ebook img

The DNA-dependent Protein Kinase Catalytic Subunit Phosphorylation Sites in Human Artemis* S PDF

13 Pages·2005·0.59 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The DNA-dependent Protein Kinase Catalytic Subunit Phosphorylation Sites in Human Artemis* S

THEJOURNALOFBIOLOGICALCHEMISTRYVOL.280,NO.40,pp.33839–33846,October7,2005 ©2005byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PrintedintheU.S.A. The DNA-dependent Protein Kinase Catalytic Subunit Phosphorylation Sites in Human Artemis*□S Receivedforpublication,January13,2005,andinrevisedform,June30,2005 Published,JBCPapersinPress,August10,2005,DOI10.1074/jbc.M507113200 YunmeiMa‡,UlrichPannicke§,HaihuiLu‡,DorisNiewolik§,KlausSchwarz§1,andMichaelR.Lieber‡2 Fromthe‡DepartmentsofPathology,BiochemistryandMolecularBiology,BiologicalSciences,andMolecularMicrobiologyand Immunology,NorrisComprehensiveCancerCenter,UniversityofSouthernCalifornia,LosAngeles,California90089-9176and §InstituteforClinicalTransfusionMedicineandImmunogenetics,DepartmentofTransfusionMedicine,UniversityofUlm, D-89081Ulm,Germany ArtemisproteinhasirreplaceablefunctionsinV(D)Jrecombina- absenceofanyofthesecomponentsinvivotypicallyresultsinanioniz- tionandnonhomologousendjoining(NHEJ)asahairpinand5(cid:2)and ing radiation sensitivity and severe combined immune deficiency 3(cid:2)overhangendonuclease.ThekinaseactivityoftheDNA-depend- (SCID)phenotype(8).ArtemisisthemostrecentNHEJfactordiscov- entproteinkinasecatalyticsubunit(DNA-PK )isnecessaryinacti- ered.Itwasclonedfromhumanpatientsthathaveradiosensitivityanda cs vatingArtemisasanendonuclease.Herewereportthatthreebasal SCIDphenotype(RS-SCID)(9).Thehairpinopening(criticalforV(D)J phosphorylation sites and 11 DNA-PK phosphorylation sites recombination)and5(cid:1)and3(cid:1)overhangprocessing(necessaryforNHEJ) cs within the mammalian Artemis are all located in the C-terminal activitiesofArtemisexplainthedualphenotypeofthehumanpatients domain.Allbutoneofthesephosphorylationsitesdeviatefromthe (10).AnimalsmissingArtemisalsohavetheRS-SCIDphenotype.The SQorTQmotifofDNA-PK thatwaspredictedpreviouslyfromin presenceofunresolvedcodingendhairpinsintheseanimalsconfirmed cs vitro phosphorylation studies. Phosphatase-treated mammalian thepivotalroleofArtemisinthehairpinopeningstepofV(D)Jrecom- ArtemisandArtemisthatismutatedatthethreebasalphosphoryl- bination(11,12).Thefactthathumanpatientsandanimalsdeficientfor ationsitesstillretainDNA-PK -dependentendonucleolyticactiv- theArtemisproteinbothhavetheRS-SCIDphenotypesuggeststhat cs ities,indicatingthatbasalphosphorylationisnotrequiredforthe othernucleasesdonotfunctionallyfulfilltherolesofArtemis. activation.InvivostudiesofArtemislackingtheC-terminaldomain Artemisseemstorecognizestructuraldiscontinuityofsingle-todou- havebeenreportedtobesufficienttocomplementV(D)Jrecombi- ble-strandDNAtransitions.TheactivitiesofArtemisareregulatedby nationinArtemisnullcells.Therefore,theC-terminaldomainmay associationwithandphosphorylationbyDNA-PK .Artemisinteracts cs have a negative regulatory effect on the Artemis endonucleolytic withDNA-PK invitroandinvivointheabsenceofDNAandATP,and cs activities, and phosphorylation by DNA-PK in the C-terminal itcanonlybeactivatedasahairpinandoverhangendonucleaseonceit cs domainmayrelievethisinhibition. isphosphorylatedbyDNA-PK (10).Itisstillanopenquestionhow cs DNA-PK activatesArtemisbyphosphorylation. cs TheN-terminaldomain(aminoacid1–155,exons1–6)ofArtemis V(D)J3recombinationisthesomaticDNArecombinationthatoccurs hassignificanthomologytothe(cid:1)-lactamasefoldofseveralmembersof in precursors of lymphocytes. During this process, the variable (V), themetallo-(cid:1)-lactamasesuperfamily(9)andcontainsmultiplecatalyt- diversity (D), and joining (J) subexons are recombined to generate a icallyimportantresidues(13,14).Aminoacids156–385(exons7–13)of functionalvariabledomainexoncodingforimmunoglobulinsandTcell Artemiscomprisethe(cid:1)-CASPregion,foundonlyinmembersofthe receptors(1–3).V(D)Jrecombinationbeginswiththebindingofthe metallo-(cid:1)-lactamasesuperfamilythatprocessnucleicacid(15).Most RAGcomplex(RAG1,RAG2,andHMG1)totherecombinationsignal interestingly,ArtemistruncatedfortheC-terminaldomaincanfunc- sequences.TheRAGcomplexnicksbetweenthecodingendandthe tionallycomplementcellsderivedfromanRS-SCIDpatientforV(D)J recombination signal sequences and converts the nicks to double- recombination(14).Therefore,itseemsthatthemetallo-(cid:1)-lactamase strandDNAbreaks,therebycreatinghairpinsealedcodingendsand domainandthe(cid:1)-CASPregiontogetherconstitutethe“catalyticcore” bluntsignalends(2,4,5).Subsequently,thejoiningofthetwocoding ofArtemis.However,thefunctionoftheremainingC-terminaldomain endsiscarriedoutbythegeneralNHEJmachinery(6). (aminoacids386–692),composedofasingleexon(exon14),hasyetto NHEJfactorsincludeKu(composedoftheKu70andKu86subunits), bedetermined. DNA-PK ,Artemis,andDNAligaseIV-XRCC4complex(6,7).The Inthisstudy,wehavediscovered11DNA-PK phosphorylationsites cs cs and3basalphosphorylationsitesofArtemis,allofwhicharelocated withintheC-terminaldomain.Ourdatasuggestthattheuncharacter- *Thecostsofpublicationofthisarticleweredefrayedinpartbythepaymentofpage ized C-terminal domain of Artemis has important regulatory roles. charges.Thisarticlemustthereforebeherebymarked“advertisement”inaccordance □S Twhietho1n8-liUn.eSv.Ce.rSsieocntioofnth17is3a4rtsioclleel(yavtoaiilnadbilceaattehtthtips:/f/awctw.w.jbc.org)containsadditional pThhoesspehroersyullatstiolena.dtoamodelforhowDNA-PKcsactivatesArtemisby ExperimentalProcedures,Results,Ref.1,andFigs.S1–S2. 