedynamicalstatusofA115 these phenomena on the basis of a sufficient statistics (a few The diffuse radio source belongs to A115N, and extends dozens of clusters up to z ∼ 0.3, e.g., Giovannini et al. 1999; from this sub-cluster to the periphery. According to its non- seealsoGiovannini&Feretti2002;Feretti2005). central location and its elongated structure, it is classified as a Growing evidence of the connection between diffuse ra- clusterrelic.However,elongatedrelicsaregenerallyattheclus- ter periphery, and with the largest dimension roughly perpen- dio emission and cluster merging is based on X-ray data (e.g., dicular to the cluster radial orientation. So this source is quite Böhringer & Schuecker 2002; Buote 2002). Studies based on unusual although several considerations confirm that it should a large number of clusters have found a significant relation beaclusterrelic(Govonietal.2001b). between the radio and the X-ray surface brightness (Govoni et al. 2001a,b) and between the presence of radio-halos/relics Todatefewspectroscopicdataarereportedintheliterature. and irregular and bimodal X-ray surface brightness distribu- Beersetal.(1983)measuredtheredshiftfor19clustermembers tion (Schuecker et al. 2001). New unprecedented insights into (seealsoZabludoffetal.1990foralaterre-reductionwithanew mergingprocessesinradioclustersareofferedbyChandraand template).InDecember2003weobtainedspectraof115galax- XMM-Newtonobservations(e.g.,Markevitch&Vikhlinin2001; iesintheclusterregion,withthepurposeofconstrainingitsdy- Fujitaetal.2004). namicalstatus. Theplanofthispaperisthefollowing.InSect.2wedescribe Opticaldata are a powerfulway to investigatethe presence ournewphotometricandspectroscopicobservations.InSect.3 and the dynamics of cluster mergers (e.g., Girardi & Biviano weprovideourresultsaboutclustermembership,globalproper- 2002), too. The spatial and kinematical analysis of member ties, andsubstructure.InSect. 4we drawourconclusionabout galaxies allow us to detect and measure the amount of sub- clusterstructureandestimateclustermass.InSect.5wediscuss structure, to identify and analyse possible pre-mergingclumps ourresultsandpositaplausiblescenarioforthedynamicalstatus or merger remnants.This opticalinformationis really comple- ofA115.WesummarizeourresultsinSect.6. mentary to X-ray informationsince galaxies and ICM react on Throughout this paper, we use H = 70 h kms−1Mpc−1 differenttimescalesduringamerger(seenumericalsimulations 0 70 by Roettiger et al. 1997). Unfortunately,to date optical data is iandoaptfledatccoosmsmoolologgyy,1w(cid:4) citohrrΩesmpon=ds0to.3∼a1n9d2Ωh−Λ1k=pc0at.7t.heIncltuhse- lackingorpoorlyexploitedandsparseliteratureconcernssome 70 terredshift. few individual clusters. In this context we have carried on an intensiveprogramtostudytheclusterscontainingextended,dif- fuse radio emission (Boschin et al. 2004; Boschin et al. 2006; 2. Data Girardietal. 2006; Barrenaet al. 2007). In particular,we have conducteda studyofAbell115(hereafterA115)havinganex- 2.1.Spectroscopy tendedarc-shaperelic(Ferettietal.1984;Giovanninietal.1987; Multi-object spectroscopic observations of A115 were carried Govonietal.2001b). out at the TNG telescope in December 2003 during the pro- A115isarichcluster(Abellrichnessclass=3;Abelletal. gram of proposal AOT8/CAT–G6. We used DOLORES/MOS 1989) known in the literature to be characterized by a double with the LR–B Grism 1, yielding a dispersion of 187 Å/mm, X-ray peak (A115N and A115S; Forman et al. 1981) and by andtheLoralCCDof2048×2048pixels(pixelsizeof15µm). thepresenceofastrongcoolingflowinitsnortherncomponent This combinationof grating and detector results in dispersions (White et al. 1997). White et al. (1997) give the followingval- uesfortheX-rayluminosityandtemperature:L =14.7×1044, of 2.8Å/pix. We have taken five MOS masks for a total of 9.1×1044 ergs−1 (in their cosmology)and T X= 6.6, 5.7 keV 152 slits. We acquired three exposures of 1800 s for each X masks. Wavelength calibration was performed using helium- forthenorthernandsoutherncomponents,respectively.Slightly smaller temperatures are also found in the literature: T = argon lamps. Reduction of spectroscopic data was carried out 4.9+0.7and5.2keVforthenortherncomponent,andT =5.X2+1.4 withIRAF1package. −0.6 X −1.0 Radial velocities were determined using the cross- and 4.8 keV for the southern component (from Shibata et al. correlationtechnique(Tonry&Davis1979)implementedinthe 1999; and Gutierrez & Krawczynski 2005, respectively). Both RVSAO package (developed at the Smithsonian Astrophysical ASCAandChandradatashowthatthetemperatureoftheICMis ObservatoryTelescopeDataCenter).Eachspectrumwascorre- highlynonuniformacrosstheclustersuggestingthatthemerger latedagainstsixtemplatesforavarietyofgalaxyspectraltypes: is well underway, but not disturbing the cool subcluster cores E, S0, Sa, Sb, Sc, Ir (Kennicutt1992). Thetemplateproducing (Shibataetal.1999;Gutierrez&Krawczynski2005).Fromthe the highest value of R, i.e., the parameter given by RVSAO opticalpointofview,Beersetal.(1983)mappedthegalaxydis- and related to the signal-to-noise of the correlation peak, was tributionfindingthreemajorclumpsofgalaxies(A,B,andCin chosen.Moreover,allspectraandtheirbestcorrelationfunctions Fig. 4a of theirpaper).NorthernandsouthernclumpsA andB were examined visually to verify the redshift determination. correspond to the peaks of the X-ray surface brightness distri- In some cases (IDs 85, 112 and 115, see Table 1) we took the bution.However,no X-rayemission hasbeenfoundassociated EMSAOredshiftasareliableestimateoftheredshift. withthethirdeasternclump. Forelevengalaxiesweobtainedtworedshiftdeterminations, The northern subcluster contains the very strong radio which are of similar quality. This allow us to obtain a more galaxy 3C28 (Riley & Pooley 1975; Feretti et al. 1984; rigorous estimate for the redshift errors since the nominal er- Giovannini et al. 1987). Its host galaxy is the brightest galaxy rors as given by the cross-correlation are known to be smaller of the northern subcluster and is classified as “elliptical” by than the true errors (e.g., Malumuth et al. 1992; Bardelli et al. Schombert1987. The strong X-ray and radio emissions of this 1994;Ellingson& Yee1994).We fitthefirstdeterminationvs. clustermemberseemtobeexplainedbythepresenceofalarge amountofhotgaswhichislikelytobeaccretingontothegalaxy. 