ebook img

The DNA, RNA, and Histone Methylomes PDF

624 Pages·2019·13.518 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The DNA, RNA, and Histone Methylomes

RNA Technologies Stefan Jurga Jan Barciszewski E ditors The DNA, RNA, and Histone Methylomes RNA Technologies SeriesEditors JanBarciszewski, Nanobiomedical Center, Adam Mickiewicz University, Poznań, Poland InstituteofBioorganicChemistryofthePolish,AcademyofSciences,Poznań,Poland NikolausRajewsky,MaxDelbrückCenterforMolecularMedicine,BerlinInstitute forMedicalSystemsBiology,Berlin-Buch,Berlin,Germany FoundingEditor Volker A. Erdmann, Institute of Chemistry and Biochemistry, Free University of Berlin,Berlin,Germany Moreinformationaboutthisseriesathttp://www.springer.com/series/8619 (cid:129) Stefan Jurga Jan Barciszewski Editors The DNA, RNA, and Histone Methylomes Editors StefanJurga JanBarciszewski NanobiomedicalCenter NanobiomedicalCenter AdamMickiewiczUniversity AdamMickiewiczUniversity Poznań,Poland Poznań,Poland InstituteofBioorganicChemistryofthePolish AcademyofSciences Poznań,Poland ISSN2197-9731 ISSN2197-9758 (electronic) RNATechnologies ISBN978-3-030-14791-4 ISBN978-3-030-14792-1 (eBook) https://doi.org/10.1007/978-3-030-14792-1 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Chromatin Methylome Ineukaryotes,thegenomesizeishighlyvariablebetweenorganisms.Itisorganized into chromatin, a nuclear complex encompassing DNA, RNA, and associated pro- teins. Furthermore, chromatin is organized into two distinct domains, namely, euchromatinandheterochromatin,dependingonthecompactionstate.Euchromatin exhibits relatively loose compaction and is typically transcriptionally permissive, whereas heterochromatin is more condensed, rich in repetitive sequences, and typically transcriptionally repressive. Modulation at each level enables chromatin- basedinformationtovary,inordertorespondtodifferentsignalsfornumerousgene regulatoryfunctions.Thisdetermineschromatinplasticityasameansofgeneratinga varietyofpropertiesforeachcelltype,duringtheprocessofdevelopment,andalso whencellsfacedifferentenvironmentalandmetabolicsignals,senescence,disease, and death. The degree to which chromatin is organized and packaged is highly influenced by various reasons and factors, including chemical modifications to histonesandDNA,particularlymethylation. ThereisaremarkabledifferencebetweenthelengthofDNAandthesizeofthe nucleus,andthus,theentireDNAmoleculehastobeefficientlycompactedinorder to fit inside the physically small space. Two meters of human DNA has to be compactedintotheconfinesofa2–10micronnucleusandaccessibletotheprotein machineriesthatutilizeitforcriticalbiologicalfunctions.So,thereisaquestionof howthese diverse genomicfunctions,suchastranscription,repair,replication,and recombinationofDNA,occurattherightplaceandtimetopromotecellulargrowth, differentiation,anddevelopment. Methylation of DNA is a critical part of epigenetic regulation in eukaryotes. 5-methylcytosine (m5C) is conserved in species ranging from vertebrates to fungi and protists.In mammals,m5C haswell-describedroles in regulating geneexpres- sion,andalteredmethylation patternsarehallmarksofnormalembryonicdevelop- ment,aswellastumorigenesis.CurrentunderstandingofcytosineDNAmethylation v vi Preface has benefited from chemical biology approaches that developed the mechanisms governing proteins which introduce or recognize methyl marks with DNA methyltransferases.Themostaccuratemodelforactivedemethylationinmammals involves sequential oxidation of m5C by ten-eleven translocation (TET) family enzymes,followedbybaseexcisionrepair(BER)toregenerateunmodifiedcytosine. Allthreeoxidizedm5Cbaseshavebeendetectedindiversecelltypes,mostlyinthe context of cytosine-guanine dinucleotides (CpG islands). In general, the genomic levels of 5-hydroxymethylcytosine (hm5C) are 10- to 100-fold lower than m5C, while levels of 5-formylcytosine (f5C) and 5-carboxycytosine (ca5C) are at least tenfoldlowerthanhm5C—approximatelyonein105–106nucleotides. The second group of cellular methylomes consists of RNA modifications. Com- pared with DNA modifications, they are largely neglected and have yet not drawn extensiveattentionuntilveryrecently.ChemicalmodificationstoRNAwerealready establishedinthe1970s.Untilnow,over170posttranscriptionalRNAmodifications have been identified. They can control the turnover and/or translation of transcripts duringcell-statetransitionsandthereforeplayimportantrolesduringtissuedevelop- ment and homeostasis. Although RNA modifications are highly diverse and can be found in all RNA species, the recent discoveries underpin an emerging common theme, namely how methylation of RNA coordinates translation of transcripts that encode functionally related proteins, when cells respond to differentiation or other cellularandenvironmentalcues.Forexample,theN6-methyladenosine(m6A)modi- ficationofmRNAisanessentialregulatorofmammaliangeneexpression.Transcripts thatmaintainthecellstatearecotranscriptionallydecoratedwithm6Awhichpromotes andcoordinatesthetimely decayofthesetranscripts,which allowscells to differen- tiate.mRNAmodificationsalsocontributetothesurvivalandgrowthoftumorcells, furtherhighlightingtheirimportanceintheregulationofcellfatedecisions. Posttranslational modifications of histones affect chromatin state and gene expression.Animportantbreakthroughintheunderstandingofhistonemodification function was achieved through identification of the protein machineries that incor- porate (write), remove (erase), and bind (read) histone substituents. Recently, the histonecodeconceptemergedasahypothesistostimulatenewthinkingabouthow histone modifications might function. On the basis of the analysis of this variation andotherhistonemodifications,wheretheassociatedfunctionswereknown,itwas possibletoinferthathistonemodificationsmightworksolely,aswellasincombi- nation(ononeormorehistonetails)tomediatethedistinctfunctionsassociatedwith them.Histonemodificationscandirectlyalterthebiophysicalpropertiesofthetarget protein, provide a docking site for specific interaction partners, interfere with bindingeventsofotherfactors,oractthroughacombinationofthesemechanisms. A very important posttranslational modification of histones is the methylation of lysine and arginine residues. Protein methylation in living organisms is catalyzed by methyltransferasesandinvolvesthetransferofaCH groupfromS-adenosylmethionine. 3 Lysine can form mono-, di-, and trimethyllysines in methyltransferase-catalyzed reac- tions,whileargininecanformmono-anddimethylarginine.Thesemodifiedaminoacids differbysizeandhydrophobicityfromtheoriginalresidue.Histonemethyltransferases are highly specific toward the nature of the amino acid residue (histone-lysine Preface vii methyltransferases and histone-arginine methyltransferases) and the position of this residueinthepolypeptidechain.Lysineandargininemethylationresiduesinhistones constituteaveryimportantelementofthealreadymentionedhistonecode.Oneshould alsonoticehistonelysineacetylationontheε-aminegroup.Itnotonlyneutralizesthe positivechargeoftheaminegroup,enhancesthehydrophobicity,andincreasesthesize ofthelysinesidechainbutalsoprovidesplatformsforbindingbyproteinsinvolvedin chromatinandgeneregulations. Recent technological advances allow for genome-wide analysis of DNA and histone methylations, which affect their structures and have the potential to reveal the regulation mechanisms on a level beyond the primary structure. Chemical changeseffectedbymethylgroupinducevariousphenotypesencodedinchromatin