1Towhomcorrespondencemaybeaddressed.Tel.:49-731-150-642;Fax:49-731-150- 575;E-mail:[email protected]. EXPERIMENTALPROCEDURES 2Towhomcorrespondencemaybeaddressed.Tel.:323-865-0568;Fax:323-865-3019; E-mail:[email protected]. Oligonucleotides—The 46-nt hairpin substrate (YM-164) has been 3Theabbreviationsusedare:V(D)J,variable,diversity,andjoining;DNA-PKcs,DNA-de- describedpreviously(Fig.4AofRef.13).Thesequencesofthe35-bp pendentproteinkinasecatalyticsubunit;NHEJ,nonhomologousendjoining;wt,wild type;SCID,severecombinedimmunedeficiency;RS,radiosensitivity;FACS,fluores- DNAusedasaDNA-PKcscofactorarethesameasdescribed(10). cence-activatedcellsorter;DTT,dithiothreitol;(cid:2)PPase,(cid:2)proteinphosphatase;CIP, ProteinExpressionConstructs—Wild-typeArtemisexpressionplas- calf intestine phosphatase; IR, ionizing radiation; MS, mass spectrometry; TEV, mids were constructed as described (13). The triple point mutant tobaccoetchvirus;ATM,ataxiatelangiectasiamutated;ATR,ATM-andRad3-related kinase;nt,nucleotide. ARM49(S385A,S516A,andS518A)aswellastheothersubstitution OCTOBER7,2005•VOLUME280•NUMBER40 JOURNALOFBIOLOGICALCHEMISTRY 33839 This is an Open Access article under the CC BY license. ArtemisPhosphorylatedbyDNA-PKOnlyinC-terminalDomain mutantsweregeneratedusingtheQuickChangesite-directedmutagen- InVitroNucleaseAssay—25nMofthe5(cid:1)-labeledsubstratewasincu- esiskit(Stratagene,LaJolla,CA). batedwith100nMArtemisin25mMTris,pH8.0,10mMKCl,10mM FortheArtemisFLAGbaculovirus,full-lengthArtemiscontaininga MgCl2,1mMDTT,0.25mMATP,and50(cid:3)g/mlbovineserumalbumin SapI site in front of its stop codon was generated and cloned into inatotalvolumeof10(cid:3)l.Whereindicated,50nMDNA-PKcsand0.25 pENTR1a-TEV(amodifiedversionpENTR1a(Invitrogen)).Theresult- (cid:3)Mof35-bpDNA(nonspecificDNA-PKcscofactor)wereincludedin ing plasmid (pENTR1a-TEV-Artemis-SapI) was recombined with thereactions.Reactionswereincubatedfor1hat37°Candthendena- pDEST8-FLAG (a modified version of pDEST8 (Invitrogen), which turedfor5minat100°Cinanequalvolumeofdenaturinggelloading containsaSapIsiteinfrontofaTEVproteaserecognitionsitefollowed dye(98%formamide,10mMEDTA,0.025%ofbromphenolblue,and byaFLAGepitope)vectorusingtheGatewaysystem(Invitrogen).The 0.025%ofxylenecyanolFF).Reactionmixtureswereresolvedby12% resultingplasmidwasdigestedwithSapIandligatedbacktogetherto denaturingPAGE,andthegelimagewasobtainedwithPhosphorIm- generateanin-framefusiontotheTEVcleavagesiteandtheFLAGtag agerSI445(AmershamBiosciences). at the C terminus. This construct was then used in the Bac-to-Bac DNA-PK Phosphorylation and Phosphatase Dephosphorylation cs system(Invitrogen)togeneratethebaculovirusfollowingthemanufac- Assays—For the DNA-PK phosphorylation reactions, Artemis was cs turer’srecommendation. incubatedwithDNA-PKcsin10mMTris,pH7.5,10mMMgCl2,1mM InordertogeneratethemammalianexpressionplasmidforArtem- EDTA,1mMDTT,0.25mMATP,and1(cid:3)M35-bpDNAat37°Cfor30 isFLAG,full-lengthArtemiswasamplifiedbyPCRusingPfuTurboHot min. If the kinase reactions are followed by dephosphorylation, the Startpolymerase(Stratagene,LaJolla,CA)andprimersArtemis-Bam- Artemisimmunobeadswerewashedin25mMHEPES,pH7.9,650mM HI.R (5(cid:1)-CGCGGATCCCTACTTGTCATCGTCATCCTTGTAAT- KCl,10mMMgCl2,and0.1%NonidetP-40threetimes,andin25mM CTGCGGTATCTAAGAGTGAGCATTTTCTTTT-3(cid:1))andArtemis- HEPES,pH7.9,10mMMgCl2,and2mMDTTtwice,andtheimmuno- SbfI.R (5(cid:1)-CATGCCTGCAGGATGAGTTCTTTCGAGGGGCAGA- beadswerethenaliquotedandtreatedwitheither(cid:2)proteinphospha- TGG-3(cid:1)).ThePCRproductwasthenclonedintotheBamHIandSbfI tase ((cid:2)PPase) (New England Biolabs, Beverly, MA) or calf intestine sitesofpEXAL1.1.TheArtemisFLAGinsertwassequencedtoconfirm phosphatase(CIP)(RocheAppliedScience)underconditionssuggested that no mutations were introduced during the cloning process. The bythevendor.DNA-PKcsorproteinphosphatase-treatedsampleswere DNA-PK expressionplasmidpPK1wasconstructedasdescribed(16). resolvedby7or8%SDS-PAGEandstainedwithCoomassieBlueR-250. cs InVivoV(D)JRecombinationAssay—ThecellularV(D)Jrecombina- Immunoprecipitation Assay—The immunoprecipitation assay was tionassayandFACSanalysisoftransfectedcellswerecarriedoutas doneasdescribed(10).DNA-PKcswasdetectedwithanti-DNA-PKcs described(13). antibody25-4(Neomarkers,Fremont,CA).Myc-taggedArtemiswas