1 IRAF is distributed by the National Optical Astronomy Thisscenarioagreeswiththeobservationinthespectrumofthis Observatories, which are operated by the Association of Universities galaxyoftheHα-line andotheremissionlines, likelytracinga forResearchinAstronomy,Inc.,undercooperativeagreementwiththe coolingflowsystem(Crawfordetal.1999). NationalScienceFoundation. R.Barrenaetal.:ThedynamicalstatusofA115 863 thesecondonebyusingastraightlineandconsideringerrorsin astrometricsolution(rms∼0.5(cid:4)(cid:4))acrossthefullframe.Thepho- both coordinates(e.g.,Press etal. 1992). The fitted line agrees tometriccalibrationwasperformedusingLandoltstandardfields withtheonetoonerelation,but,whenusingthenominalcross- achievedduringtheobservation. correlation errors, the small value of χ2-probability indicates a We finallyidentifiedgalaxiesinour B andR imagesand H H poor fit, suggesting the errors are underestimated. Only when measuredtheirmagnitudeswiththeSExtractorpackage(Bertin nominalerrorsaremultipliedbya∼1.3factortheobservedscat- &Arnouts1996)andAUTOMAGprocedure.Infewcases,(e.g., ter can be explained. Therefore, hereafter we assume that true close companion galaxies, galaxies close to defects of CCD), errorsarelargerthannominalcross-correlationerrorsbya fac- the standard SExtractor photometric procedure failed. In these tor 1.3.For the elevengalaxieswe used the averageof the two cases we computedmagnitudesby hand. This method consists redshiftdeterminationsandthecorrespondingerror. in assuming a galaxy profile of a typical elliptical and scale it Ourspectroscopicsurveyconsistsof115galaxiestakenina to the maximumobservedvalue.The integrationof thisprofile fieldof∼15(cid:4)×20(cid:4). give us an estimate of the magnitude. The idea of this method Wealsodeterminedtheequivalentwidths(EWhereafter)of issimilartothePSFphotometry,butassumingagalaxyprofile, the absorption line Hδ and the emission line [OII], in order to moreappropriateinthiscase. classify post-starburst and starburst galaxies. We estimated the We transformed all magnitudes into the Johnson-Cousins minimum measurable EW of each spectrum as the width of a system (Johnson & Morgan 1953; Cousins 1976). We used linespanning2.8Å (ourdispersion)inwavelength,with anin- B = BH + 0.13 and R = RH, as derived from the Harris fil- tensitythreetimesthermsnoiseintheadjacentcontinuum.This tercharacterization(http://www.ast.cam.ac.uk/∼wfcsur/ estimationyieldsuppermeasurablelimitsof∼4.5ÅinEW. technical/photom/colours/)and assuming a B−V ∼ 1.0 for E-type galaxies (Poggianti 1997). As a final step, we Weuseaconservativeapproachleadingtoasparsespectral classification(∼50%ofthesample,seeTable1).Wefollowthe estimated and corrected the galactic extinction AB ∼ 0.25, A ∼ 0.15 from Burstein & Heiles (1982) reddening maps. classification by Dressler et al. (1999; see also Poggianti et al. R We estimatedthatourphotometricsampleiscompletedownto 1999). We define “e”-type galaxies those showing active star B = 19.5(21.0)andR = 22.0(23.0)forS/N = 5(3)withinthe formationas indicated by the presence of an [OII] and, in par- observedfield. ticular,“e(b)”galaxieswhentheequivalentwidthofEW([OII]) is≤−40Å(likelystarburstgalaxies);“e(a)”-typegalaxiesthose We assigned B and R magnitudes to the whole spectro- scopic sample.We measuredredshiftforgalaxiesdowntoR ∼ havingEW(Hδ) ≥ 4Å;“e(c)”-typegalaxiesthosehavingmod- 20.5 mag, but we are complete to 60% down to R = 18 mag erate emission lines and EW(Hδ) < 4 Å (likely spiral galax- (withinaregionof13(cid:4)×20(cid:4) aroundRA = 00h56m02s.0,Dec = ies). We define “k+a” and “a+k”-type galaxies those having +26◦23(cid:4)00(cid:4)(cid:4)(J2000.0)). 4 ≤ EW(Hδ) ≤ 8 Å and EW(Hδ) > 8 Å, respectively, and Table1liststhe velocitycatalogue(seealso Figs.1and2): no emission lines (the so called “post-starbust”). Moreover, identification numberof each galaxy,ID (Col. 1);ID code fol- out of galaxies having the cross-correlation coefficient R >∼ 7 lowingtheIAUnomenclature(Col.2);rightascensionanddec- – corresponding to S/N >∼ 10 as obtained using A773 data lination, α and δ (J2000,Col. 3); B and R magnitudes(Cols. 4 (Barrenaetal.2007)–wedefine“k”-typegalaxiesthosehaving and5,respectively);heliocentricradialvelocities,v = cz(cid:3) with EW(Hδ) < 3 Å andnoemission lines(likely passivegalaxies). errors,∆v(Cols.6and7,respectively);spectralclassificationSC We classify 62 galaxies finding 38 “passive” galaxies, 24 “ac- (Col.8). tive”galaxies(i.e.,14“k+a”/“a+k”and10“e”galaxies). 