ebook img

The dual of convolutional codes over $\mathbb{Z}_{p^r}$ PDF

0.09 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The dual of convolutional codes over $\mathbb{Z}_{p^r}$

Chapter 1 Z The dual of convolutional codes over pr MohammedElOuedandDiegoNappandRaquelPintoandMarisaToste 6 1 0 2 n a J 0 2 Abstract An importantclass of codes widely used in applicationsis the class of convolutionalcodes.Mostoftheliteratureofconvolutionalcodesisdevotedtocon- ] A volutional codes over finite fields. The extension of the concept of convolutional R codesfromfinitefieldstofiniteringshaveattractedmuchattentioninrecentyears . duetofactthattheyarethemostappropriatecodesforphasemodulation.However h convolutionalcodes over finite rings are more involved and not fully understood. t a Many results and features that are well-knownfor convolutionalcodes over finite m fields have not been fully investigated in the context of finite rings. In this paper [ we focus in one of these unexploredareas, namely, we investigate the dual codes ofconvolutionalcodesoverfinite rings.Inparticularwestudythe p-dimensionof 1 v the dual code of a convolutionalcode over a finite ring. This contribution can be 0 considered a generalization and an extension, to the rings case, of the work done 2 byForneyandMcElieceonthedimensionofthedualcodeofaconvolutionalcode 2 overafinitefield. 5 0 . 1 0 6 1 : v MohammedElOued i FSMMath Department, University of Monastir, Monastir 5050, Tunisia e-mail: X [email protected] r a DiegoNapp CIDMA-CenterforResearchandDevelopmentinMathematicsandApplications,Departmentof Mathematics,UniversityofAveiro,Aveiro,Portugale-mail:[email protected] RaquelPinto CIDMA-CenterforResearchandDevelopmentinMathematicsandApplications,Departmentof Mathematics,UniversityofAveiro,Aveiro,Portugale-mail:[email protected] MarisaToste CIDMA - Center for Research and Development in Mathematics and Applications, Instituto PolitcnicodeCoimbra-ESTGOH,Coimbra,Portugale-mail:[email protected] 1 2 MohammedElOuedandDiegoNappandRaquelPintoandMarisaToste 1.1 Introduction Codesplayanimportantroleinourdays.Theyareimplementedinmostofallcom- munications systems in order to detect and correct errors that can be introduced duringthetransmissionofinformation.Convolutionalcodesoverfiniteringswere firstintroducedby [10] andhavebecomingmorerelevantforcommunicationsys- temsthatcombinecodingandmodulation. We will consider convolutionalcodesconstituted by left compactsequencesin Zpr, where p is a prime andr an integer greaterthan 1, i.e., the codewordsof the codewillbeoftheform w:Z→Zn pr t 7→ w t where w =0 for t <k for some k ∈Z. These sequences can be represented by t ¥ Laurent series, w(D) = (cid:229) wtDt. Let us denote by Zpr((D)) the ring of Laurent t=k series over Zpr. Moreover,we will represent the ring of polynomialsover Zpr by Zpr[D]andtheringofrationalmatricesoverZpr byZpr(D).Moreprecisely,Zpr(D) istheset p(D) { :p(D),q(D)∈Zpr[D]andthecoefficientofthesmallestpowerofDinq(D)isaunit} q(D) modulotheequivalencerelation p(D) p (D) ∼ 1 ifandonlyif p(D)q (D)= f (D)q(D). 