ProteinPurification—DNA-PK andArtemis-myc-Hiswerepurified detectedwithanti-Mycantibody(Invitrogen).Equaltransfectioneffi- cs asdescribed(10).pEXAL1.1-ArtemisFLAGwastransfectedinto293T ciencieswereconfirmedbyco-transfectionofanenhancedgreenfluo- cellsbycalciumphosphateprecipitation,andthecellswereharvested rescentproteinexpressionplasmidandFACSanalysis.SV40T-antigen 48 h after transfection. Artemis-FLAG was immunoprecipitated as wasusedasasampleloadingcontrolandwasdetectedwithananti- described(10)withananti-FLAGM2monoclonalantibody(Sigma). SV40T-Agantibody(SantaCruzBiotechnology,SantaCruz,CA). TheFLAG-taggedArtemiswasleftontheresinor,inthecasethatthe proteinwaseluted,theimmunobeadswerewashedthreetimesin25 RESULTS mMTris,pH8.0,50mMNaCl,10mMMgCl2,10%glycerol,and1mM ArtemisCanBePhosphorylatedatMultiplePositionsintheC-termi- DTT,andthentheproteinwaselutedbyincubatingthebeadsin0.1 nalDomainbyDNA-PK —DNA-PK ishomologoustophosphatidy- cs cs mg/mlofFLAGpeptide(Sigma)inthesamebufferfor1hat4°Cwith linositol3-kinases,yetinvitroitphosphorylatesmanyproteintargetson constantmixing.ThesupernatantwascollectedasthesolubleArtemis- serineandthreonineresidues(17,18).IthasbeenshownthattheDNA- FLAGprotein. PK kinaseactivityisnecessarytoactivateArtemisasahairpinand5(cid:1) cs MassSpectrometry—ProteinstobeanalyzedwereresolvedbySDS- and3(cid:1)overhangendonuclease(10),andtheseactivitiesareverylikelyto PAGEandstainedwithCoomassieBlueR-250.Thebandscorrespond- becriticaltoV(D)JrecombinationandNHEJinvivo.Wewereinter- ingtothesampleswereexcised,andthegelpiecesweredestainedin50% estedinmappingthephosphorylationpositionsofArtemisbyDNA- methanol.Next,thegelpiecesweredehydratedinacetonitrileandrehy- PK invitrobymassspectrometry(MS).Artemis-myc-Hisimmuno- cs dratedin10mMdithiothreitol(DTT)and0.1Mammoniumbicarbon- beads were incubated with DNA-PK under kinase permissive cs ate.Subsequently,thesampleswerealkylatedin50mMiodoacetamide conditionsandthenanalyzedbySDS-PAGEandCoomassiestaining and0.1Mammoniumbicarbonate.Thegelpieceswerethendehydrated (see“ExperimentalProcedures”).Inordertoconfirmthatthisinvitro inacetonitrile,rehydratedin0.1Mammoniumbicarbonate,dehydrated phosphorylationsystemmimicsotherDNA-PK kinasereactions,we cs againinacetonitrile,andcompletelydriedbyvacuumcentrifugation. firstanalyzedtheproteinbandcorrespondingtoautophosphorylated Trypsinizationofthedriedpieceswascarriedoutin20ng/(cid:3)ltrypsinin DNA-PK . Nine phosphoserines and phosphothreonines were cs 50 mM ammonium bicarbonate. The sample was digested overnight, detectedbyMS(Fig.1A).Sixofthesesites(Thr-2609,Ser-2612,Thr- andthepeptideswereextractedfromthepolyacrylamidein2aliquotsof 2624,Thr-2638,Thr-2647,andSer-3205)havebeenreportedbyDou- 50%acetonitrile,5%formicacid. glasetal.(19),andthree(Ser-3821,Ser-4026,andThr-4102)arenovel. Trypsinized samples were analyzed with the liquid chromatogra- Next, the untreated and DNA-PK -phosphorylated mammalian cs phy-MSsystem,whichconsistedofaFinniganLCQiontrapmassspec- ArtemiswasanalyzedbyMS.WhereastheuntreatedArtemis(purified trometersystemwithaProtanananosprayionsourceinterfacedtoa frommammaliancells)hasonly3phosphorylatedserines,thephospho- PhenomenexJupiter10-(cid:3)mC18reversed-phasecapillarycolumn.The rylatedArtemishas14phosphorylatedserinesandthreonines(includ- data were analyzed by data base searching using the Sequest search ingthethreebasalphosphorylatedresidues)(Fig.1B).Becauseofthe algorithm.Peptidesthatwerenotmatchedbythisalgorithmwereinter- limitationsofMS,phosphorylationpositionsonsomeoftheadjacent preted manually and searched versus the EST data bases using the serinesorthreoninescannotbedefinitivelydetermined(seeFig.1B).It Sequestalgorithm. wassuggestedpreviouslythattheDNA-PK consensusphosphoryla- cs 33840 JOURNALOFBIOLOGICALCHEMISTRY VOLUME280•NUMBER40•OCTOBER7,2005 ArtemisPhosphorylatedbyDNA-PKOnlyinC-terminalDomain FIGURE1.PositionsofphosphorylatedserinesandthreoninesinDNA-PK andArtemisidentifiedbymassspectroscopy.A,DNA-PK autophosphorylationsitesidentifiedbyMS.The cs cs positionsofphosphorylatedserinesandthreoninesareshownonthetopoftheschematicDNA-PK protein.TheautophosphorylationsitesidentifiedbyDouglasetal.