3. Analysisandresults 2.2.Photometry 3.1.Memberselectionandglobalproperties As far as photometry is concerned, our observations were car- ried out with the Wide Field Camera (WFC), mounted at the To select cluster members out of the 115 galaxies having red- primefocusofthe2.5mINTtelescope(locatedatRoquedelos shifts,wefollowthetwostepsprocedure.First,weperformthe Muchachos observatory,La Palma, Spain). We observed A115 adaptive-kernel method (hereafter DEDICA, Pisani 1993 and in18December2004inphotometricconditionswithaseeingof 1996; see also Fadda et al. 1996; Girardi et al. 1996; Girardi about2(cid:4)(cid:4). & Mezzetti 2001). We find the significant peaks in the veloc- The WFC consists of a 4 chip mosaic coveringa 30(cid:4) ×30(cid:4) itydistribution>99%c.l.ThisproceduredetectsA115asaone- field of view, with only a 20% marginally vignetted area. We peakstructureatz∼0.1937populatedby88galaxiesconsidered took10exposuresof720sin B and360sinR Harrisfilters as candidatecluster members(see Fig. 3). Out of non-member H H (atotalof7200sand3600sineachband)developingadither- galaxies, 12 and 15 are foreground and background galaxies, ingpatternoftenpositions.Thisobservingmodeallowedusto respectively. build a master “supersky” image that was used to correct our The projected clustercentric distance vs. the rest-frame ve- imagesforvignettingandfringingpatterns(Gullixson1992).In locity of the 88 galaxies is shown in Fig. 4 where we also addition,theditheringhelpedustocleancosmicraysandavoid show the three brightest galaxies in our sample, each of gaps between CCD chips. The complete reductionprocess (in- them corresponding to a different galaxy density clumps as cludingflatfielding,biassubtractionandbad-columnselimina- found by Beers et al. (1983), i.e. IDs 54, 21(=3C28) and 104 tion) yielded a final co-addedimage where the variationof the (hereafter BCM−B, BCM−A, and BCM−C) corresponding to skywaslowerthan0.4%inthewholeframe.Anothereffectas- B (A115S), A (A115N), and C clumps, respectively. The po- sociatedwiththewidefieldframesisthedistortionofthefield. sition of BCM−B is very close to that of the southern X-ray Inordertomatchthephotometryofseveralfilters(inourcase, peak(RA = 00h55m58s.81,Dec = +26◦19(cid:4)58(cid:4).(cid:4)9(J2000.0)asre- onlyB andR ),agoodastrometricsolutiontakingintoaccount coveredfromX-rayChandradata,seeFig.2).BCM−A=3C28 H H thesedistortionsisneeded.UsingIRAFtasksandtakingasref- is coincident with the northern X-ray peak and is very close erencetheUSNOB1.0catalogwewereabletofindanaccurate to the position of the X-ray centroid when masking the X-ray 864 R.Barrenaetal.:ThedynamicalstatusofA115 Table2.Resultsofthekinematicalanalysis. Sample N (cid:8)v(cid:9) σa BCMgalaxies g v kms−1 kms−1 Wholesystem 85 57817±148 1362+126 A,B,C,D WholesystemSample2 80 57956±132 1175−+19508 A,B,C WGAP1 8 54448±212 529+1−2746 D WGAP2 6 55912±78 162−+4349 DS−A 11 59199±263 816−+51528 A DS−C 3 56138±1001 − −103 C KMM1 10 54819±299 873+225 D KMM2 44 57833±155 101−71+11409 B,C KMM3 31 58500±203 1109−+71799 A CORE−A 6 59457±364 750+3−31712 A CORE−B 6 57493±434 894−+125930 B Passivegals 34 57325±252 144−75+92747 bC,D Activegals 14 58950±411 1462−+175024 A Balmerabs.gals 9 58988±668 1817−+484304 Emissionlinesgals 5 58558±527 898+3−69394 A −218 Fig.3. Redshiftgalaxydistribution.Thesolidlinehistogramrefersto a We use the biweigth and the gapper estimators by Beers et al. galaxiesassignedtotheclusteraccordingtotheDEDICAreconstruc- (1990) forsampleswith N ≥ 15and with N < 15galaxies, re- g g tionmethod. spectively(seealsoGirardietal.1993). b NoticethatBCM-Bresembles characteristicsofapassivegalaxy, butitdoesnotappearsinourclassificationsinceitsspectrahasR slightlybelowthethresholdvalueof7. bin that shifts along the distance from the cluster centre. The procedureis iterated until the numberof cluster memberscon- verges to a stable value. Following Fadda et al. (1996) we use a gapof1000kms−1 –in thecluster rest-frame–anda binof 0.6h−1Mpc,orlargeenoughtoinclude15galaxies.Inthecase 70 oftheA115complex,whichisnotanindividualsystem,wefix alternativelyBCM−Aand–Basclustercentres.Figure4shows the results. Theveryhighvelocitygalaxy(ID 91)is a clear in- terloper far more than 3000 km s−1 from other galaxies. The othertwohighvelocitygalaxies(IDs96and100),thatareclose enough in 2D and far from the high velocity BCM−A galaxy (see Fig. 1), are rejected in both our analyses. The conclusion aboutthelowvelocitytailislessclearalsobecausefewofthese galaxieslieintheeasternregionoftheclusterandmightbeas- Fig.4. Projected clustercentric distance vs. rest-frame velocity v = (v−(cid:8)v(cid:9))/(1+z)forthe88galaxiesinthemainpeak(seeFig.3)shrofw- sociated to the C clump (or to the D clump, see Sect. 3.3).We decide to define 85 likely cluster members rejecting the three inggalaxiesdetectedasinterlopersbyour“shiftinggapper”procedure (stars and crosses) when using BCM−A and –B as alternative cluster highest velocity galaxies (basic sample). In some analyses we centres(topandbottompanels,respectively).Werejectthethreegalax- also consideranalternativesampleof 80galaxies– Sample2– ieswithhighestvelocities(stars)tobuildourbasicsampleof85galax- also rejecting the low velocity galaxiesindicated in Fig. 4 (the ies and all galaxies indicated by crosses and stars in the top panel to crossesinthemiddlepanel). buildourSample2.Thethreebrightestclustermemberseachonecor- By applying the bi-weight estimator to cluster members respondingtoBeersetal.(1983)clumps(BCM−A,–Band–C)anda fourthbrightgalaxy(BCM−D)areindicatedbysquares. (Beers et al. 1990), we compute a mean cluster redshift of (cid:8)z(cid:9) = 0.1929±0.0005,i.e. (cid:8)v(cid:9) = 57817±148kms−1. We es- timate the LOS velocity dispersion, σv, by using the bi-weight emission of the point source (RA = 00h55m53s.2, Dec = estimatorandapplyingthecosmologicalcorrectionandthestan- +26◦24(cid:4)59(cid:4)(cid:4) (J2000.0) by Govoni et al. 2001b). We also con- dardcorrectionforvelocityerrors(Daneseetal.1980).Weob- siderthebrightgalaxyID81(hereafterBCM−D,seeSect.3.3) tain σv = 1362+−112068 kms−1, whereerrorsareestimated through abootstraptechnique.ConsistentresultsarefoundforSample2 locatedinthemiddleoftheabovethreegalaxies. (seeTable2). All the galaxiesassigned to the A115 peak are analysed in a second step by applying the “shifting gapper” technique by Hereafter,forpracticalreasons,weconsiderascentreofthe Faddaetal.(1996),whichusesthecombinationofpositionand whole A115 complex the position of the bi-weight centre ob- velocityinformation.Thisprocedurerejectsgalaxiesthataretoo tained using bi-weight mean estimators for RA and Dec sepa- farinvelocityfromthemainbodyofgalaxiesandwithinafixed rately(RA=00h56m01s.31,Dec=+26◦22(cid:4)26(cid:4).