1 1 q(D) q (D) 1 Convolutional codes over finite rings behave very differently from convolutional codesoverfinitefieldsduetotheexistenceofzerodivisors.Onemaindifferenceis thataconvolutionalcodeoverafinitefieldFisalwaysafreemoduleoverF((D)) whichdoesnothappenintheringcase.Inordertodealwiththisproblemwewill consideranewtypeofbasis,forZpr[D]-submodulesofZnpr[D],whichwillallowus todefineakindofbasisforeveryconvolutionalcode,called p-basis,andarelated typeofdimension,called p-dimension.Thisnotionshavebeenextensivelyusedin thelastdecade[4,6,7,8,9,12,2,3],extendingtheideasof p-adicexpansion, p- dimension, p-basis, etc, used in the contextof Zpr-submodulesof Znpr, [1, 13, 14, 15]. InthispaperwewillstudythedualofaconvolutionalcodeoverZpr[D].Inpar- ticular, we will show that the dual of a convolutionalcode is also a convolutional codeandwewillrelatethep-dimensionsofaconvolutionalcodeanditsdual.Hence thisworkgeneralizestheresultsderivedbyForneyandMcEliece[5,11]ofconvo- lutionalcodesoverfinitefields. 1 ThedualofconvolutionalcodesoverZpr 3 1.2 The moduleZn [D] pr AnyelementinZn canbewrittenuniquelyasalinearcombinationof1,p,p2,... pr ...,pr−1,withcoefficientsinAp={0,1,...,p−1}⊂Zpr (calledthep-adicexpan- sionoftheelement)[1].NotethatallelementsofA \{0}areunits.Thisproperty p providesakindoflinearindependenceontheelementsofA .In[15],theauthors p considered this propertyto define a special type of linear combinationof vectors, called p-linearcombination,whichallowedtodefinethenotionof p-generatorse- quence, p-basisand p-dimensionforeverysubmoduleofZn . Thesenotionswere pr extendedforvectorsin[9]andwerecalltheminthissection. k Definition1. [9] Let v (D),...,v (D) be in Zn [D]. The vector (cid:229) a (D)v (D), 1 k pr j j j=1 with a (D) ∈ A [D], is said to be a p-linear combination of v (D),...,v (D) j p 1 k and the setof all p-linearcombinationof v (D),...,v (D) is called the p-span of 1 k {v (D),...,v (D)},denotedby p-span(v (D),...,v (D)). 1 k 1 k Note that the p-span of a set of vectors is not always a module. We need to introduceanextraconditiontobefulfilledbythevectors. Definition2. [9]Anorderedsetofvectors(v (D),...,v (D))inZn [D]issaidtobe 1 k pr a p-generatorsequenceif pv(D)isa p-linearcombinationofv (D),...,v (D), i i+1 k i=1,...,k−1,and pv (D)=0. k Lemma1.[9] If (v (D),...,v (D)) is a p-generator sequence in Zn [D] it holds 1 k pr thatp-span(v (D),...,v (D))=span(v (D),...,v (D)),andconsequentlywehave 1 k 1 k that p-span(v1(D),...,vk(D))isaZpr-submoduleofZnpr[D]. NotethatifM=span(v1(D),...,vk(D))isasubmoduleofZpr[D],then (v (D),pv (D)...,pr−1v (D),v (D),pv (D),..., 1 1 1 2 2 (1.1) ...,pr−1v (D),...,v (D),pv (D)...,pr−1v (D)). 