(19)areshownonthe cs bottomforcomparison.Theboldfaceanditalictext(T2620)indicatestheonlyunconfirmedphosphorylationsite.B,phosphorylationsitesofArtemisidentifiedbyMS.Theschematicstructure ofArtemisisshowntoemphasizethemetallo-(cid:1)-lactamasedomain(darkgray),the(cid:1)-CASPdomain(lightgray),andtheC-terminaldomain(white).Positionsofphosphorylatedserinesfrom untreatedArtemisareshowninthetoppanel;andpositionsofphosphorylatedserinesandthreoninesofDNA-PK phosphorylatedArtemisareshowninthebottompanelwiththethreebasal cs phosphorylationsiteshighlightedbyboldfaceanditalicletters.ThepositionsoftheSQandTQsitesarelabeledonthebottom.ThesourceofthecellsfromwhichArtemiswaspurifiedandthe treatmentofArtemisareindicatedontheright.AdjacentserinesandthreoninesthatcannotbedistinguishedbyMSarenoted. TABLE ONE V(D)JrecombinationassayinArtemis-deficienthumanprimaryskinfibroblastscomplementedwithArtemisserineorthreoninepointmutants Humanprimaryskinfibroblastswereco-transfectedwithV(D)JrecombinationsubstrateplasmidandplasmidsexpressingRAG1,RAG2,andoneoftheArtemis proteins(wild-typeormutant).Asnegativecontrols,thesameco-transfectionswithouttheplasmidsexpressingRAG2((cid:2)RAG2)orwild-typeArtemis((cid:2)wtArt) were performed. Wild-type Artemis was used as a positive control ((cid:3)wt Art). A pre-recombined substrate plasmid was transfected in order to evaluate thetransfectionefficiency(T.E.).Ineachassay5(cid:4)104fibroblastswereanalyzedbyFACSanalysis.Thepercentagesofrecombination-positivecellsoutofthe subpopulationoftransfectedfibroblastsareshown. Controls T.E. T91A T251A S362A S516A S534A S538A S548A S553A S560A S645A (cid:1)RAG2 (cid:1)wtArt (cid:2)wtArt Artemis-positivefibroblasts Exp.1 57.25 0.02 3.54 3.19 Exp.2 57.63 0.05 4.06 4.24 Artemis-deficientfibroblasts Exp.1 56.47 0.04 0.10 5.30 3.22 3.87 3.70 3.05 3.50 1.73 2.87 3.26 3.42 3.96 Exp.2 62.18 0.11 0.11 4.67 3.58 3.39 4.67 4.26 3.73 4.17/3.18a 3.64 4.19 3.76 4.02 aTwoindependentvalueswereascertained. tionsitesareserinesorthreoninesfollowedbyaglutamine(SQorTQ) atSQorTQintoanalanineresidue(SertoAlaorThrtoAlamutations). (20).However,noneoftheArtemisphosphorylationsitesbyDNA-PKcs Next, the 10 plasmids expressing different point mutants of Artemis isatanSQorTQ,despitethefactthatthereisaclusterofSQandTQ weretestedfortheirabilitytofunctionallycomplementhumanprimary sitesintheC-terminaldomainofArtemis(Fig.1B).Onlyoneofthe skinfibroblastsdeficientforArtemisinaV(D)Jrecombinationassay basalphosphorylationsiteswithinArtemisisatanSQsite(Ser-516). (TABLE ONE) as described (13). All the mutants showed wild-type It is interesting that even untreated Artemis purified from human levelsofcomplementation,indicatingthatmutationsattheseSQand 293Tcellshasthreebasalphosphorylationsites.Inordertodetermine TQsitesindividuallydonothaveaneffectonthefunctionsofArtemis. whether this modification is conserved, human Artemis protein ThisisinagreementwithourfindingthatDNA-PK phosphorylation expressedfromabaculovirusininsectcellswassubjectedtoMSanaly- cs sis.FLAG-taggedArtemispurifiedfrominsectcellsisalsophosphoryl- sitesofArtemisarenotatSQorTQsites(Fig.1B). atedatthethreebasalphosphorylationsitesinadditiontoafourthone Full-length Artemis Purified from Mammalian and Insect Cells Has (Fig.1B).Therefore,thekinaseactivitythatisresponsibleforthebasal DNA-PKcs-dependent Hairpin Opening and 5(cid:1) Overhang Processing phosphorylationofArtemisexistsininvertebrates. Activities—It is interesting that insect cell-purified Artemis has similar AsaninitialefforttoscreenforcriticalDNA-PK phosphorylation basalphosphorylationasthemammaliancell-purifiedArtemis(Fig.1B). cs site(s)ofArtemis,wemutatedeachserineorthreonineresiduelocated Wewereinterestedintestingiftheinsect-cellderivedArtemisisfunctional. OCTOBER7,2005•VOLUME280•NUMBER40 JOURNALOFBIOLOGICALCHEMISTRY 33841 ArtemisPhosphorylatedbyDNA-PKOnlyinC-terminalDomain HumanArtemisexpressionconstructswereintroducedintodiffer- tionsfromthesesourcesweresubjectedtoaninvitronucleaseassay. entproteinexpressionsystems.FLAG-taggedArtemisfrominsectand Artemis-FLAGpurifiedfrombaculovirus-infectedinsectcellsdiddem- mammalian cells were generated. Subsequently, the protein prepara- onstrateDNA-PK -dependenthairpinopeningand5(cid:1)overhangproc- cs essingactivitiessimilartothewild-typeprotein(Fig.2,AandB,com- parelanes4and6). IntheabsenceofDNA-PK ,Artemishasexonucleolyticactivity(Fig. cs 2,lanes3and5).Inordertoruleoutthepossibilitythattheexonucleo- lyticactivitywasfromaproteinco-purifyingwithArtemis,C-terminally FLAG-tagged Artemis expression plasmid and the corresponding empty vector were transfected into mammalian cells. Proteins were purifiedbyanti-FLAGantibodyfromboththeArtemis-transfectedand themock-transfectedcells.Inthiscase,Artemiswaselutedfromthe immunobeads(see“ExperimentalProcedures”)tominimizecontami- nationfromtheagaroseresin.Bothproteinpreparationswereassayed forhairpinopeningactivity(Fig.2B),andonlytheproteinpreparation fromArtemis-transfectedcellsshowedsignificantexonucleolyticactiv- ity(Fig.2B,comparelanes5and7),suggestingthatArtemishasintrinsic exonucleolyticactivity. Phosphatase-treatedArtemisHasIncreasedGelMobility—Although phosphorylationbyDNA-PK isnecessarytoactivateArtemisasan cs endonuclease,wewereinterestedinwhetherbasalphosphorylationat thethreesitesidentifiedbyMSplaysaroleinactivatingArtemis.To addressthisquestion,wefirsttestedproteinphosphatase-treatedArte- mis. Immunobead-immobilized Artemis-myc-His was first mock- treatedorphosphorylatedbyDNA-PK .Thenafterextensivewashes cs withahighsaltbuffer,eachsamplewasdividedinto5aliquotsandwas mock-treated, treated with (cid:2)PPase, or treated with CIP (Fig. 3A). Finally,thephosphatase-treatedimmunobeadswereanalyzedbySDS- PAGEfollowedbyCoomassiestaining. Asobservedpreviously,untreatedArtemisappearsasadoubletafter resolutionbySDS-PAGE(Fig.3B,lane1).However,afterphosphatase treatment, the Artemis protein appeared less diffuse on the gel and migratedfasterthantheuntreatedprotein(Fig.3B,lanes2–5).Com- FIGURE2.InsectcellpurifiedArtemishaswild-typeDNA-PK -dependentendonu- cleolyticactivities.C-terminallytaggedArtemiswasincubatedcwsiththesubstrateinthe paredwiththeuntreatedArtemis,DNA-PKcs-phosphorylatedArtemis presenceandabsenceofDNA-PKcs,andthenthereactionmixtureswereresolvedby12% migratedevenslower,andtheresultingband(potentiallyconsistingof denaturing PAGE. A, Artemis-FLAG immunobeads prepared from baculovirus-infected insectcellshasexonucleolyticactivityandDNA-PK -dependenthairpinand5(cid:1)overhang multiplebands)appearedevenmorediffuse(Fig.3B,lane6).Phospha- cs processingactivities.B,solubleArtemis-FLAGpurifiedfrommammaliancellshasintrinsic tase treatment of DNA-PK -phosphorylated Artemis restored the cs exonucleolyticactivitycomparedwiththemock-purifiedprotein.LaneMcontainsanoligo- sharpnessoftheproteinbandandincreasedthemobilityoftheprotein nucleotideidenticaltothefragment5(cid:1)tothehairpintip(26nt)ofthesubstrate.Thesizes(in nts)andtheschematicrepresentationsoftheproductsareindicatedontheright. inthegel(Fig.3B,lanes7–10). FIGURE3.Artemiscanbephosphorylatedby DNA-PK and dephosphorylated by protein cs phosphatasesinvitro.A,flowchartofphospho- rylation/dephosphorylation of Artemis-myc-His immunobeads.B,SDS-PAGEanalysisandCoomas- siestainingofDNA-PK -andthenproteinphos- cs phatase-treated Artemis. Mock-treated or DNA- PK -phosphorylated (3 pmol of DNA-PK ) cs cs Artemis-myc-His (15 pmol) immunobeads were washedanddividedinto5aliquots.Eachaliquot wasthendephosphorylatedbydifferentamounts of(cid:2)PPaseorCIPasindicated.Positionsofauto- phosphorylatedDNA-PK ,CIP,(cid:2)PPase,immuno- cs globulinheavychain(IgHchain),andlightchain (IgLchain)areindicatedbyarrowheads.Theposi- tionofArtemischangeswithitsphosphorylation statusandisindicatedbyabracket.Thesizesof proteinmolecularweightstandards(laneM,in kDa)areshownontheleft. 33842 JOURNALOFBIOLOGICALCHEMISTRY VOLUME280•NUMBER40•OCTOBER7,2005 ArtemisPhosphorylatedbyDNA-PKOnlyinC-terminalDomain FIGURE4.DephosphorylatedArtemis-myc-His immunobeadsstillhaveDNA-PK -dependent cs endonucleolyticactivities.Hairpinopeningand 5(cid:1)overhangprocessingactivityassay(A)and3(cid:1) overhang processing activity assay (B) of the dephosphorylatedArtemisareshown.Approxi- mately 1 pmol of untreated, (cid:2)-PPase-, or CIP- treatedArtemiswastestedinanucleaseactivity assayintheabsenceorpresenceof0.5pmolof DNA-PK .Positionsandsizes(innts)ofthemajor cs productsareindicated.Theexonucleolyticprod- uct(1nt)isindicatedbyexo.Diagramsadjacentto thearrowsaredepictedtoemphasizethecleav- agepositionsinthesubstratethatresultinthecor- respondingproducts.Thestructuresofthesub- stratesareillustratedonthetop,withanasterisk indicatingthepositionoftheradioactivelabeling. WehavereportedthataftertreatingtheArtemisimmunobeadswith DNA-PK andextensivewashing,thephosphorylatedArtemisisnot cs abletodemonstrateanyendonucleolyticactivities(10).Wehadsug- gestedthatthiswasbecauseDNA-PK ,whichpossiblyrecruitsArtemis cs to the substrate, was washed away; the same washing buffer used in purifying Artemis by immunoprecipitation was sufficient to remove DNA-PK . We have now found that DNA-PK remains associated cs cs withtheArtemisimmunobeadsafterthephosphorylationandstringent washes(Fig.3B,lanes6–10).ItispossiblethatDNA-PK orautophos- cs phorylatedDNA-PK hasahigheraffinityforphosphorylatedArtemis. cs Phosphatase-treatedArtemisRetainsDNA-PK -dependentEndonu- cs cleolyticActivities—Inordertostudytheroleofbasalphosphorylation ontheactivationofArtemisasanendonuclease,untreated,(cid:2)-PPase- treated, and CIP-treated Artemis immunobeads were prepared as describedinFig.3A,andanaliquotofthesebeadswassubjectedtoanin vitronucleaseassayinthepresenceorabsenceofDNA-PK .Mock- cs treatedArtemisdemonstratedDNA-PK -dependenthairpinopening, cs 5(cid:1)overhangprocessingactivities(Fig.4A,lanes1and2),aswellas3(cid:1) overhangprocessingactivity(Fig.4B,lanes7and8).Mostinterestingly, FIGURE5.TriplebasalsitemutantofArtemis(ARM49)caninteractwithDNA-PK .A, both(cid:2)-PPase-treatedandtheCIP-treatedArtemiswereabletodemon- ARM49interactswithDNA-PK atwild-typelevel.Emptyvector,wild-typeArtemisc-sex- cs pressing,orARM49-expressingplasmidswastransfectedinto293Tcells,andMyc- strateDNA-PK -dependentendonucleolyticactivitiesatlevelscompa- cs taggedArtemiswasimmunoprecipitatedinthepresenceorabsenceofananti-Myc rablewiththeuntreatedprotein(Fig.4,AandB,lanes3–6and9–12). antibody.B,ARM49wasexpressedatthewild-typelevel.Artemis,co-immunoprecipi- TheTriplePointMutantofArtemisattheThreeBasalPhosphoryla- tatedDNA-PKcs,andtheloadingcontrolSV40largeT-antigenweredetectedwiththe correspondingantibodies(see“ExperimentalProcedures”)byWesternblotanalysis.The tion Sites Has DNA-PK -dependent Endonucleolytic Activities—In cs sourceofproteins(fromimmunoprecipitatedmaterial(IP)orthecelllysate(input))is ordertoconfirmourphosphatasetreatmentstudiesofArtemis,atriple indicated. pointmutantofArtemiswasgeneratedwhereallthreebasalphospho- rylationsites(Ser-385,Ser-516,andSer-518)weresubstitutedbyala- thewild-typeprotein,ARM49caninteractwithDNA-PK (Fig.5A), cs nines (mutant ARM49). First, the ability of ARM49 to interact with anditcanalsobephosphorylatedbyDNA-PK toalevelcomparable cs DNA-PK wasexaminedbyanimmunoprecipitationassay.Similarto with the wild-type protein (data not shown). The mutations did not cs OCTOBER7,2005•VOLUME280•NUMBER40 JOURNALOFBIOLOGICALCHEMISTRY 33843 ArtemisPhosphorylatedbyDNA-PKOnlyinC-terminalDomain FIGURE6.TriplebasalsitemutantofArtemis (ARM49) has DNA-PK -dependent endonu- cs cleolyticactivities.Wild-typeArtemisorARM49 wasincubatedwiththehairpinand5(cid:1)overhang substrate(A)orthe3(cid:1)overhangsubstrate(B)inthe presenceorabsenceofDNA-PK .Labelsarethe cs sameasdescribedinthelegendtoFig.4. seemtocompromisethestabilityoftheArtemisproteinbecauseitwas PK existbesidestheclusterofsites(Thr-2609toThr-2647)thatthey cs expressedatthewild-typeproteinlevel(Fig.5B).Inaninvitronuclease identified. assay, ARM49 demonstrated DNA-PK -dependent hairpin opening RegardingArtemisitself,noneoftheinvitroDNA-PK -phosphoryl- cs cs and5(cid:1)overhangprocessingactivities(Fig.6A,comparelanes2–4),as atedsitesonArtemisislocatedatanSQorTQsite.Althoughsomeof wellasthe3(cid:1)overhangprocessingactivity(Fig.6B,comparelanes2–4). thewellcharacterizedinvitroDNA-PK phosphorylationsitesareat cs ARM49iscapableofcomplementingArtemis-deficientfibroblastsin SQorTQsites(suchasp53(23)),phosphorylationsitesdeviatingfrom aV(D)Jrecombinationassay(TABLETWO).Toexcludethepossibility this“consensus”havebeenreported.Infact,three(Thr-2624,Ser-3205, ofgeneratingaDNA-PK -independentmutant,ARM49wasalsotested andSer-4026)outofthenineautophosphorylationsitesofDNA-PK cs cs foritsabilitytocomplementV(D)JrecombinationinDNA-PK -defi- are not at SQ or TQ sites. The DNA-PK phosphorylation sites on cs cs cientV3cells.TheV(D)JrecombinationdeficiencyinV3cellswasnot Ku70, Ku86, and XRCC4 are also at sites other than this consensus complemented by transfecting in only ARM49 (data not shown). In (24–26).Therefore,DNA-PK doesnothaveastrictpreferenceforSQ cs summary,thesedatasuggestthatthemutationsatthebasalsites(Ser- or TQ. It has been suggested that DNA-PK prefers serines and cs 385,Ser-516,andSer-518)didnotabolishtheabilityofARM49tobe threoninesfollowedbyahydrophobicaminoacidinvitro(18).Despite activatedbyDNA-PK invitroandinvivo. studiesofotherproteins,Artemisisamongthefirsttoillustratethat cs DNA-PK phosphorylationcanhaveaphysiologicaleffectonthefunc- cs DISCUSSION tionofaprotein. Artemis Is Phosphorylated by DNA-PKcs Only in the C-terminal Furthermore, the DNA-PKcs phosphorylation sites and the three Domain—InlightofthefindingthatthekinaseactivityofDNA-PK is basalphosphorylationsitesofArtemisarealllocatedintheC-terminal cs necessarytoactivateArtemisasahairpinand5(cid:1)and3(cid:1)overhangendo- domain (Fig. 1B). Considering the crucial role of DNA-PKcs kinase nuclease, we sought to map the DNA-PK phosphorylation sites in activityinactivatingArtemisendonucleolyticactivities,theC-terminal cs ArtemisaspartofanefforttostudytheregulationofArtemisactivities. domainmaybeanimportantregulatorydomainofArtemis.Mostlikely, WealsomappedthephosphorylationsiteswithinDNA-PK itself.A theC-terminaldomainhasaninhibitoryroleintheactivationofArte- cs total of nine phosphorylated serines and threonines are detected in mis.Inlinewiththisthinking,ithasbeenshownrecentlythatthe“core” autophosphorylatedDNA-PK .Sixofthesesiteswerereportedbefore Artemis (metallo-(cid:1)-lactamase domain/(cid:1)-CASP region) can comple- (19),andthreeofthemwerepcsreviouslyunknown,indicatingthatour mentArtemis-deficientcellsforV(D)Jrecombination(14).4 DNA-PK invitrophosphorylationsystemissimilartowhathasbeen TheRoleoftheC-terminalDomainofArtemis—Artemisisastruc- cs usedbyothers.Inagreementwithourfindingofthethreenovelsites, ture-specific endonuclease and recognizes single- to double-strand Lees-Millerandco-workers(incollaborationwithothers)(21,22)have recentlysuggestedthatadditionalautophosphorylationsitesofDNA- 4U.PannickeandK.Schwarz,unpublisheddata. 33844 JOURNALOFBIOLOGICALCHEMISTRY VOLUME280•NUMBER40•OCTOBER7,2005 ArtemisPhosphorylatedbyDNA-PKOnlyinC-terminalDomain TABLE TWO V(D)JrecombinationassaysinArtemis-deficienthumanprimaryskinfibroblastscomplementedwithARM49 TheexperimentswerecarriedoutasdescribedforTABLEONE.T.E.indicatestransfectionefficiency. Controls T.E. (cid:2)ARM49 (cid:1)RAG2 (cid:1)wtArt (cid:2)wtArt Artemis-positivefibroblasts Exp.1 61.54 0.09 2.17 4.54 Exp.2 58.37 0.05 6.08 6.69 Artemis-deficientfibroblasts Exp.1 66.43 0.02 0.03 2.75 0.99 Exp.2 67.96 0.01 0.05 6.66 4.49/4.04a aTwoindependentvalueswereascertained. FIGURE7.ModelfortheactivationofArtemisby phosphorylation.A,Artemiswithoutphospho- rylationbyDNA-PK isinactiveasanendonucle- cs ase.IntheabsenceofDNA-PK ,thecatalyticcen- cs terofArtemisismaskedbytheC-terminaldomain. B,onceArtemisisphosphorylatedbyDNA-PK ,its cs catalytic center is exposed. Artemis with this “open” conformation is active endonucleolyti- cally.Darkgraydiskrepresentsthemetallo-(cid:1)-lac- tamaseandthe(cid:1)-CASPdomain(catalyticcore). Theopentrianglewithinthedarkgraydiskindi- catestheactivesite.Lightgrayovalsymbolizesthe C-terminaldomainofArtemis,andthearchcon- nectingthecoreandtheC-terminaldomaincorre- sponds to a possible hinge region. The circled minussignsontheC-terminaldomainin(B)denote phosphorylatedserinesandthreonines. transitions.IftheactivityofArtemisisnotproperlycontrolled,itcould ARM49 mutant was indistinguishable from wt Artemis regarding IR potentiallycausegeneticinstabilitybecausesomeDNAmetabolicinter- resistance.ThisisconsistentwiththefactthatARM49demonstrateda mediates mimic Artemis substrates. For example, DNA replication, mobilityshiftinamannerthatisindistinguishablefromwtArtemisin DNAtranscription,andDNArecombinationallinvolveseparationof responsetoIR(supplementalFig.S2).BecauseIR-inducedphosphoryl- thetwoDNAstrandsandgenerationofDNAsingle-todouble-strand ation of Artemis is lost in A-T cells (29), these three basal sites are transitions.TheroleoftheC-terminaldomainmaybetoinhibitArte- unlikely to be the phosphorylation sites of ATM (or of ATR) upon misintheabsenceofDNAdouble-strandbreaks.Onceadouble-strand exposure to ionizing radiation. Perhaps a common kinase present in DNAbreakisgenerated,DNA-PK isactivateduponassociationwith vertebratesandinvertebrates(Fig.1B)phosphorylatesthesethreesites cs DNAends,andthenArtemiscanbeturnedonbyassociationwithand invivo. phosphorylation by DNA-PK and function in V(D)J recombination OnegrouphasshownthatSer-645ofArtemisisphosphorylatedin cs andNHEJ. cellstreatedwithIRinanATM-dependentmanner(31).Wecreateda The Role of Basal Phosphorylation—Phosphatase-treated Artemis S645AmutantandfoundthatcellsexpressingthisArtemismutantwere andArtemisthathasmutationsatthethreeMS-identifiedbasalphos- indistinguishablefromwtintheirsurvivalinresponsetoIR(supple- phorylationsites(ARM49)stillretainDNA-PK -dependentendonu- mentalFig.S1).Therefore,althoughthissitemaybephosphorylatedin cs cleolyticactivities(Figs.4and6),andARM49cansupportV(D)Jrecom- responsetoIRinanATM-dependentmanner,itdoesnotappeartobe binationinaDNA-PK -dependentmanner(TABLETWOanddata functionallycritical. cs not shown). This illustrates that the DNA-PK -independent basal IsDNA-PK RequiredtoRecruitArtemistotheDNASubstrate?—We cs cs phosphorylationdoesnotaffecttheabilityofArtemistobeactivatedby have shown previously that after pre-phosphorylation of Artemis DNA-PK .Recently,therehavebeenreportsthat,inadditiontoDNA- immunobeadsbyDNA-PK andextensivewashes,thephosphorylated cs cs PK ,activationofataxiatelangiectasiamutated(ATM)kinaseandpos- Artemis does not have endonucleolytic activities. We suggested that cs siblytheATM-andRad3-relatedkinase(ATR)canleadtothephos- thiswaslikelybecauseDNA-PK waswashedaway,andtherefore,the cs phorylation of Artemis, although it was not clear whether this is via physical presence of DNA-PK is required to recruit Artemis to the cs directphosphorylationorviaanindirectpathway(27–30).Weconsid- DNAsubstrate(10).However,datafromthisstudysuggestthatauto- ered the possibility that the basal phosphorylation identified in our phosphorylated DNA-PK has very high affinity for Artemis and cs studycorrespondstoATM-and/orATR-dependentphosphorylation remains associated with the Artemis immunobeads after stringent ofArtemis.Hence,inadditiontoV(D)Jrecombination,wealsoexam- washes. inedtheionizingradiation(IR)sensitivityofcellstransfectedwithwt WorkfromothersmayshedlightonthephysicalrolesofDNA-PK cs ArtemisortheARM49expressingplasmid(supplementalFig.S1).The incomplexwithArtemis.Somehavesuggestedthatautophosphory- OCTOBER7,2005•VOLUME280•NUMBER40 JOURNALOFBIOLOGICALCHEMISTRY 33845 ArtemisPhosphorylatedbyDNA-PKOnlyinC-terminalDomain latedDNA-PK dissociatesfromDNAends(32,33),whereasothers 7. Rooney,S.,Chaudhuri,J.,andAlt,F.W.(2004)Immunol.Rev.200,115–131 cs haveraisedthepossibilitythatautophosphorylatedDNA-PK simply 8. deVillartay,J.P.(2002)Curr.Opin.AllergyClin.Immunol.2,473–479 cs 9. Moshous,D.,Callebaut,I.,deChasseval,R.,Corneo,B.,Cavazzana-Calvo,M.,Le changesitsconformation(butremainsassociatedwithDNAends)to Deist,F.,Tezcan,I.,Sanal,O.,Bertrand,Y.,Philippe,N.,Fischer,A.,anddeVillartay, allowthedownstreamNHEJfactorstoaccessDNAends(21,22).Thus, J.P.(2001)Cell105,177–186 upon autophosphorylation of DNA-PK in the Artemis-DNA-PK 10. Ma,Y.,Pannicke,U.,Schwarz,K.,andLieber,M.R.(2002)Cell108,781–794 cs cs complex,ArtemiseitherdissociatesfromDNAends(alongwithDNA- 11. Rooney,S.,Sekiguchi,J.,Zhu,C.,Cheng,H.L.,Manis,J.,Whitlow,S.,DeVido,J.,Foy, D.,Chaudhuri,J.,Lombard,D.,andAlt,F.W.(2002)Mol.Cell10,1379–1390 PK )ortheactivecenterofArtemismaynotbefavorablyconfiguredfor cs 12. Rooney,S.,Alt,F.W.,Lombard,D.,Whitlow,S.,Eckersdorff,M.,Fleming,J.,Fug- substrate binding because of a DNA-PK conformational change. cs mann,S.,Ferguson,D.O.,Schatz,D.G.,andSekiguchi,J.(2003)J.Exp.Med.197, Therefore,theproper(unphosphorylated)conformationofDNA-PKcs 553–565 isprobablystillrequiredtopermittheactivecenterofArtemistobindto 13. Pannicke,U.,Ma,Y.,Hopfner,K.P.,Niewolik,D.,Lieber,M.R.,andSchwarz,K. theDNAsubstrate. (2004)EMBOJ.23,1987–1997 14. Poinsignon,C.,Moshous,D.,Callebaut,I.,deChasseval,R.,Villey,I.,anddeVillartay, ModelofActivationofArtemisbyDNA-PK —Basedontheabove cs J.P.(2004)J.Exp.Med.199,315–321 observations,weproposethattheC-terminaldomainofArtemismay 15. Callebaut,I.,Moshous,D.,Mornon,J.P.,anddeVillartay,J.P.(2002)NucleicAcids haveaninhibitoryroleinthebindingofArtemistoitssubstrate,andthe Res.30,3592–3601 proteinstructureofArtemisisregulatedbyinteractionwithandphos- 16. Kulesza,P.(1999)DNA-dependentProteinKinaseinV(D)JRecombination.Ph.D. thesis,WashingtonUniversity,St.Louis phorylationbyDNA-PK .Basedonthephosphorylationstatus,there cs 17. Smith,G.C.,andJackson,S.P.(1999)GenesDev.13,916–934 areatleasttwoconformationsthatArtemismayadopt(Fig.7).Inthe 18. Meek,K.,Gupta,S.,Ramsden,D.A.,andLees-Miller,S.P.(2004)Immunol.Rev.200, absenceofDNA-PK ,thecatalyticcenterofArtemisismaskedbythe 132–141 cs C-terminaldomain.ThisinactiveconformationdoesnotallowArtemis 19. Douglas,P.,Sapkota,G.P.,Morrice,N.,Yu,Y.,Goodarzi,A.A.,Merkle,D.,Meek,K., Alessi,D.R.,andLees-Miller,S.P.(2002)Biochem.J.368,243–251 toprocessDNA.UponassociationwithandphosphorylationbyDNA- 20. Anderson,C.W.,andCarter,T.H.(1996)Curr.Top.Microbiol.Immunol.217, PK atmultiplesiteswithintheC-terminaldomain,theinhibitionof cs 91–111 the C-terminal domain is alleviated probably by conformational 21. Ding,Q.,Reddy,Y.V.,Wang,W.,Woods,T.,Douglas,P.,Ramsden,D.A.,Lees- changes,andthecatalyticcenterofArtemisisthuscompletelyexposed. Miller,S.P.,andMeek,K.(2003)Mol.Cell.Biol.23,5836–5848 ThisactivatedformofArtemiscanthenprocessDNAhairpinsand5(cid:1) 22. Reddy,Y.V.,Ding,Q.,Lees-Miller,S.P.,Meek,K.,andRamsden,D.A.(2004)J.Biol. and3(cid:1)overhangs. Chem.279,39408–39413 23. Lees-Miller,S.P.,Sakaguchi,K.,Ullrich,S.J.,Appella,E.,andAnderson,C.W.(1992) Mol.Cell.Biol.12,5041–5049 Acknowledgments—WethanktheLieberlaboratory,especiallyJen-YeuWang, 24. Chan,D.W.,Ye,R.,Veillette,C.J.,andLees-Miller,S.P.(1999)Biochemistry38, fortheworkwithsupplementalFig.2,andtheSchwarzlaboratory,especially 1819–1828 Eva-MariaRump.TheArtemisFLAGbaculovirusandmammalianexpres- 25. Yu,Y.,Wang,W.,Ding,Q.,Ye,R.,Chen,D.,Merkle,D.,Schriemer,D.,Meek,K.,and sionplasmidweregenerouslyprovidedbyDrs.JohnHarringtonandSteve Lees-Miller,S.P.(2003)DNARepair(Amst.)2,1239–1252 26. Lee,K.J.,Jovanovic,M.,Udayakumar,D.,Bladen,C.L.,andDynan,W.S.(2004)DNA MurphyatAthersysInc.(Cleveland,OH).Wealsothankthepersonnelinthe Repair(Amst.)3,267–276 W.M.KeckBiomedicalMassSpectrometryLaboratoryattheUniversityof 27. Zhang,X.,Succi,J.,Feng,Z.,Prithivirajsingh,S.,Story,M.D.,andLegerski,R.J.(2004) VirginiaBiomedical,whichisfundedbyagrantfromtheUniversityofVirginia Mol.Cell.Biol.24,9207–9220 PrattCommittee. 28. Poinsignon,C.,deChasseval,R.,Soubeyrand,S.,Moshous,D.,Fischer,A.,Hache, R.J.,anddeVillartay,J.P.(2004)Eur.J.Immunol.34,3146–3155 29. Riballo,E.,Kuhne,M.,Rief,N.,Doherty,A.,Smith,G.C.,Recio,M.J.,Reis,C.,Dahm, REFERENCES K.,Fricke,A.,Krempler,A.,Parker,A.R.,Jackson,S.P.,Gennery,A.,Jeggo,P.A.,and 1. Bassing,C.H.,Swat,W.,andAlt,F.W.(2002)Cell109,(suppl.)45–55 Lobrich,M.(2004)Mol.Cell16,715–724 2. Gellert,M.(2002)Annu.Rev.Biochem.71,101–132 30. Wang,J.,Pluth,J.M.,Cooper,P.K.,Cowan,M.J.,Chen,D.J.,andYannone,S.M. 3. Schwarz,K.,Ma,Y.,Pannicke,U.,andLieber,M.R.(2003)BioEssays25,1061–1070 (2005)DNARepair4,556–570 4. Fugmann,S.D.,Lee,A.I.,Shockett,P.E.,Villey,I.J.,andSchatz,D.G.(2000)Annu. 31. Chen,L.,Morio,T.,Minegishi,Y.,Nakada,S.,Nagasawa,M.,Komatsu,K.,Chessa,L., Rev.Immunol.18,495–527 Villa,A.,Lecis,D.,Delia,D.,andMizutani,S.(2005)CancerSci.96,134–141 5. Jung,D.,andAlt,F.W.(2004)Cell116,299–311 32. Chan,D.W.,andLees-Miller,S.P.(1996)J.Biol.Chem.271,8936–8941 6. Lieber,M.R.,Ma,Y.,Pannicke,U.,andSchwarz,K.(2004)DNARepair(Amst.)3, 33. Merkle,D.,Douglas,P.,Moorhead,G.B.,Leonenko,Z.,Yu,Y.,Cramb,D.,Bazett- 817–826 Jones,D.P.,andLees-Miller,S.P.(2002)Biochemistry41,12706–12714 33846 JOURNALOFBIOLOGICALCHEMISTRY VOLUME280•NUMBER40•OCTOBER7,2005

Description:
Reddy, Y. V., Ding, Q., Lees-Miller, S. P., Meek, K., and Ramsden, D. A. (2004) J. Biol. Lees-Miller, S. P. (2003) DNA Repair (Amst.) 2, 1239 –1252.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.