(cid:4)6(J2000.0)). R.Barrenaetal.:ThedynamicalstatusofA115 865 Fig.6. Spatial distribution on the sky of spectroscopically confirmed Fig.5.Toppanel:velocitydistributionofthe85fiducialclustermem- bers. Arrows correspond to the bright galaxies BCM−A, –B, –C cluster members and the relative isodensity contour map. The three and −D. Bottom panel: stripe density plot where the arrows indicate brightest galaxies BCM−A –B, and –C corresponding to Beers et al. (1983)groups, afourth bright galaxy (BCM−D)and theX-raypeaks thepositionsofthesignificantgaps.Thegapatthelowervelocityhasa normalizedsize=2.41,theother=2.25. are indicated by large squares, too. The plot is centred on the cluster centredefinedasthebi-weightcentre(seetext). 3.2.Velocitystructure 3.3.2Dgalaxydistribution We analysethe velocitydistributionto lookfor possibledevia- tions from Gaussianity that could provideimportantsignatures When applying the DEDICA method to the 2D distribution of ofcomplexdynamics.Forthefollowingteststhenullhypothesis A115galaxymemberswe findthreesignificantpeaks.Thepo- isthatthevelocitydistributionisasingleGaussian. sitionofthehighestpeakisclosetothelocationoftheBCM−B We estimate three shape estimators, i.e. the kurtosis, the and of the southern peak of X-ray emission (XS in Fig.6). skewness,andthescaledtailindex(see,e.g.,Beersetal.1991). Another peak is close to the location of the BCM−A, of the Thevalueoftheskewness(−0.462)showsevidencethattheve- northern peak of X-ray emission (XN) and of the X-ray cen- locity distribution differs from a Gaussian at the 95−99% c.l. troidwhenmaskingtheX-rayemissionofthepointsource(X, (see Table 2 of Bird & Beers 1993). Moreover, the W-test Govoni et al. 2001b). When dividing the sample in bright and (Shapiro & Wilk 1965) marginally rejects the null hypothesis faintgalaxies–usingthemedianmagnitudevalueR = 18.32– ofaGaussianparentdistributionatthe92%c.l. wefindthatthe2Ddistributionsofthetwosamplesaredifferent Thenweinvestigatethepresenceofgapsinthedistribution. atthe98.5%c.l.accordingtothetwo-dimensionalKolmogorov- Aweightedgapinthespaceoftheorderedvelocitiesisdefined Smirnov test (hereafter2DKS–test; see Fasano & Franceschini as the difference between two contiguous velocities, weighted 1987, as implemented by Press et al. 1992). In fact, the faint bythelocationofthesevelocitieswithrespecttothemiddleof galaxies sample shows both peaks A and B, while the bright thedata.Weobtainvaluesforthesegapsrelativetotheiraverage galaxiessampleonlyshowsthepeakB. size,preciselythemidmeanoftheweighted-gapdistribution.We Our spectroscopic data do not cover the entire cluster field lookfornormalizedgapslargerthan2.25sinceinrandomdraws and suffer from magnitude incompleteness. To overcomethese ofaGaussiandistributiontheyariseatmostinabout3%ofthe limits we recover our photometric catalogue selecting likely cases,independentofthesamplesize(Wainer&Schacht1978; members on the basis of the colour−magnituderelation (here- see also Beersetal. 1991). Two significantgapsin theordered afterCMR),whichindicatestheearly-typegalaxylocus.Tode- velocitydatasetaredetectedindividuatingtwogroupsinthelow termine CMR we fix the slope according to López-Cruz et al. velocitytailofthevelocitydistribution,ofeightandsixgalaxies (2004, see their Fig. 3) and apply the two-sigma-clipping fit- (seeWGAP1andWGAP2inTable2andFig.5). ting procedure to the cluster members obtaining B − R = We usethe resultsofthe gapanalysisto determinethe first 3.611−0.069 × R (see Fig. 7). Out of our photometric cata- guess when using the Kaye’s mixture model (KMM) to find a logue we consider galaxies (objects with SExtractor stellar in- possible group partition of the velocity distribution (as imple- dex ≤ 0.9) lying within 0.25 mag of the CMR. To avoid mented by Ashman et al. 1994). The KMM algorithm fits an contaminationbyfieldgalaxieswedonotshowresultsforgalax- user-specifiednumberofGaussiandistributionstoadatasetand ies fainter than 21 mag (in R-band). The contour map for 369 assesses the improvementof that fit over a single Gaussian. In likelyclustermembershavingR≤21showsagainthetwopeaks addition, it provides the maximum-likelihood estimate of the in correspondenceofBCM−A andBCM−Bandalsoa peakin unknown n-mode Gaussians and an assignment of objects into correspondence of BCM−C. Finally, a less dense peak lies in groups.Wedonotfindanytwo-orthree-groupspartitionwhich themiddleoftheabovethreepeaksandcorrespondstothelumi- isasignificantbetterdescriptorofthevelocitydistributionwith nousgalaxyBCM−Dataverylowvelocity(seeFig.8).Similar respecttoasingleGaussian. results are found analysing the 268 galaxies with R ≤ 20. The 866 R.Barrenaetal.:ThedynamicalstatusofA115 Fig.7. B−R vs. R diagram for galaxies with available spectroscopy is shown by small dots and crosses (cluster and field members, re- spectively).LargesoliddotsindicateluminousgalaxiesBCM−A,–B, Fig.9.Spatialdistributionontheskyof85clustermembers.Openand –C and –D. The solid line gives the best-fit colour−magnitude rela- solidcirclesindicatelowandhighvelocitygalaxies,thecrossthegalaxy tion as determined on member galaxies; the dashed lines are drawn withmedianvelocity.Thelargerthesymbol,thesmalleristheradialve- at ±0.25 mag from the CMR. Large open symbols indicates classi- locity.Thesolidandfaintlinesindicatethepositionangleofthecluster fied galaxies: circles (“k”), squares (“k+a”), rombs (“a+k”), triangles gradientandrelativeerrors,respectively.Thefaintbigsquaresindicate (“e(c)”),andstars(“e(a)”/“e(b)”). the14galaxiesbelongingtoWGAP1andWGAP2(seeSect.3.2).The plotiscentredontheclustercentre. The cluster velocity field may be influenced by the pres- ence of internal substructures. To investigate the velocity field oftheA115complexwedividegalaxiesinalowandahighve- locity samples by using the median cluster velocity and check