structure,andthatisjusttheperspectiveofepigenetics.Amechanisticunderstanding of chromatin andepigenetics plasticity inresponse tovarious cellular stresscondi- tions may help to reveal the epigenetics contributions for genome and phenotype regulation. Todeeplydiscussthekeyissuesofthemethylome,webroughttogetheradiverse group of experts, who work on different aspects of chromatin methylations from mechanismtoitsbiologicalconsequences.Thebookincludes24chapters. Poznań,Poland StefanJurga Poznań,Poland JanBarciszewski Contents Establishment,ErasureandSyntheticReprogrammingofDNA MethylationinMammalianCells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 RenataZ.JurkowskaandTomaszP.Jurkowski OriginandMechanismsofDNAMethylationDynamicsinCancers. . . . 27 HariharanEaswaranandStephenB.Baylin CpGIslandsMethylationAlterationsinCancer:Functionally IntriguingSecurityLocks,UsefulEarlyTumorBiomarkers. . . . . . . .. . 53 EleonoraLoiandPatriziaZavattari HistoneandDNAMethylomeinNeurodegenerative,Neuropsychiatric andNeurodevelopmentalDisorders. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 HarshaRaniandVijayalakshmiMahadevan DNAMethylationinNeuronalDevelopmentandDisease. . . . . . . . . . . . 103 EmilyC.BruggemanandBingYao FunctionalImplicationsofDynamicDNAMethylation fortheDeveloping,AgingandDiseasedBrain. . . . . . . . . . . . . . . . . . . . 141 GeraldineZimmer-Bensch TheMethylomeofBipolarDisorder:EvidencefromHuman andAnimalStudies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 ConsueloWalss-BassandGabrielR.Fries DNAMethylationinMultipleSclerosis. . . . . . . . . . . . . . . . . . . . . . . . . . 181 LaraKularandMajaJagodic EarlyLifeStressandDNAMethylation. . . . . . . . . . . . . . . . . . . . . . . . . 215 AnnakarinaMundorfandNadjaFreund ix x Contents Regulationof5-HydroxymethylcytosineDistribution bytheTETEnzymes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 JohnZ.Cao,AnastasiaE.Hains,andLucyA.Godley EpigeneticAlterations:TheRelationBetweenOccupationalExposure andBiologicalEffectsinHumans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 VivianSilvaKahl,MónicaCappetta,andJulianaDaSilva DNAMethylation:BiologicalImplicationsandModulationofIts AberrantDysregulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 AlessiaLucidi,DanielaTomaselli,DanteRotili,andAntonelloMai FunctionsandDynamicsofMethylationinEukaryoticmRNA. . . . . . . . 333 MingjiaChenandClaus-PeterWitte TheRoleofmRNAm6AinRegulationofGeneExpression. . . . . . . . . . 353 SicongZhang m6AmRNAMethylationintheMammalianBrain:Distribution, FunctionandImplicationsforBrainFunctions. . . . . . . . . . . . . . . . . . . 377 MareenEngelandAlonChen G9aandG9a-LikeHistoneMethyltransferasesandTheirEffect onCellPhenotype,EmbryonicDevelopment,andHumanDisease. . . . . 399 CarolA.EisenbergandLeonardM.Eisenberg BiomolecularRecognitionofMethylatedHistones. . . . . . . . . . . . . . . . . 435 MiriamR.B.Porzberg,BasJ.G.E.Pieters,andJasminMecinović TheRoleofProteinLysineMethylationintheRegulationofProtein Function:LookingBeyondtheHistoneCode. . . . . . . . . . . . . . . . . . . . . 453 HemantaAdhikary,OrnealaBakos,andKyleK.Biggar SecondaryStructuresofHistoneH3ProteinswithUnmethylated andMethylatedLysine-4and-9Residues:CharacterizationUsing CircularDichroismSpectroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 YudaiIzumi AsymmetricDimethylationonArginine(ADMA)ofHistones inDevelopment,DifferentiationandDisease. . . . . . . . . . . . . . . . . . . . . . 495 AmitK.BeheraandTapasK.Kundu ASwitchforTranscriptionalActivationandRepression:Histone ArginineMethylation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521 Tian-ShiWang,Jin-KeCheng,Qun-YingLei,andYi-PingWang

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.