2 l k k isa p-generatorsequenceofM.. Definition3. [9] The vectors v (D),...,v (D) in Zn [D] are said to be p-linearly 1 k pr independentiftheonly p-linearcombinationofv (D),...,v (D)thatisequalto0 1 k isthetrivialone. Definition4. [9]Anorderedsetofvectors(v (D),...,v (D))whichisa p-linearly 1 k independent p-generatorsequence of a submodule M of Zn [D] is said to be a p- pr basisofM. It is proved in [8] that two p-bases of a Zpr-submodule M of Znpr[D] have the same number of elements. This number of elements is called p-dimension of M andisdenotedby p-dim(M). ThesamenotionsandresultsaresatisfiedforthemoduleZn in[15].Infact,as pr mentionedbefore,thesenotionswerefirstintroducedinthispaperforsuchmodules andlaterextendedforthemoduleZn [D]in[9]. pr 4 MohammedElOuedandDiegoNappandRaquelPintoandMarisaToste 1.3 ConvolutionalCodes overZ pr Definition5. A convolutional code C of length n is a Zpr((D))-submodule of Zn ((D))forwhichthereexistsapolynomialmatrixG(D)∈Zk˜×n[D]suchthat pr pr C = ImZpr((D))G(D) = u(D)G(D)∈Zn ((D)): u(D)∈Zk((D)) . pr p n e o The matrix G(D) is called a generator matrix of C. If G(D) is full row rank thenitiscalledanencoderofC. Moreover,if C =ImApr((D))G(D) = u(D)G(D)∈Zn ((D)): u(D)∈Ak((D)) . pr p n o with G(D)∈Zk×n[D] a polynomialmatrix whose rowsform a p-basis of C, then pr G(D)isa p-encoderofC andwesaythatC has p-dimensionk. IfthereexistsaconstantmatrixGsuchthat C = u(D)G∈Zn ((D)): u(D)∈Zk((D)) , pr p n e o thenC iscalledablockcode. Obviously,blockcodesareaparticularcaseofconvolutionalcodes.Everyblock codeC admitsageneratormatrixinstandardform[14] I A0 A0 A0 ··· A0 A0 k0 1,0 2,0 3,0 r−1,0 r,0  0 pI pA1 pA1 ··· pA1 pA1  k1 2,1 3,1 r−1,1 r,1 0 0 p2I p2A2 ··· p2A2 p2A2  k2 3,2 r−1,2 r,2  G= 0 0 0 pr−1I ··· 0 pr−1A3 . (1.2)  k3 r,3   ... ... ... ... ... ... ...   0 0 0 0 ··· pr−1Ikr−1 pr−1Arr,−r−11 The integersk ,k ,...,k arecalled the parametersof G. Allencodersof C in 0 1 r−1 standardformhavethesameparametersk ,k ,...,k . 0 1 r−1 NotethatifG(D)isageneratormatrixofaconvolutionalcodeC andX(D)isanin- vertiblerationalmatrixsuchthatX(D)G(D)ispolynomial,thenImZpr((D))G(D)= ImZpr((D))X(D)G(D),whichmeansthatX(D)G(D)isalsoageneratormatrixofC. Thus, the next straightforwardresult follows. We include its prooffor the sake of completeness. 1 ThedualofconvolutionalcodesoverZpr 5 Lemma2.LetC beasubmoduleofZnpr((D))givenbyC =ImZpr((D))N(D),where N(D)∈Zk˜×n(D).ThenC isaconvolutionalcode,andifN(D)isfullrowrank,C pr isafreecodeofdimensionk. Proof. Write N(D)=hqpiijj((DD))i, where pij(D),qij(D)∈Zpr[D], and the coefficient of the smallest power of D in q (D) is a unit. Consider the diagonal matrix ij Y(D) ∈ Zk˜×k˜[D] whose element of the row i is the least common multiple of pr qi1(D),qi2(D),...,qik˜(D). Thus Y(D) is invertible and N(D)=Y(D)−1X(D) for somepolynomialmatrixX(D)∈Zk˜p×rn[D].ThenImZpr((D))N(D)=ImZpr((D))X(D), whichmeansthatX(D)isageneratormatrixofC.Thelaststatementofthelemma followsfromthefactthatN(D)isfullrowrankifandonlyifX(D)isfullrowrank. ⊓⊔ Nextwe will considera decompositionof a convolutionalcode into simplercom- ponents.Forthatweneedthefollowinglemma. Lemma3.Let M be a submoduleof Zn ((D)). Then, there exists a uniquefamily pr M ,...,M offreesubmodulesofZn ((D))suchthat 0 r−1 pr M=M ⊕pM ⊕...⊕pr−1M . (1.3) 0 1 r−1 Proof. Let M be the projection of M over Z ((D)) and denote its dimension by p k0(M). Let M0 be the free code over Zpr((D)) of rank k0 satisfying M=M0 and M ⊂M.AsZn ((D))isasemisimplemodule,M admitsacomplementcodeM′ in 0 pr 0 0 M.Necessarily,thereexistsacodeM′ suchthatM′ =pM′.WehaveM=M ⊕pM′. 1 0 1 0 1 Thenbyinductionwehavetheresult. ⊓⊔ NotethatifC isablockcode,thisdecompositionasC =C ⊕pC ⊕...⊕pr−1C 0 1 r−1 whereC ,...,C arefreeblockcodes,isdirectlyderivedfromageneratormatrix 0 r−1 in standard form. In fact, if G, of the form (1.2), is a generator matrix of C then piCi=ImZpr((D))piGi,whereGi=[0···0Iki Ai2,i···Air,i],i=0,...,r−1. NextwewillshowthatanyconvolutionalcodeC alsoadmitssuchdecomposition. LetG(D) be a generatormatrix of C. If G(D) is full rowrankthen C is free and C =C . 0 Let us assume now that G(D) is not full row rank. Then the projection of G(D) intoZ [D],G(D)∈Zk×n[D],isalsonotfullrowrankandthereexistsanonsingu- p p G (D) lar matrix F (D)∈Zk×k[D] such that F (D)G(D)= 0 modulo p, where 0 p 0 (cid:20) 0 (cid:21) e G (D) is full row rank with rank k . Considering F (D) ∈ Zk×k[D], it follows 0 0 0 pr G (D) tehatF (D)G(D)= 0 ,whereG (D)∈Zk0×n issuchthatG (D)=G (D). 0 (cid:20)pG1(D)(cid:21) 0 pr 0 0 G (D) e Moreover,sinceF (D)bisinvertible, 0 isalsoageneratormatrixofC. 0 (cid:20)pG1(D)(cid:21) b 6 MohammedElOuedandDiegoNappandRaquelPintoandMarisaToste LetusnowconsiderF (D)∈Z(k−k0)×(k−k0)[D]suchthatF (D)G (D)= G1(D) 1 p 1 1 (cid:20) 0 (cid:21) e modulo p, whereG (D) is fullrow rankwith rankk . Then,cobnsideringF (D)∈ 1 1 1 Z(k−k0)×(k−k0)[D],ietfollowsthatF (D)G (D)= G′1(D) ,whereG′(D)∈Zk˜1×n pr 1 1 (cid:20)pG2(D)(cid:21) 1 pr issuchthatG′(D)=G(D),andtherefobre 1 b e G (D) 0 I 0 (cid:20) 0k0 F1(D)(cid:21)F0(D)G(D)=pp2GG′1((DD)). 2   b G (D) If 0 is not full row rank, then there exists a permutation matrix P and a (cid:20)G′(D)(cid:21) 1 rationalmatrixL(D)∈Zk˜1×k0(D)suchthat pr G (D) I 0 G (D) 0 P k0 0 = pG′′(D) , (cid:20)L1(D)Ik1(cid:21)(cid:20)pG′1(D)(cid:21) p2G1′(D)  2  where G′′(D) ∈ Zk1×n(D) and G′(D) ∈ Z(k˜1−k1)×n(D) are rational matrices and 1 pr 2 pr G (D) I 0 0 isafullrowrankrationalmatrix.NotethatsinceP k0 isnon- (cid:20)G′1′(D)(cid:21) (cid:20)L1(D)Ik1(cid:21) singularitfollowsthat G (D) G (D) 0 ImZpr((D))(cid:20)pG0′(D)(cid:21)=ImZpr((D)) pG′1′(D) . 1 p2G′(D)  2  LetG (D)Zk1×n[D]andG′′(D)∈Z(k˜1−k1)×n[D]bepolynomialmatrices(seeLemma 1 pr 2 pr 2)suchthat G (D) G (D) 0 0 ImZpr((D)) pG′1′(D) =ImZpr((D)) pG1(D) . p2G′(D) p2G′′(D)  2   2  Then G (D) 0  pG1(D)  p2G′′(D)  2  p2G (D) 2   b G (D) isstillageneratormatrixofC suchthat 0 isfullrowrank. (cid:20)G1(D)(cid:21) ProceedinginthesamewayweobtainageneratormatrixofC oftheform 1 ThedualofconvolutionalcodesoverZpr 7 G (D) 0  pG1(D)  . , .  .    pr−1Gr−1(D)   andsuchthat G (D) 0  G1(D)  . .  .    Gr−1(D)   isfullrowrank.ThusC :=ImG(D)isafreeconvolutionalcode,i=0,1,...,r−1, i i and C =C ⊕pC ⊕···⊕pr−1C . If we denote by k the rank of C then the 0 1 r−1 i i family {k ,...,k } is a characteristic of the code. Moreover,it’s clear that C is 0 r−1 freeifandonlyifk =0fori=1...r−1. i Thefollowinglemmaswillbeveryusefulforderivingtheresultsoftheremaining sections. Lemma4.LetC beafreeconvolutionalcodeoflengthnoverZpr((D))andrank k.Then, p-dim(piC)=(r−i)k. Proof. Let G(D)∈Zk×n[D] be an encoder of C. The result follows from the fact pr piG(D) pi+1G(D) that . isan p-encoderofC,sinceG(D)isfullrowrank. ⊓⊔ .  .    pr−1G(D)   Lemma5.LetC1 andC2betwoconvolutionalcodesoverZpr((D)).Thenwehave p-dim(C +C )=p-dimC +p-dimC −p-dim(C ∩C ). 1 2 1 2 1 2 Ifthesumisdirect,wehave p-dim(C ⊕C )=p-dimC +p-dimC . 1 2 1 2 Proof. SupposethatC andC areindirectsum,i.e,C +C =C ⊕C . 1 2 1 2 1 2 IfB isap-basisofC andB isap-basisofC ,then(B ,B )isap-basisofC ⊕C 1 1 2 2 1 2 1 2 whichgivestheresult. Forthegeneralcase,LetdenotebyAthecomplementofC ∩C inC ,i.e.,C = 1 2 1 1 A⊕C ∩C ,andletBsuchthatC =B⊕C ∩C .Thenwehave 1 2 2 1 2 C +C =A⊕C ∩C ⊕B 1 2 1 2 andtheresultisimmediate. ⊓⊔ NextcorollaryfollowsimmediatelyfromLemmas4and5. 8 MohammedElOuedandDiegoNappandRaquelPintoandMarisaToste Corollary1.LetC beaconvolutionalcodeoflengthnsuchthat C =C ⊕pC ⊕···⊕pr−1C 0 1 r−1 withC afreeconvolutionalcodewithrankk,i=0,1,...,r−1.Then i i r−1 p-dim(C)= (cid:229) (r−i)k. i i=0 1.4 Dual Codes Let C be a convolutionalcode of length n over Zpr((D)). The orthogonal of C, denotedbyC⊥,isdefinedas C⊥={y∈Zn :[y,x]=0forallx∈C}, pr where[y,x]denotestheinnerproductoverZn . pr Inthissectionwewillshowthatthedualofaconvolutionalcodeisstillaconvolu- tionalcode.Thenexttheoremprovesthisstatementforfreeconvolutionalcodes. Theorem1.Let C be a free convolutionalcode with length n over Zpr((D)) and rankk˜.ThenC⊥isalsoafreeconvolutionalcodeoflengthnandrankn−k˜. Proof. Let G(D)∈Zk˜×n be an encoder of C. Since G(D) is full row rank there pr exists a polynomialmatrix L(D)∈Z(n−k˜)×n[D] such that G(D) is nonsingular. pr (cid:20)L(D)(cid:21) Let [X(D)Y(D)], with X(D)∈Zn×k˜(D) andY(D)∈Zn×(n−k˜)(D), be the inverse pr pr G(D) of(cid:20)L(D)(cid:21).ThenC⊥=ImZpr((D))Y(D)t, whichmeansbyLemma2thatC⊥ isa convolutionalcode.Moreover,sinceY(D)isfullcolumnrank,thereexistsafullrow rank polynomial matrix G⊥(D)∈Z(pnr−k˜)×n[D] such that C⊥ =ImZpr((D))G⊥(D). ThusC⊥ isafreeconvolutionalcodeorrankn−k˜. ⊓⊔ IfC isafreecodeofrankk˜,then p-dim(C)=k˜r.Thisgivesusthenextcorollary. Corollary2.LetC beafreeconvolutionalcodeoflengthnoverZpr.Thenwehave p-dim(C)+p-dim(C⊥)=nr. In the sequel of this work we propose to established this result for any code over Zpr((D)). 1 ThedualofconvolutionalcodesoverZpr 9 Thefollowingauxiliarylemmaswillbefundamentalintheproofofnexttheorem. They were proved in [2] for block codes over Zpr and are trivially extended for convolutionalcodesZpr((D)).Wewritetheirproofsforcompleteness. Lemma6.[2] Let C be a free convolutional code over Zpr((D)). For any given integeri∈{0,...r−1}wehave C ∩piZn ((D))=piC. pr Proof. The inclusion piC ⊂ C ∩piZn ((D)) is trivial. Conversely, let y(D) ∈ pr piZn ((D))∩C. Let {x (D),...,x (D)} be a basis of C and its projection over pr 1 k Z ((D)){x (D),...,x (D)}beabasisofC.Then,thereexistsa (D),...,a (D)∈ p 1 k 1 k k Zpr((D))suchthaty(D)= (cid:229) aj(D)xj(D).Asy(D)∈piZnpr((D)),wehavey(D)= j=1 k (cid:229) a (D)x (D)=0, and therefore a (D)=0, j=1...k. Then, for all j=1...k, j j j j=1 aj(D)canbewrittenintheformpbj(D)wherebj(D)∈Zpr((D)).Byrepeatingthe procedureitimes,weobtaina (D)=pia (D), ∀j=1...k,whichgives j j k y(D)=pi(cid:229) a (D)x (D)∈piC. j j j=1 ⊓⊔ Lemma7.[2]SupposethatC isafreecode.Lety(D)∈Zpr((D))n andletibean integerin{0,...,r−1},suchthatpiy(D)∈C.Theny(D)∈C +pr−iZn ((D)). pr Proof. Bytheprecedinglemma,thereexistsx(D)∈C suchthat piy(D)= pix(D). This implies that y(D) = x(D). Thus there exists y1(D)∈ C, y2(D) ∈ Zpr((D)) satisfying y(D)=y (D)+py (D). We have piy(D)= piy (D)+pi+1y (D), then 1 2 1 2 piy(D)−piy (D)=pi+1y (D)∈C.Theny (D)=y (D)+py (D)wherey (D)∈ 1 2 2 3 4 3 C and y (D)∈Zn ((D)). Then y(D)=y (D)+py (D)+p2y (D). By repeating 4 pr 1 3 4 ∈C this procedure r−i times, we obtain y(D|)=x1({Dz)+pr}−ix2(D) with x1(D)∈C. ⊓⊔ Lemma8.[2] Let C be a free convolutionalcode over Zpr((D)). For all integer i∈{0,...r−1}wehave (piC)⊥=C⊥+pr−iZn ((D)). pr Proof. It’sclearthatC⊥+pr−iZn ((D))⊂(piC)⊥.Conversely,lety(D)∈(piC)⊥. pr Thenforallx(D)∈C wehave[y(D),pix(D)]=[piy(D),x(D)]=0,thus piy(D)∈ C⊥.AsC⊥isafreecode,weconcludebyLemma7thaty(D)∈C⊥+pr−iZn ((D)). pr ⊓⊔ 10 MohammedElOuedandDiegoNappandRaquelPintoandMarisaToste Theorem2.LetC =C ⊕pC ⊕...⊕pr−1C beaconvolutionalcodeoflength 0 1 r−1 noverZpr((D)),suchthatCiisfree,i=0,1,...,r−1,withC0⊕C1⊕...⊕Cr−1= C +C +...+C a free convolutionalcode.Then,there exists a family of free 0 1 r−1 convolutionalcodesoflengthnoverZpr((D)),Bi,i=0,...,r−1,suchthatC⊥= B ⊕pB ⊕...⊕pr−1B ,and 0 1 r−1 1. B =(C ⊕...⊕C )⊥. 0 0 r−1 2. Fori∈{1,...,r−1},rank(B)=rank(C ). i r−i Proof. Supposethatrank(C)=k fori=0,...,r−1.Wefirstbeginbylookingfor i i thedualofC ⊕pC . 0 1 (C ⊕pC )⊥ = C⊥∩(pC )⊥=C⊥∩(C⊥+pr−1Zn ) 0 1 0 1 0 1 pr = C⊥∩C⊥+pr−1C⊥ 0 1 0 = (C ⊕C )⊥+pr−1C⊥. 0 1 0 ByTheorem1,wecanconcludethatthereexistsafreecodeB suchthat r−1 (C ⊕pC )⊥=(C ⊕C )⊥⊕pr−1B . 0 1 0 1 r−1 Supposerank(B )=l ,thenwehave: r−1 r−1 p-dim[(C ⊕pC )⊥]= p-dim(C ⊕C )⊥+p-dim(pr−1B ) 0 1 0 1 r−1 = nr−(k +k )r+l . 0 1 r−1 Ontheotherhand, p-dim[(C ⊕pC )⊥]=nr−(k r+(r−1)k ).Weconcludethat 0 1 0 1 rank(B )=k .WerepeatthesameprocedurewithC ⊕pC ⊕p2C . r−1 1 0 1 2 (C ⊕pC ⊕p2C )⊥ = (C ⊕pC )⊥∩(p2C )⊥=[(C ⊕C )⊥⊕pr−1B ]∩(C⊥+pr−2Zn ) 0 1 2 0 1 2 0 1 r−1 2 pr = (C ⊕C ⊕C )⊥⊕pr−1(B ∩C⊥)+pr−2(C ⊕C )⊥+pr−1B 0 1 2 r−1 2 0 1 r−1 = (C ⊕C ⊕C )⊥⊕pr−1B +pr−2(C ⊕C )⊥. 0 1 2 r−1 0 1 ByTheorem1,thereexistsafreeconvolutionalcodeB suchthat r−2 (C ⊕pC ⊕p2C )⊥=(C ⊕C ⊕C )⊥⊕pr−1B ⊕pr−2B . 0 1 2 0 1 2 r−1 r−2 Supposethatrank(B )=l ,thenwehave r−2 r−2 p-dim(C ⊕pC ⊕p2C )⊥ = p-dim[(C ⊕C ⊕C )⊥]+p-dim(pr−1B )+p-dim(pr−2B ) 0 1 2 0 1 2 r−1 r−2 = nr−(k +k +k )r+k +2l . 0 1 2 1 r−2 Ontheotherhand p-dim(C ⊕pC ⊕p2C )⊥ = nr−[k r+k (r−1)+k (r−2)] 0 1 2 0 1 2 = (n−k −k )r+k +2k . 0 1 1 2

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.