thedifferencebetweenthetwodistributionsofgalaxypositions. Figure 9 shows that low and high velocity galaxies are segre- gated roughly in the E–W direction. The two distributions are different at the 99.5% c.l. according to the 2DKS-test. In or- der to estimate the direction of the velocity gradient we per- form a multiple linear regression fit to the observed velocities withrespecttothegalaxypositionsintheplaneofthesky(see also den Hartog & Katgert 1996; Girardi et al. 1996). We find apositionangleonthecelestialsphereofPA = 269+19 degrees −18 (measured counter-clock-wise from north), i.e. higher velocity galaxies lie in the western region of the cluster (see Fig. 9). To assess the significance of this velocity gradientwe perform 1000MonteCarlosimulationsbyrandomlyshufflingthegalaxy velocitiesandforeachsimulationwedeterminethecoefficientof Fig.8. Spatial distribution on the sky and relative isodensity contour mapof369likelyclustermembers(accordingtothecolour−magnitude multipledetermination(RC2,seee.g.,NAGFortranWorkstation relation) withR ≤ 21,obtainedwiththeDEDICAmethod. Thethree Handbook1986).Wedefinethesignificanceofthevelocitygra- brightest galaxies BCM−A –B, and –C are indicated by large circles dientasthefractionoftimesinwhichtheRC2 ofthesimulated andtheX-raypeaksareindicatedbylargesquares.Itisalsoshownthe data is smaller than the observed RC2. We find that the veloc- position of the luminous galaxy BCM−D. The plot is centred on the ity gradientismarginallysignificantatthe 90%c.l. Similar re- clustercentre. sultsareobtainedfortheSample2(PA = 267+18 degreesatthe −17 91%c.l.). We combine galaxy velocity and position information to analysisof 136galaxieswith R ≤ 19showsasverysignificant compute the ∆-statistics devised by Dressler & Schectman onlythesouthernpeakclosetoBCM−Binagreementwiththe (1988). This test is sensitive to spatially compact subsystems resultscomingfromthespectroscopicsample(seeabove). that have either an average velocity that differs from the clus- ter mean, or a velocity dispersion that differs from the global one, or both. We find ∆ = 121 for the value of the parameter 3.4.Position-velocitycorrelations which gives the cumulative deviation. This value is an indica- Theexistenceofcorrelationsbetweenpositionsandvelocitiesof tionofsubstructure,significantatthe96%c.l.,asassessedcom- clustergalaxiesisafootprintofrealsubstructures.Hereweuse puting 1000 Monte Carlo simulations, randomly shuffling the differentapproachestoanalysethestructureofA115combining galaxyvelocities.Figure10showsthedistributionontheskyof velocityandpositioninformation. all galaxies, each marked by a circle: the larger the circle, the R.Barrenaetal.:ThedynamicalstatusofA115 867 Fig.10.Spatialdistributionofclustermembers,eachmarkedbyacir- cle: thelarger thecircle,thelarger isthedeviation δi of thelocal pa- Fig.11. The distribution of δi deviations of the Dressler-Schectman rametersfromtheglobalclusterparameters,i.e.thereismoreevidence analysisforthe85membergalaxies.Thesolidlinerepresentstheob- forsubstructure(accordingtotheDressler&Schectmantest,seetext). servations,thedashedlinethedistributionforthegalaxiesofsimulated Theboldfacecirclesindicatethosewithδi ≥2.2(seetext).Theplotis clusters,normalizedtotheobservednumber. centredontheclustercentre. larger the deviation δ of the local parameters from the global i clusterparameters,i.e.thehighertheevidenceforsubstructure. This figure provides information on the positions of substruc- tures:oneintheeasternregioncorrespondingtotheclumpCand oneinthenorthernregioncorrespondingtotheclumpA.Similar resultsobtainedforSample2(∆=110andac.l.of95%),butthe easternsubstructureisnolongersoobviousintherelativeplot. To obtain further information, we resort to the technique developed by Biviano et al. (2002), who used the individual δ-valuesoftheDressler&Schectmanmethod.Thecriticalpoint i is to determinethe valueofδ thatoptimallyindicatesgalaxies i belongingtosubstructure.Tothisaimweconsidertheδ-values i of all1000MonteCarlo simulationsalreadyused to determine the significance of the substructure (see above). The resulting distributionofδ iscomparedtotheobservedonefindingadif- i ferenceofP>99.99%c.l.accordingtotheKS-test.The“simu- lated”distributionisnormalizedtoproducetheobservednumber ofgalaxiesandcomparedtotheobserveddistributioninFig.11: thelattershowsatailatlargevalues.Thetailwithδ>∼2ispop- ulatedbygalaxiesthatpresumablyareinsubstructures.Forthe Fig.12.Spatialdistributionontheskyofthe85membergalaxies.Solid circles,opencirclesandtrianglesindicateKMM1,KMM2,andKMM3. selectionofgalaxieswithinsubstructureswechoosethevalueof δ =2.2,sincethegalaxieswithδ >δ arewellseparatedin The large faint squares indicate the position of the brightest cluster lim i lim membersBCM−A,–B,–Cand–D.Theplotiscentredonthecluster thesky(seeFig.10)andassignthreeandelevengalaxiestothe centre. clumpsCandA,respectively(hereafterDS–CandDS–A).The northernstructureispopulatedbyhighvelocitygalaxies,while thepoorstatisticspreventustoobtainfirmconclusionsaboutthe easternstructure(seeTable2). three-groupspartitionatthe97%c.l.accordingtothelikelihood TheGaussianmodelforthe2Dgalaxydistributionispoorly ratiotest(hereafterKMM1,KMM2,KMM3groupsfromlowto supportedby theoreticaland/orempiricalargumentsand, how- highmeanvelocities).Theresultsforthethreegroupsareshown ever,ourgalaxycatalogueisnotcompletedowntoamagnitude in Table 2 and Fig. 12. KMM1 group is sparse in the sky, but limit. However,since the3D diagnosticsisin generalthe most well distinct in velocity from the other two groups. Several of sensitiveindicatorsofthepresenceofsubstructure(e.g.,Pinkney itsgalaxieswerealreadydetectedbytheweightedgapanalysis etal.1996),weapplythe3DversionoftheKMMsoftwareusing asbelongingtoWGAP1andWGAP2(seeSect.3.2).Moreover, simultaneouslygalaxyvelocityandpositions.Weusethegalaxy KMM1containsBCM−D.KMM2andKMM3groupsarewell assignment given by Dressler-Schectman method to determine distinctinthesky.KMM2containsbothBCM−BandBCM−C, the first guess when fitting three groups. The algorithm fits a whileKMM3containsBCM−A. 868 R.Barrenaetal.:ThedynamicalstatusofA115 3.5.KinematicsofA115NandA115S The spatial agreement between the two brightest cluster mem- bers(BCM−Aand–B)andthepeaksofX-rayemissionaswell asthehighdensityofgalaxiesaroundBCM−Aand–Bprompts us to analyse the profiles of the mean velocity and the veloc- itydispersionofgalaxysystemssurroundingthesetwogalaxies (see Figs. 13and14,respectively).Thisallowsanindependent analysis ofthe individualgalaxyclumps. Althoughan increase in the velocity-dispersion profile in the cluster central regions might be due to dynamical friction and galaxy merging (e.g., Menci & Fusco-Femiano 1996; Girardi et al. 1998; Biviano & Katgert 2004), in the case of A115 it mightbe simply induced bythecontaminationofthegalaxiesofasecondaryclump(e.g., Girardietal.1996;Girardietal.2005).Thelatterhypothesiscan beinvestigatedbylookingatthebehaviourofthemeanvelocity profile. Sincefromtheabovesectionsweknowthepresenceofone orlikelyafewlowvelocitygroups,weanalysetheSample2to avoid,atleastpartially,thepossiblecontamination.Wealsocon- sidertheresultsobtainedrejectingallgalaxiesbelongingtolow Fig.13. Kinematical profiles of the northern subcluster A115N ob- velocityWGAP1andWGAP2.Figures13and14showvelocity- tainedassumingBCM−Aascentre.Theverticallineindicatesthere- dispersion and mean-velocity profiles, as well as regions not gionlikelynotcontaminatedfromothergalaxyclumps(seetext).Top likelytobecontaminatedbyothergalaxysystemsandthusreli- panel: rest-frame velocity vs. projected distance from the subcluster ableforkinematicalanalysis.Detailedresultsofthisanalysisare centre (BCM−A):crosses indicate thegalaxiesbelonging to WGAP1 andWGAP2.Differential(bigcircles)andintegral(smallpoints)mean includedinTable2wherethe“uncontaminated”galaxysystems arenamedasCORE−AandCORE−B. velocity and LOS velocity-dispersion profiles are shown in middle and bottom panels, respectively. For the differential profiles we plot Figure13showshowtheintegralvelocity-dispersionslightly the values for seven annuli from the centre of the subcluster, each increases with the distance fromthe BCM−A. Simultaneously, of 0.25 h−1Mpc. Forthe integral profiles, themean and dispersion at themeanvelocityshowsacontinuousdeclinefromhighvalues a given (p70rojected) radius from the subcluster–centre is estimated by ∼59000 km s−1 suggesting a strong contaminationof galaxies consideringallgalaxieswithinthatradius–thefirstvaluecomputedon from structures connected with BCM−B, −C and –D, all hav- thefivegalaxiesclosesttothecentre.Theerrorbandsatthe68%c.l.are ing lower mean velocities. In a conservative view we consider alsoshown.Inthebottompanel,thehorizontallinerepresentstherange the likely uncontaminated region within 0.25 h−1Mpc, where ofX-raytemperaturesasgivenintheliteratureforA115N(seeSect.1) we find σv (cid:10) 750 km s−1. Figure 14 shows a70n enough ro- gtraasnsafnodrmgaeldaxiinesσ,vi.ea.ssβumin=g1th(seedeetnexsitt)y.-energy equipartition between bustmeanvelocityandasharpincreaseoftheintegralvelocity- spec dispersionwiththedistancefromtheBCM−Buptoapeakvalue ∼1450 km s−1 at ∼0.3 h−1Mpc. We interpret these features as 70 thecontaminationofthestructuresconnectedwithBCM−A,–C and–D withhigherandlowermeanvelocities.Theircombina- tiondoesnotaffectthemeanvelocitybutstronglyincreasesthe velocity dispersion. In fact, the peak value of the velocity dis- persion goes down from 1450 to 1200 km s−1 when rejecting lowvelocitygalaxiesofWGAP1andWGAP2.Wethenconsider thelikelyuncontaminatedregionwithin0.25h−1Mpc,wherewe 70 findσv (cid:10)900kms−1. 4. 3DstructureandvirialmassofA115 On the basis of the above section we conclude that A115 is formed by two subclusters well distinct in the sky and centred aroundBCM−Aand–B,hereafterA115NandA115S,withthe additionofseverallowvelocitygalaxies,aboveallintheeastern cluster region,likely organisedin small groups(see Fig. 9 and thePAofthevelocitygradient). Asforthelowvelocitygroupswedetecttwo2Dgalaxycon- centrationsaroundthetwobright,lowvelocitygalaxiesBCM−C Fig.14.ThesameasinFig.13,butreferringtothesouthernsubcluster and–D.Moreover,wefindtwopossiblegroupsinthelowveloc- A115S centredaround BCM−B.Thedashed lineinthe bottompanel itytailofthevelocitydistribution(WGAP1containingBCM−D gives the integral velocity dispersion profile when rejecting the low velocity galaxies of WGAP1 and WGAP2. In the bottom panel, the andWGAP2).TheDressler–Schectmantestdetectsa substruc- horizontal linerepresentstherangeofX-raytemperaturesasgiven in tBuCreMa−roDunfidndthsesoBmCeMs−uCpp,otortoi.nTthheepfarienstenXc-eraoyfeamgirsosiuopnasrhoouwnnd dtheensliittyer-aetnuerregyfoerqAu1ip1a5rStit(iosenebSeetwcte.e1n) tgraasnsafnodrmgeadlaixnieσs,via.es.suβming=th1e spec there (see Gutierrez & Krawczynski 2005 and Fig. 2). That (seetext). we find evidence of a few groups rather than of an individual R.Barrenaetal.:ThedynamicalstatusofA115 869 massive cluster agrees with the absence of a third X-ray lumi- To compare our results with the estimate recovered from nouspeak. a X-ray surface brightness deprojection analysis (White et al. As for A115N, we find comparable kinematical prop- 1997) we assume that each subcluster is described by a King- erties in the analysis of DS–A and CORE−A, i.e. (cid:8)v(cid:9) >∼ like massdistribution(see above)or,alternatively,aNFW pro- 59000 km s−1 and σv ∼ 800 km s−1. Instead KMM3 is filewherethemass-dependentconcentrationparameteristaken contaminated by the presence of low velocity galaxies, e.g. from Navarro et al. (1997) and rescaled by the factor 1 + z IDs 10 and 19 close to BCM−A. As for A115S, we find (cid:8)v(cid:9) ∼ (Bullocketal.2001;Dolagetal.2004).WeobtainMN(<Rout,N = 57500 km s−1 and σv ∼ 900−1000 km s−1 (see KMM2 0.235 h−701Mpc) = (4.2−9.9) ×1013 h−701 M(cid:3)and MS(<Rout,S = and CORE−B). The velocity dispersion of the two subclus- 0.157 h−1Mpc) = (2.5−5.5) ×1013 h−1 M(cid:3). The first esti- 70 70 ters are roughly comparable to their average X-ray tempera- mate is somewhat smaller and the second one is in agreement ture as listed in the literature and transformed in σv assuming withthosefoundbyWhiteetal.(1997,seetheirTable3where tβhspeecde=ns1it2y(-seeneerFgiygse.q1u3ipaanrtditi1o4n).bTethweetewnogsausbacnludstgearsladxiiffese,rib.ey. 5M.0gra×v,1N0(1<3Rho−u1t,NM)(cid:3)=in1o4u.0rc×o1s0m1o3lohg−7y01).M(cid:3)and Mgrav,S(<Rout,S) = ∼2000kms−1 intheLOSvelocity,i.e.almostthreetimesmore As for t7h0e mass of the whole system, the contribution of thanwhatfoundbyBeersetal.(1983)withonly19clustermem- thelowvelocitygroupsisofminorimportancesincetheylikely bers.InagreementwithBeersetal.(1983),wefindthatA115S havelowvelocitydispersionandthevirialmassscaleswithσ3. v isdynamicallysomewhatmoreimportantthanA115N,whilethe E.g., we estimate that M ∼ 2.4 ×1014 h−1 M(cid:3) for a σv ∼ 70 contraryis foundby X-raydata (Jones& Forman1999; White 500kms−1 group(seeWGAP1inTable2).Consideringthepos- etal.1997;Gutierrez&Krawczynski2005;butseeShibataetal. siblepresenceof,atmost,twooftheseσv ∼500kms−1 groups, 1999).AsalreadysuggestedbyBeersetal.(1983)thepresence a reliable mass estimate of the whole system is then M = of3C28mightaffectstheX-rayresultsoverestimatingtheX-ray 2.2−3.5×1015 h−1 M(cid:3),inagreementwithrichclustersreported luminosityandthetemperatureofA115N. 70 in the literature (e.g., Girardi et al. 1998; Girardi & Mezzetti Although A115 is likely in a phase of interaction (see the 2001).AsmallermassestimateisgivenbyGovonietal.(2001b; followingsection),thetwomaingalaxysubclustersarestillwell M(<R=2.3 h−1Mpc) = 0.6−1.2×1015 h−1 M(cid:3) centredonthe detectable and roughly well coincident with the X-ray peaks. 70 70 X-ray centroidin A115N),but notice thatit refersto a smaller Thus we assume that each subcluster is in dynamical equilib- clusterregion,i.e.likelyexcludingalargepartofA115S. rium to compute virial quantities. Hereafter we assume σv = 750−850kms−1 and900−1000kms−1 forA115NandA115S, respectively. 5. Mergingscenario Following the prescriptions of Girardi & Mezzetti (2001), Since A115N and A115S are well detectable and optical and we assume for the radius of the quasi-virialized region R2.v6ir−,N2.9=h−01.M17pc×fσorv/AH1(1z5)N=and2.A2−1125.5S,hr−7e01spMecptcivealnyd–Rseveir,tShe=ir Xin-graayttdhaetacluinsdteicraptreioarvtoermyesrigminilga.rHloocwaetivoenr,wAe11a5reNlaiknedlyAl1o1o5kS- 70 subclustersarealreadystartingtointeract,assuggestedbysev- eq. 1 after introducing the scaling with H(z) (see also Eq. (8) eral pieces of evidence:the slight displacementbetween peaks of Carlberg et al. 1997 for R ). Therefore, our spectroscopic 200 ofgasdistributionandofgalaxydistribution(seeourFig.8);the cataloguesamplesmostofthevirializedregion. presence of an hotregion likely due to the interaction(Shibata Onecancomputethemassusingthevirialtheorem(Limber etal.1999;Gutierrez&Krawczynski2005).Verynoticeably,the & Mathews 1960; see also, e.g., Girardi et al. 1998) under the assumptionthatmassfollowsgalaxydistribution: M = M − largest dimension of the radio relic is somewhat perpendicular SPT,whereM = 3π/2·σ2R /Gisthestandardvirialmsvairss, totheaxisconnectingA115NandA115Sinagreementwithbe- svir v PV ingoriginatedbyshockwavesconnectedtotheongoingmerger R a projected radius (equal two times the harmonic radius), PV (e.g.,Ensslin&Brüggen2002). and SPT is the surface pressure term correction (The & White When the mergingscenariois assumed to explainthe pres- 1986). The value of R dependson the size of the considered PV ence of the hot region located between A115N and A115S, a region, so that the computed mass increases (but not linearly) relativecollidingvelocityisnecessarytoheatuptheICMtem- with the increasing considered region. Since the two subclus- peraturekT from∼4 to ∼9 keV (see Gutierrez& Krawczynski tersareinteractingandwedonotcoverthewholevirializedre- 2005).Assumingthatthetwosubclustersaretocauseahead-on gion we use an alternative estimate which was shown be good collisionandthattheirkineticenergiesarecompletelyconverted whenR iscomputedwithinR (seeEq.(13)ofGirardietal. PV vir to thermal energy, the necessary value of the colliding veloc- 1998).Thisalternativeestimateisbasedontheknowledgeofthe ity is v = (3k∆T/µm )1/2 (see Shibata et al. 1999). We find galaxydistributionand, in particular,a galaxyKing-likedistri- coll p butionwithparameterstypicalofnearby/medium-redshiftclus- vcoll ∼ 1600km s−1 in goodagreementwiththe observedrela- ters: a core radius R = 1/20 × R and a slope-parameter tiveLOSvelocityintherestframeVr = 1646kms−1 asrecov- β = 0.8, i.e. thecvoroelume galaxy vdirensity at large radii as eredfromCORE−AandCORE−Bintheclusterrestframe,i.e. r−fi3tβfit = r−2.4 (Girardi & Mezzetti 2001). For the whole virial- ((cid:8)v(cid:9)CORE−A(cid:8)v(cid:9)CORE−B)/(1+z)). ized region we obtain RPV,N = 1.6−1.8 h−701Mpc and RPV,S = 1.9−2.2h−1Mpc.AsfortheSPT correction,weassumea 20% 5.1.Bimodalmodel 70 computedcombiningdata on manyclustersone (e.g.,Carlberg HereweinvestigatetherelativedynamicsofA115NandA115S et al. 1997; Girardi et al. 1998). This leads to virial masses MMNS((<<RRvviirr,,SN==22..62−−22..95hh−7−70101MMppcc))==183.0.8−−1118.6.9××11001144hh−7−70101MM(cid:3)(cid:3)afnodr uiNnsetiewnggtroadnliifffaoenrrmegnraatlviasinmtayli(ynet.itgch.ea,pBfprearemorasecwehtoeasrlk.w1oh9fi8clo2hc)a.arlTelyhbeflavsaeatdlsupoeansceoatnfimtehneeearrengldy- thetwosubclusters. evant observable quantities for the two-clumps system are: the 2 βspec = σ2v/(kT/µmp) with µ = 0.58 the mean molecular weight relative LOS velocity in the rest frame, Vr = 1646 km s−1 (as andm theprotonmass. recovered from CORE−A and CORE−B); the projected linear p 870 R.Barrenaetal.:ThedynamicalstatusofA115 distance between the two clumps, D = 0.89 h−1Mpc (as re- 70 coveredfrom BCM−A and –B cluster rest frame);the mass of the system obtained by adding the masses of the two subclus- terseachwithinitsvirialradius,logM = 15.4107+0.0734(see sys −0.0734 Sect.4). First, we consider the Newtonian criterion for gravita- tional binding stated in terms of the observables as V2D ≤ r 2GM sin2αcosα, where α is the projection angle between sys the plane of the sky and the line connectingthe centres of two clumps.Thefaintcurvein Fig.15 separatesthe boundandun- boundregionsaccordingtotheNewtoniancriterion(aboveand below the curve, respectively). Considering the value of M , sys the A115N+S system is bound between 20◦ and 84◦; the cor- responding probability, computed considering the solid angles (cid:1) (i.e., 84ocos αdα),is65%.Wealsoconsidertheimplemented 20o criterionVr2D ≤ 2GMsin2αvcosαd,whichintroducesdifferent anglesαd andαv forprojectionofdistanceandvelocity,notas- sumingstrictlyradialmotionbetweentheclumps(Hughesetal. 1995).Weobtainabindingprobabilityof60%. Fig.15.Systemmassvs.projectionangleforboundandunboundsolu- Then, we apply the analytical two-body model intro- tionsofthetwo-bodymodelappliedtoA115NandA115Ssubclusters duced by Beers et al. (1982) and Thompson (1982; see also (solidanddottedcurves,respectively,seetext).Thethincurveseparates Lubinetal.1998,forarecentapplication).Thismodelassumes the bound and unbound regions according to the Newtonian criterion radialorbitsfortheclumpswith noshear ornetrotationofthe (aboveandbelowthecurve,respectively).Thehorizontallinesgivethe system.Furthermore,theclumpsareassumedtostarttheirevo- observationalvaluesofthemasssystemanditsuncertainties. lution at time t = 0 with separation d = 0, and are moving 0 0 apart or coming together for the first time in their history; i.e. weareassumingthatweareseeingtheclusterpriortomerging acircularKeplerianorbitwiththeorbitalplaneperpendicularto (atthetimet = 11.106Gyrattheclusterredshift).Thebimodal theLOS,werefertothoseauthors. model solution gives the total system mass M as a function As for the low velocity groups, we consider a group corre- sys ofα(e.g.,Gregory&Thompson1984).Figure15comparesthe sponding to WGAP1 likely centred around BCM−D and pos- bimodal-modelsolutionswiththeobservedmassofthesystem, sibly interacting with the A115N+S complex. The values of whichisthemostuncertainobservationalparameter.Thepresent the relevant observable quantities for the two-clumps system bound outgoing solutions (i.e. expanding), BO, are clearly in- are then: the relative LOS velocity in the rest frame, Vr = consistentwith the observedmass. The possiblesolutionsspan 3376kms−1 (asrecoveredfromWGAP1andthemeanvelocity these cases: the bound and present incoming solution (i.e. col- ofCORE−AandCORE−Bclusterrestframe);theprojectedlin- lapsing),BIaandBIb,andtheunbound-outgoingsolution,UO. eardistancebetweenthetwoclumps,D = 0.89h−1Mpc (asre- 70 For the incoming case there are two solutions because of the coveredfromBCM−DandthemeanpositionbetweenBCM−A ambiguityintheprojectionangleα.Wecomputetheprobabili- and –B); the mass of the system obtained by adding the mass tiesassociatedtoeachsolutionassumingthattheregionofMsys of a σv ∼ 500 km s−1 group to A115N+S, i.e. logMsys = valuesbetweenuncertaintiesareequallyprobableforindividual 15.4427+0.0625. According to the Newtonian criterion for grav- solutions:P ∼83.5%,P ∼16.5%,P ∼6×10−4%. itational−0b.i0n62d5ing we find a binding probability of 38%. The BIa BIb UO Betweenthetwopossibleboundsolutions,α∼21and76de- bimodal model indicates that the group is infalling onto the grees,thesecondoneisratherunlikelysinceitmeansadistance A115N+S complex with a merging axis intermediate between of ∼3.7 h−1Mpc between A115N and A115S, i.e. well larger theLOSandtheplaneofsky(i.e.,α∼40−60degrees). 70 thanthevirialradii,whilethesecondsolutionmeansadistance of ∼1.0 h−1Mpc in agreement with a certain degree of inter- action. W7h0en assuming α = 21 degrees the present colliding 5.2.Activegalaxies velocityisverylarge(∼4400kms−1)andtheclustercoreswill Ithasbeensuggestedthatcluster-clustercollisionsmay trigger crossafter0.08Gyr. starformationinclustergalaxies(Bekki1999;Moss&Whittle The characterization of the dynamics of A115 using these 2000;Girardi&Biviano2002,andreferencestherein).Caldwell modelsisaffectedbyseverallimitations.Forinstance,possible &Rose(1997)noticedthatpost-starburstgalaxiesarefrequently underestimatesofthemasses–e.g.,ifthesubclustersextendout- foundinclusterswithevidenceofpastcollisionevents.Herewe side the virialradius – lead to bindingprobabilitieslargerthan analysepossiblesegregationsbetweenpassiveandactivegalaxy thosecomputedabove.Themodelsdonottakethemassdistri- populations. butioninthesubclustersintoaccountwhentheseparationofthe Out of 85 cluster members we classify 48 galaxies finding subclustersiscomparablewiththeirsize(i.e.atsmallα)anddo 34 “passive”galaxies(“k” inTable 1)and14“active”galaxies not consider the possible effect of small, low velocity groups. (i.e., 9 “k+a”/“a+k” and 5 “e” galaxies, respectively),see also Moreover,the two-bodymodelbreaksdownin aregimewhere Fig.7. A115NandA115Ssubclustersarealreadystronglyinteracting. Thevelocitydistributionofpassivegalaxiesdiffersfromthat Finally,thetwo-bodymodeldoesnotconsiderthepossibility ofactivegalaxiesatthe99.47%c.l.accordingtotheKS-test,ac- of anoff-axismergerassuggestedbytheX-raysurfacebright- tive galaxieshavinga largermean velocity(see Table 2). With ness distribution(Gutierrez& Krawczynski2005). For an ana- present data this difference seems due to both Balmer absorp- lytical treatmentwhich assumes that A115Nand A115Sare in tion lines (“k+a”/“a+k”) and emission lines “e” galaxies. This
Description: