THEJOURNALOFBIOLOGICALCHEMISTRYVOL.280,NO.40,pp.33839–33846,October7,2005 ©2005byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PrintedintheU.S.A. The DNA-dependent Protein Kinase Catalytic Subunit Phosphorylation Sites in Human Artemis*□S Receivedforpublication,January13,2005,andinrevisedform,June30,2005 Published,JBCPapersinPress,August10,2005,DOI10.1074/jbc.M507113200 YunmeiMa‡,UlrichPannicke§,HaihuiLu‡,DorisNiewolik§,KlausSchwarz§1,andMichaelR.Lieber‡2 Fromthe‡DepartmentsofPathology,BiochemistryandMolecularBiology,BiologicalSciences,andMolecularMicrobiologyand Immunology,NorrisComprehensiveCancerCenter,UniversityofSouthernCalifornia,LosAngeles,California90089-9176and §InstituteforClinicalTransfusionMedicineandImmunogenetics,DepartmentofTransfusionMedicine,UniversityofUlm, D-89081Ulm,Germany ArtemisproteinhasirreplaceablefunctionsinV(D)Jrecombina- absenceofanyofthesecomponentsinvivotypicallyresultsinanioniz- tionandnonhomologousendjoining(NHEJ)asahairpinand5(cid:2)and ing radiation sensitivity and severe combined immune deficiency 3(cid:2)overhangendonuclease.ThekinaseactivityoftheDNA-depend- (SCID)phenotype(8).ArtemisisthemostrecentNHEJfactordiscov- entproteinkinasecatalyticsubunit(DNA-PK )isnecessaryinacti- ered.Itwasclonedfromhumanpatientsthathaveradiosensitivityanda cs vatingArtemisasanendonuclease.Herewereportthatthreebasal SCIDphenotype(RS-SCID)(9).Thehairpinopening(criticalforV(D)J phosphorylation sites and 11 DNA-PK phosphorylation sites recombination)and5(cid:1)and3(cid:1)overhangprocessing(necessaryforNHEJ) cs within the mammalian Artemis are all located in the C-terminal activitiesofArtemisexplainthedualphenotypeofthehumanpatients domain.Allbutoneofthesephosphorylationsitesdeviatefromthe (10).AnimalsmissingArtemisalsohavetheRS-SCIDphenotype.The SQorTQmotifofDNA-PK thatwaspredictedpreviouslyfromin presenceofunresolvedcodingendhairpinsintheseanimalsconfirmed cs vitro phosphorylation studies. Phosphatase-treated mammalian thepivotalroleofArtemisinthehairpinopeningstepofV(D)Jrecom- ArtemisandArtemisthatismutatedatthethreebasalphosphoryl- bination(11,12).Thefactthathumanpatientsandanimalsdeficientfor ationsitesstillretainDNA-PK -dependentendonucleolyticactiv- theArtemisproteinbothhavetheRS-SCIDphenotypesuggeststhat cs ities,indicatingthatbasalphosphorylationisnotrequiredforthe othernucleasesdonotfunctionallyfulfilltherolesofArtemis. activation.InvivostudiesofArtemislackingtheC-terminaldomain Artemisseemstorecognizestructuraldiscontinuityofsingle-todou- havebeenreportedtobesufficienttocomplementV(D)Jrecombi- ble-strandDNAtransitions.TheactivitiesofArtemisareregulatedby nationinArtemisnullcells.Therefore,theC-terminaldomainmay associationwithandphosphorylationbyDNA-PK .Artemisinteracts cs have a negative regulatory effect on the Artemis endonucleolytic withDNA-PK invitroandinvivointheabsenceofDNAandATP,and cs activities, and phosphorylation by DNA-PK in the C-terminal itcanonlybeactivatedasahairpinandoverhangendonucleaseonceit cs domainmayrelievethisinhibition. isphosphorylatedbyDNA-PK (10).Itisstillanopenquestionhow cs DNA-PK activatesArtemisbyphosphorylation. cs TheN-terminaldomain(aminoacid1–155,exons1–6)ofArtemis V(D)J3recombinationisthesomaticDNArecombinationthatoccurs hassignificanthomologytothe(cid:1)-lactamasefoldofseveralmembersof in precursors of lymphocytes. During this process, the variable (V), themetallo-(cid:1)-lactamasesuperfamily(9)andcontainsmultiplecatalyt- diversity (D), and joining (J) subexons are recombined to generate a icallyimportantresidues(13,14).Aminoacids156–385(exons7–13)of functionalvariabledomainexoncodingforimmunoglobulinsandTcell Artemiscomprisethe(cid:1)-CASPregion,foundonlyinmembersofthe receptors(1–3).V(D)Jrecombinationbeginswiththebindingofthe metallo-(cid:1)-lactamasesuperfamilythatprocessnucleicacid(15).Most RAGcomplex(RAG1,RAG2,andHMG1)totherecombinationsignal interestingly,ArtemistruncatedfortheC-terminaldomaincanfunc- sequences.TheRAGcomplexnicksbetweenthecodingendandthe tionallycomplementcellsderivedfromanRS-SCIDpatientforV(D)J recombination signal sequences and converts the nicks to double- recombination(14).Therefore,itseemsthatthemetallo-(cid:1)-lactamase strandDNAbreaks,therebycreatinghairpinsealedcodingendsand domainandthe(cid:1)-CASPregiontogetherconstitutethe“catalyticcore” bluntsignalends(2,4,5).Subsequently,thejoiningofthetwocoding ofArtemis.However,thefunctionoftheremainingC-terminaldomain endsiscarriedoutbythegeneralNHEJmachinery(6). (aminoacids386–692),composedofasingleexon(exon14),hasyetto NHEJfactorsincludeKu(composedoftheKu70andKu86subunits), bedetermined. DNA-PK ,Artemis,andDNAligaseIV-XRCC4complex(6,7).The Inthisstudy,wehavediscovered11DNA-PK phosphorylationsites cs cs and3basalphosphorylationsitesofArtemis,allofwhicharelocated withintheC-terminaldomain.Ourdatasuggestthattheuncharacter- *Thecostsofpublicationofthisarticleweredefrayedinpartbythepaymentofpage ized C-terminal domain of Artemis has important regulatory roles. charges.Thisarticlemustthereforebeherebymarked“advertisement”inaccordance □S Twhietho1n8-liUn.eSv.Ce.rSsieocntioofnth17is3a4rtsioclleel(yavtoaiilnadbilceaattehtthtips:/f/awctw.w.jbc.org)containsadditional pThhoesspehroersyullatstiolena.dtoamodelforhowDNA-PKcsactivatesArtemisby ExperimentalProcedures,Results,Ref.1,andFigs.S1–S2. 1Towhomcorrespondencemaybeaddressed.Tel.:49-731-150-642;Fax:49-731-150- 575;E-mail:[email protected]. EXPERIMENTALPROCEDURES 2Towhomcorrespondencemaybeaddressed.Tel.:323-865-0568;Fax:323-865-3019; E-mail:[email protected]. Oligonucleotides—The 46-nt hairpin substrate (YM-164) has been 3Theabbreviationsusedare:V(D)J,variable,diversity,andjoining;DNA-PKcs,DNA-de- describedpreviously(Fig.4AofRef.13).Thesequencesofthe35-bp pendentproteinkinasecatalyticsubunit;NHEJ,nonhomologousendjoining;wt,wild type;SCID,severecombinedimmunedeficiency;RS,radiosensitivity;FACS,fluores- DNAusedasaDNA-PKcscofactorarethesameasdescribed(10). cence-activatedcellsorter;DTT,dithiothreitol;(cid:2)PPase,(cid:2)proteinphosphatase;CIP, ProteinExpressionConstructs—Wild-typeArtemisexpressionplas- calf intestine phosphatase; IR, ionizing radiation; MS, mass spectrometry; TEV, mids were constructed as described (13). The triple point mutant tobaccoetchvirus;ATM,ataxiatelangiectasiamutated;ATR,ATM-andRad3-related kinase;nt,nucleotide. ARM49(S385A,S516A,andS518A)aswellastheothersubstitution OCTOBER7,2005•VOLUME280•NUMBER40 JOURNALOFBIOLOGICALCHEMISTRY 33839 This is an Open Access article under the CC BY license. ArtemisPhosphorylatedbyDNA-PKOnlyinC-terminalDomain mutantsweregeneratedusingtheQuickChangesite-directedmutagen- InVitroNucleaseAssay—25nMofthe5(cid:1)-labeledsubstratewasincu- esiskit(Stratagene,LaJolla,CA). batedwith100nMArtemisin25mMTris,pH8.0,10mMKCl,10mM FortheArtemisFLAGbaculovirus,full-lengthArtemiscontaininga MgCl2,1mMDTT,0.25mMATP,and50(cid:3)g/mlbovineserumalbumin SapI site in front of its stop codon was generated and cloned into inatotalvolumeof10(cid:3)l.Whereindicated,50nMDNA-PKcsand0.25 pENTR1a-TEV(amodifiedversionpENTR1a(Invitrogen)).Theresult- (cid:3)Mof35-bpDNA(nonspecificDNA-PKcscofactor)wereincludedin ing plasmid (pENTR1a-TEV-Artemis-SapI) was recombined with thereactions.Reactionswereincubatedfor1hat37°Candthendena- pDEST8-FLAG (a modified version of pDEST8 (Invitrogen), which turedfor5minat100°Cinanequalvolumeofdenaturinggelloading containsaSapIsiteinfrontofaTEVproteaserecognitionsitefollowed dye(98%formamide,10mMEDTA,0.025%ofbromphenolblue,and byaFLAGepitope)vectorusingtheGatewaysystem(Invitrogen).The 0.025%ofxylenecyanolFF).Reactionmixtureswereresolvedby12% resultingplasmidwasdigestedwithSapIandligatedbacktogetherto denaturingPAGE,andthegelimagewasobtainedwithPhosphorIm- generateanin-framefusiontotheTEVcleavagesiteandtheFLAGtag agerSI445(AmershamBiosciences). at the C terminus. This construct was then used in the Bac-to-Bac DNA-PK Phosphorylation and Phosphatase Dephosphorylation cs system(Invitrogen)togeneratethebaculovirusfollowingthemanufac- Assays—For the DNA-PK phosphorylation reactions, Artemis was cs turer’srecommendation. incubatedwithDNA-PKcsin10mMTris,pH7.5,10mMMgCl2,1mM InordertogeneratethemammalianexpressionplasmidforArtem- EDTA,1mMDTT,0.25mMATP,and1(cid:3)M35-bpDNAat37°Cfor30 isFLAG,full-lengthArtemiswasamplifiedbyPCRusingPfuTurboHot min. If the kinase reactions are followed by dephosphorylation, the Startpolymerase(Stratagene,LaJolla,CA)andprimersArtemis-Bam- Artemisimmunobeadswerewashedin25mMHEPES,pH7.9,650mM HI.R (5(cid:1)-CGCGGATCCCTACTTGTCATCGTCATCCTTGTAAT- KCl,10mMMgCl2,and0.1%NonidetP-40threetimes,andin25mM CTGCGGTATCTAAGAGTGAGCATTTTCTTTT-3(cid:1))andArtemis- HEPES,pH7.9,10mMMgCl2,and2mMDTTtwice,andtheimmuno- SbfI.R (5(cid:1)-CATGCCTGCAGGATGAGTTCTTTCGAGGGGCAGA- beadswerethenaliquotedandtreatedwitheither(cid:2)proteinphospha- TGG-3(cid:1)).ThePCRproductwasthenclonedintotheBamHIandSbfI tase ((cid:2)PPase) (New England Biolabs, Beverly, MA) or calf intestine sitesofpEXAL1.1.TheArtemisFLAGinsertwassequencedtoconfirm phosphatase(CIP)(RocheAppliedScience)underconditionssuggested that no mutations were introduced during the cloning process. The bythevendor.DNA-PKcsorproteinphosphatase-treatedsampleswere DNA-PK expressionplasmidpPK1wasconstructedasdescribed(16). resolvedby7or8%SDS-PAGEandstainedwithCoomassieBlueR-250. cs InVivoV(D)JRecombinationAssay—ThecellularV(D)Jrecombina- Immunoprecipitation Assay—The immunoprecipitation assay was tionassayandFACSanalysisoftransfectedcellswerecarriedoutas doneasdescribed(10).DNA-PKcswasdetectedwithanti-DNA-PKcs described(13). antibody25-4(Neomarkers,Fremont,CA).Myc-taggedArtemiswas ProteinPurification—DNA-PK andArtemis-myc-Hiswerepurified detectedwithanti-Mycantibody(Invitrogen).Equaltransfectioneffi- cs asdescribed(10).pEXAL1.1-ArtemisFLAGwastransfectedinto293T ciencieswereconfirmedbyco-transfectionofanenhancedgreenfluo- cellsbycalciumphosphateprecipitation,andthecellswereharvested rescentproteinexpressionplasmidandFACSanalysis.SV40T-antigen 48 h after transfection. Artemis-FLAG was immunoprecipitated as wasusedasasampleloadingcontrolandwasdetectedwithananti- described(10)withananti-FLAGM2monoclonalantibody(Sigma). SV40T-Agantibody(SantaCruzBiotechnology,SantaCruz,CA). TheFLAG-taggedArtemiswasleftontheresinor,inthecasethatthe proteinwaseluted,theimmunobeadswerewashedthreetimesin25 RESULTS mMTris,pH8.0,50mMNaCl,10mMMgCl2,10%glycerol,and1mM ArtemisCanBePhosphorylatedatMultiplePositionsintheC-termi- DTT,andthentheproteinwaselutedbyincubatingthebeadsin0.1 nalDomainbyDNA-PK —DNA-PK ishomologoustophosphatidy- cs cs mg/mlofFLAGpeptide(Sigma)inthesamebufferfor1hat4°Cwith linositol3-kinases,yetinvitroitphosphorylatesmanyproteintargetson constantmixing.ThesupernatantwascollectedasthesolubleArtemis- serineandthreonineresidues(17,18).IthasbeenshownthattheDNA- FLAGprotein. PK kinaseactivityisnecessarytoactivateArtemisasahairpinand5(cid:1) cs MassSpectrometry—ProteinstobeanalyzedwereresolvedbySDS- and3(cid:1)overhangendonuclease(10),andtheseactivitiesareverylikelyto PAGEandstainedwithCoomassieBlueR-250.Thebandscorrespond- becriticaltoV(D)JrecombinationandNHEJinvivo.Wewereinter- ingtothesampleswereexcised,andthegelpiecesweredestainedin50% estedinmappingthephosphorylationpositionsofArtemisbyDNA- methanol.Next,thegelpiecesweredehydratedinacetonitrileandrehy- PK invitrobymassspectrometry(MS).Artemis-myc-Hisimmuno- cs dratedin10mMdithiothreitol(DTT)and0.1Mammoniumbicarbon- beads were incubated with DNA-PK under kinase permissive cs ate.Subsequently,thesampleswerealkylatedin50mMiodoacetamide conditionsandthenanalyzedbySDS-PAGEandCoomassiestaining and0.1Mammoniumbicarbonate.Thegelpieceswerethendehydrated (see“ExperimentalProcedures”).Inordertoconfirmthatthisinvitro inacetonitrile,rehydratedin0.1Mammoniumbicarbonate,dehydrated phosphorylationsystemmimicsotherDNA-PK kinasereactions,we cs againinacetonitrile,andcompletelydriedbyvacuumcentrifugation. firstanalyzedtheproteinbandcorrespondingtoautophosphorylated Trypsinizationofthedriedpieceswascarriedoutin20ng/(cid:3)ltrypsinin DNA-PK . Nine phosphoserines and phosphothreonines were cs 50 mM ammonium bicarbonate. The sample was digested overnight, detectedbyMS(Fig.1A).Sixofthesesites(Thr-2609,Ser-2612,Thr- andthepeptideswereextractedfromthepolyacrylamidein2aliquotsof 2624,Thr-2638,Thr-2647,andSer-3205)havebeenreportedbyDou- 50%acetonitrile,5%formicacid. glasetal.(19),andthree(Ser-3821,Ser-4026,andThr-4102)arenovel. Trypsinized samples were analyzed with the liquid chromatogra- Next, the untreated and DNA-PK -phosphorylated mammalian cs phy-MSsystem,whichconsistedofaFinniganLCQiontrapmassspec- ArtemiswasanalyzedbyMS.WhereastheuntreatedArtemis(purified trometersystemwithaProtanananosprayionsourceinterfacedtoa frommammaliancells)hasonly3phosphorylatedserines,thephospho- PhenomenexJupiter10-(cid:3)mC18reversed-phasecapillarycolumn.The rylatedArtemishas14phosphorylatedserinesandthreonines(includ- data were analyzed by data base searching using the Sequest search ingthethreebasalphosphorylatedresidues)(Fig.1B).Becauseofthe algorithm.Peptidesthatwerenotmatchedbythisalgorithmwereinter- limitationsofMS,phosphorylationpositionsonsomeoftheadjacent preted manually and searched versus the EST data bases using the serinesorthreoninescannotbedefinitivelydetermined(seeFig.1B).It Sequestalgorithm. wassuggestedpreviouslythattheDNA-PK consensusphosphoryla- cs 33840 JOURNALOFBIOLOGICALCHEMISTRY VOLUME280•NUMBER40•OCTOBER7,2005 ArtemisPhosphorylatedbyDNA-PKOnlyinC-terminalDomain FIGURE1.PositionsofphosphorylatedserinesandthreoninesinDNA-PK andArtemisidentifiedbymassspectroscopy.A,DNA-PK autophosphorylationsitesidentifiedbyMS.The cs cs positionsofphosphorylatedserinesandthreoninesareshownonthetopoftheschematicDNA-PK protein.TheautophosphorylationsitesidentifiedbyDouglasetal.(19)areshownonthe cs bottomforcomparison.Theboldfaceanditalictext(T2620)indicatestheonlyunconfirmedphosphorylationsite.B,phosphorylationsitesofArtemisidentifiedbyMS.Theschematicstructure ofArtemisisshowntoemphasizethemetallo-(cid:1)-lactamasedomain(darkgray),the(cid:1)-CASPdomain(lightgray),andtheC-terminaldomain(white).Positionsofphosphorylatedserinesfrom untreatedArtemisareshowninthetoppanel;andpositionsofphosphorylatedserinesandthreoninesofDNA-PK phosphorylatedArtemisareshowninthebottompanelwiththethreebasal cs phosphorylationsiteshighlightedbyboldfaceanditalicletters.ThepositionsoftheSQandTQsitesarelabeledonthebottom.ThesourceofthecellsfromwhichArtemiswaspurifiedandthe treatmentofArtemisareindicatedontheright.AdjacentserinesandthreoninesthatcannotbedistinguishedbyMSarenoted. TABLE ONE V(D)JrecombinationassayinArtemis-deficienthumanprimaryskinfibroblastscomplementedwithArtemisserineorthreoninepointmutants Humanprimaryskinfibroblastswereco-transfectedwithV(D)JrecombinationsubstrateplasmidandplasmidsexpressingRAG1,RAG2,andoneoftheArtemis proteins(wild-typeormutant).Asnegativecontrols,thesameco-transfectionswithouttheplasmidsexpressingRAG2((cid:2)RAG2)orwild-typeArtemis((cid:2)wtArt) were performed. Wild-type Artemis was used as a positive control ((cid:3)wt Art). A pre-recombined substrate plasmid was transfected in order to evaluate thetransfectionefficiency(T.E.).Ineachassay5(cid:4)104fibroblastswereanalyzedbyFACSanalysis.Thepercentagesofrecombination-positivecellsoutofthe subpopulationoftransfectedfibroblastsareshown. Controls T.E. T91A T251A S362A S516A S534A S538A S548A S553A S560A S645A (cid:1)RAG2 (cid:1)wtArt (cid:2)wtArt Artemis-positivefibroblasts Exp.1 57.25 0.02 3.54 3.19 Exp.2 57.63 0.05 4.06 4.24 Artemis-deficientfibroblasts Exp.1 56.47 0.04 0.10 5.30 3.22 3.87 3.70 3.05 3.50 1.73 2.87 3.26 3.42 3.96 Exp.2 62.18 0.11 0.11 4.67 3.58 3.39 4.67 4.26 3.73 4.17/3.18a 3.64 4.19 3.76 4.02 aTwoindependentvalueswereascertained. tionsitesareserinesorthreoninesfollowedbyaglutamine(SQorTQ) atSQorTQintoanalanineresidue(SertoAlaorThrtoAlamutations). (20).However,noneoftheArtemisphosphorylationsitesbyDNA-PKcs Next, the 10 plasmids expressing different point mutants of Artemis isatanSQorTQ,despitethefactthatthereisaclusterofSQandTQ weretestedfortheirabilitytofunctionallycomplementhumanprimary sitesintheC-terminaldomainofArtemis(Fig.1B).Onlyoneofthe skinfibroblastsdeficientforArtemisinaV(D)Jrecombinationassay basalphosphorylationsiteswithinArtemisisatanSQsite(Ser-516). (TABLE ONE) as described (13). All the mutants showed wild-type It is interesting that even untreated Artemis purified from human levelsofcomplementation,indicatingthatmutationsattheseSQand 293Tcellshasthreebasalphosphorylationsites.Inordertodetermine TQsitesindividuallydonothaveaneffectonthefunctionsofArtemis. whether this modification is conserved, human Artemis protein ThisisinagreementwithourfindingthatDNA-PK phosphorylation expressedfromabaculovirusininsectcellswassubjectedtoMSanaly- cs sis.FLAG-taggedArtemispurifiedfrominsectcellsisalsophosphoryl- sitesofArtemisarenotatSQorTQsites(Fig.1B). atedatthethreebasalphosphorylationsitesinadditiontoafourthone Full-length Artemis Purified from Mammalian and Insect Cells Has (Fig.1B).Therefore,thekinaseactivitythatisresponsibleforthebasal DNA-PKcs-dependent Hairpin Opening and 5(cid:1) Overhang Processing phosphorylationofArtemisexistsininvertebrates. Activities—It is interesting that insect cell-purified Artemis has similar AsaninitialefforttoscreenforcriticalDNA-PK phosphorylation basalphosphorylationasthemammaliancell-purifiedArtemis(Fig.1B). cs site(s)ofArtemis,wemutatedeachserineorthreonineresiduelocated Wewereinterestedintestingiftheinsect-cellderivedArtemisisfunctional. OCTOBER7,2005•VOLUME280•NUMBER40 JOURNALOFBIOLOGICALCHEMISTRY 33841 ArtemisPhosphorylatedbyDNA-PKOnlyinC-terminalDomain HumanArtemisexpressionconstructswereintroducedintodiffer- tionsfromthesesourcesweresubjectedtoaninvitronucleaseassay. entproteinexpressionsystems.FLAG-taggedArtemisfrominsectand Artemis-FLAGpurifiedfrombaculovirus-infectedinsectcellsdiddem- mammalian cells were generated. Subsequently, the protein prepara- onstrateDNA-PK -dependenthairpinopeningand5(cid:1)overhangproc- cs essingactivitiessimilartothewild-typeprotein(Fig.2,AandB,com- parelanes4and6). IntheabsenceofDNA-PK ,Artemishasexonucleolyticactivity(Fig. cs 2,lanes3and5).Inordertoruleoutthepossibilitythattheexonucleo- lyticactivitywasfromaproteinco-purifyingwithArtemis,C-terminally FLAG-tagged Artemis expression plasmid and the corresponding empty vector were transfected into mammalian cells. Proteins were purifiedbyanti-FLAGantibodyfromboththeArtemis-transfectedand themock-transfectedcells.Inthiscase,Artemiswaselutedfromthe immunobeads(see“ExperimentalProcedures”)tominimizecontami- nationfromtheagaroseresin.Bothproteinpreparationswereassayed forhairpinopeningactivity(Fig.2B),andonlytheproteinpreparation fromArtemis-transfectedcellsshowedsignificantexonucleolyticactiv- ity(Fig.2B,comparelanes5and7),suggestingthatArtemishasintrinsic exonucleolyticactivity. Phosphatase-treatedArtemisHasIncreasedGelMobility—Although phosphorylationbyDNA-PK isnecessarytoactivateArtemisasan cs endonuclease,wewereinterestedinwhetherbasalphosphorylationat thethreesitesidentifiedbyMSplaysaroleinactivatingArtemis.To addressthisquestion,wefirsttestedproteinphosphatase-treatedArte- mis. Immunobead-immobilized Artemis-myc-His was first mock- treatedorphosphorylatedbyDNA-PK .Thenafterextensivewashes cs withahighsaltbuffer,eachsamplewasdividedinto5aliquotsandwas mock-treated, treated with (cid:2)PPase, or treated with CIP (Fig. 3A). Finally,thephosphatase-treatedimmunobeadswereanalyzedbySDS- PAGEfollowedbyCoomassiestaining. Asobservedpreviously,untreatedArtemisappearsasadoubletafter resolutionbySDS-PAGE(Fig.3B,lane1).However,afterphosphatase treatment, the Artemis protein appeared less diffuse on the gel and migratedfasterthantheuntreatedprotein(Fig.3B,lanes2–5).Com- FIGURE2.InsectcellpurifiedArtemishaswild-typeDNA-PK -dependentendonu- cleolyticactivities.C-terminallytaggedArtemiswasincubatedcwsiththesubstrateinthe paredwiththeuntreatedArtemis,DNA-PKcs-phosphorylatedArtemis presenceandabsenceofDNA-PKcs,andthenthereactionmixtureswereresolvedby12% migratedevenslower,andtheresultingband(potentiallyconsistingof denaturing PAGE. A, Artemis-FLAG immunobeads prepared from baculovirus-infected insectcellshasexonucleolyticactivityandDNA-PK -dependenthairpinand5(cid:1)overhang multiplebands)appearedevenmorediffuse(Fig.3B,lane6).Phospha- cs processingactivities.B,solubleArtemis-FLAGpurifiedfrommammaliancellshasintrinsic tase treatment of DNA-PK -phosphorylated Artemis restored the cs exonucleolyticactivitycomparedwiththemock-purifiedprotein.LaneMcontainsanoligo- sharpnessoftheproteinbandandincreasedthemobilityoftheprotein nucleotideidenticaltothefragment5(cid:1)tothehairpintip(26nt)ofthesubstrate.Thesizes(in nts)andtheschematicrepresentationsoftheproductsareindicatedontheright. inthegel(Fig.3B,lanes7–10). FIGURE3.Artemiscanbephosphorylatedby DNA-PK and dephosphorylated by protein cs phosphatasesinvitro.A,flowchartofphospho- rylation/dephosphorylation of Artemis-myc-His immunobeads.B,SDS-PAGEanalysisandCoomas- siestainingofDNA-PK -andthenproteinphos- cs phatase-treated Artemis. Mock-treated or DNA- PK -phosphorylated (3 pmol of DNA-PK ) cs cs Artemis-myc-His (15 pmol) immunobeads were washedanddividedinto5aliquots.Eachaliquot wasthendephosphorylatedbydifferentamounts of(cid:2)PPaseorCIPasindicated.Positionsofauto- phosphorylatedDNA-PK ,CIP,(cid:2)PPase,immuno- cs globulinheavychain(IgHchain),andlightchain (IgLchain)areindicatedbyarrowheads.Theposi- tionofArtemischangeswithitsphosphorylation statusandisindicatedbyabracket.Thesizesof proteinmolecularweightstandards(laneM,in kDa)areshownontheleft. 33842 JOURNALOFBIOLOGICALCHEMISTRY VOLUME280•NUMBER40•OCTOBER7,2005 ArtemisPhosphorylatedbyDNA-PKOnlyinC-terminalDomain FIGURE4.DephosphorylatedArtemis-myc-His immunobeadsstillhaveDNA-PK -dependent cs endonucleolyticactivities.Hairpinopeningand 5(cid:1)overhangprocessingactivityassay(A)and3(cid:1) overhang processing activity assay (B) of the dephosphorylatedArtemisareshown.Approxi- mately 1 pmol of untreated, (cid:2)-PPase-, or CIP- treatedArtemiswastestedinanucleaseactivity assayintheabsenceorpresenceof0.5pmolof DNA-PK .Positionsandsizes(innts)ofthemajor cs productsareindicated.Theexonucleolyticprod- uct(1nt)isindicatedbyexo.Diagramsadjacentto thearrowsaredepictedtoemphasizethecleav- agepositionsinthesubstratethatresultinthecor- respondingproducts.Thestructuresofthesub- stratesareillustratedonthetop,withanasterisk indicatingthepositionoftheradioactivelabeling. WehavereportedthataftertreatingtheArtemisimmunobeadswith DNA-PK andextensivewashing,thephosphorylatedArtemisisnot cs abletodemonstrateanyendonucleolyticactivities(10).Wehadsug- gestedthatthiswasbecauseDNA-PK ,whichpossiblyrecruitsArtemis cs to the substrate, was washed away; the same washing buffer used in purifying Artemis by immunoprecipitation was sufficient to remove DNA-PK . We have now found that DNA-PK remains associated cs cs withtheArtemisimmunobeadsafterthephosphorylationandstringent washes(Fig.3B,lanes6–10).ItispossiblethatDNA-PK orautophos- cs phorylatedDNA-PK hasahigheraffinityforphosphorylatedArtemis. cs Phosphatase-treatedArtemisRetainsDNA-PK -dependentEndonu- cs cleolyticActivities—Inordertostudytheroleofbasalphosphorylation ontheactivationofArtemisasanendonuclease,untreated,(cid:2)-PPase- treated, and CIP-treated Artemis immunobeads were prepared as describedinFig.3A,andanaliquotofthesebeadswassubjectedtoanin vitronucleaseassayinthepresenceorabsenceofDNA-PK .Mock- cs treatedArtemisdemonstratedDNA-PK -dependenthairpinopening, cs 5(cid:1)overhangprocessingactivities(Fig.4A,lanes1and2),aswellas3(cid:1) overhangprocessingactivity(Fig.4B,lanes7and8).Mostinterestingly, FIGURE5.TriplebasalsitemutantofArtemis(ARM49)caninteractwithDNA-PK .A, both(cid:2)-PPase-treatedandtheCIP-treatedArtemiswereabletodemon- ARM49interactswithDNA-PK atwild-typelevel.Emptyvector,wild-typeArtemisc-sex- cs pressing,orARM49-expressingplasmidswastransfectedinto293Tcells,andMyc- strateDNA-PK -dependentendonucleolyticactivitiesatlevelscompa- cs taggedArtemiswasimmunoprecipitatedinthepresenceorabsenceofananti-Myc rablewiththeuntreatedprotein(Fig.4,AandB,lanes3–6and9–12). antibody.B,ARM49wasexpressedatthewild-typelevel.Artemis,co-immunoprecipi- TheTriplePointMutantofArtemisattheThreeBasalPhosphoryla- tatedDNA-PKcs,andtheloadingcontrolSV40largeT-antigenweredetectedwiththe correspondingantibodies(see“ExperimentalProcedures”)byWesternblotanalysis.The tion Sites Has DNA-PK -dependent Endonucleolytic Activities—In cs sourceofproteins(fromimmunoprecipitatedmaterial(IP)orthecelllysate(input))is ordertoconfirmourphosphatasetreatmentstudiesofArtemis,atriple indicated. pointmutantofArtemiswasgeneratedwhereallthreebasalphospho- rylationsites(Ser-385,Ser-516,andSer-518)weresubstitutedbyala- thewild-typeprotein,ARM49caninteractwithDNA-PK (Fig.5A), cs nines (mutant ARM49). First, the ability of ARM49 to interact with anditcanalsobephosphorylatedbyDNA-PK toalevelcomparable cs DNA-PK wasexaminedbyanimmunoprecipitationassay.Similarto with the wild-type protein (data not shown). The mutations did not cs OCTOBER7,2005•VOLUME280•NUMBER40 JOURNALOFBIOLOGICALCHEMISTRY 33843 ArtemisPhosphorylatedbyDNA-PKOnlyinC-terminalDomain FIGURE6.TriplebasalsitemutantofArtemis (ARM49) has DNA-PK -dependent endonu- cs cleolyticactivities.Wild-typeArtemisorARM49 wasincubatedwiththehairpinand5(cid:1)overhang substrate(A)orthe3(cid:1)overhangsubstrate(B)inthe presenceorabsenceofDNA-PK .Labelsarethe cs sameasdescribedinthelegendtoFig.4. seemtocompromisethestabilityoftheArtemisproteinbecauseitwas PK existbesidestheclusterofsites(Thr-2609toThr-2647)thatthey cs expressedatthewild-typeproteinlevel(Fig.5B).Inaninvitronuclease identified. assay, ARM49 demonstrated DNA-PK -dependent hairpin opening RegardingArtemisitself,noneoftheinvitroDNA-PK -phosphoryl- cs cs and5(cid:1)overhangprocessingactivities(Fig.6A,comparelanes2–4),as atedsitesonArtemisislocatedatanSQorTQsite.Althoughsomeof wellasthe3(cid:1)overhangprocessingactivity(Fig.6B,comparelanes2–4). thewellcharacterizedinvitroDNA-PK phosphorylationsitesareat cs ARM49iscapableofcomplementingArtemis-deficientfibroblastsin SQorTQsites(suchasp53(23)),phosphorylationsitesdeviatingfrom aV(D)Jrecombinationassay(TABLETWO).Toexcludethepossibility this“consensus”havebeenreported.Infact,three(Thr-2624,Ser-3205, ofgeneratingaDNA-PK -independentmutant,ARM49wasalsotested andSer-4026)outofthenineautophosphorylationsitesofDNA-PK cs cs foritsabilitytocomplementV(D)JrecombinationinDNA-PK -defi- are not at SQ or TQ sites. The DNA-PK phosphorylation sites on cs cs cientV3cells.TheV(D)JrecombinationdeficiencyinV3cellswasnot Ku70, Ku86, and XRCC4 are also at sites other than this consensus complemented by transfecting in only ARM49 (data not shown). In (24–26).Therefore,DNA-PK doesnothaveastrictpreferenceforSQ cs summary,thesedatasuggestthatthemutationsatthebasalsites(Ser- or TQ. It has been suggested that DNA-PK prefers serines and cs 385,Ser-516,andSer-518)didnotabolishtheabilityofARM49tobe threoninesfollowedbyahydrophobicaminoacidinvitro(18).Despite activatedbyDNA-PK invitroandinvivo. studiesofotherproteins,Artemisisamongthefirsttoillustratethat cs DNA-PK phosphorylationcanhaveaphysiologicaleffectonthefunc- cs DISCUSSION tionofaprotein. Artemis Is Phosphorylated by DNA-PKcs Only in the C-terminal Furthermore, the DNA-PKcs phosphorylation sites and the three Domain—InlightofthefindingthatthekinaseactivityofDNA-PK is basalphosphorylationsitesofArtemisarealllocatedintheC-terminal cs necessarytoactivateArtemisasahairpinand5(cid:1)and3(cid:1)overhangendo- domain (Fig. 1B). Considering the crucial role of DNA-PKcs kinase nuclease, we sought to map the DNA-PK phosphorylation sites in activityinactivatingArtemisendonucleolyticactivities,theC-terminal cs ArtemisaspartofanefforttostudytheregulationofArtemisactivities. domainmaybeanimportantregulatorydomainofArtemis.Mostlikely, WealsomappedthephosphorylationsiteswithinDNA-PK itself.A theC-terminaldomainhasaninhibitoryroleintheactivationofArte- cs total of nine phosphorylated serines and threonines are detected in mis.Inlinewiththisthinking,ithasbeenshownrecentlythatthe“core” autophosphorylatedDNA-PK .Sixofthesesiteswerereportedbefore Artemis (metallo-(cid:1)-lactamase domain/(cid:1)-CASP region) can comple- (19),andthreeofthemwerepcsreviouslyunknown,indicatingthatour mentArtemis-deficientcellsforV(D)Jrecombination(14).4 DNA-PK invitrophosphorylationsystemissimilartowhathasbeen TheRoleoftheC-terminalDomainofArtemis—Artemisisastruc- cs usedbyothers.Inagreementwithourfindingofthethreenovelsites, ture-specific endonuclease and recognizes single- to double-strand Lees-Millerandco-workers(incollaborationwithothers)(21,22)have recentlysuggestedthatadditionalautophosphorylationsitesofDNA- 4U.PannickeandK.Schwarz,unpublisheddata. 33844 JOURNALOFBIOLOGICALCHEMISTRY VOLUME280•NUMBER40•OCTOBER7,2005 ArtemisPhosphorylatedbyDNA-PKOnlyinC-terminalDomain TABLE TWO V(D)JrecombinationassaysinArtemis-deficienthumanprimaryskinfibroblastscomplementedwithARM49 TheexperimentswerecarriedoutasdescribedforTABLEONE.T.E.indicatestransfectionefficiency. Controls T.E. (cid:2)ARM49 (cid:1)RAG2 (cid:1)wtArt (cid:2)wtArt Artemis-positivefibroblasts Exp.1 61.54 0.09 2.17 4.54 Exp.2 58.37 0.05 6.08 6.69 Artemis-deficientfibroblasts Exp.1 66.43 0.02 0.03 2.75 0.99 Exp.2 67.96 0.01 0.05 6.66 4.49/4.04a aTwoindependentvalueswereascertained. FIGURE7.ModelfortheactivationofArtemisby phosphorylation.A,Artemiswithoutphospho- rylationbyDNA-PK isinactiveasanendonucle- cs ase.IntheabsenceofDNA-PK ,thecatalyticcen- cs terofArtemisismaskedbytheC-terminaldomain. B,onceArtemisisphosphorylatedbyDNA-PK ,its cs catalytic center is exposed. Artemis with this “open” conformation is active endonucleolyti- cally.Darkgraydiskrepresentsthemetallo-(cid:1)-lac- tamaseandthe(cid:1)-CASPdomain(catalyticcore). Theopentrianglewithinthedarkgraydiskindi- catestheactivesite.Lightgrayovalsymbolizesthe C-terminaldomainofArtemis,andthearchcon- nectingthecoreandtheC-terminaldomaincorre- sponds to a possible hinge region. The circled minussignsontheC-terminaldomainin(B)denote phosphorylatedserinesandthreonines. transitions.IftheactivityofArtemisisnotproperlycontrolled,itcould ARM49 mutant was indistinguishable from wt Artemis regarding IR potentiallycausegeneticinstabilitybecausesomeDNAmetabolicinter- resistance.ThisisconsistentwiththefactthatARM49demonstrateda mediates mimic Artemis substrates. For example, DNA replication, mobilityshiftinamannerthatisindistinguishablefromwtArtemisin DNAtranscription,andDNArecombinationallinvolveseparationof responsetoIR(supplementalFig.S2).BecauseIR-inducedphosphoryl- thetwoDNAstrandsandgenerationofDNAsingle-todouble-strand ation of Artemis is lost in A-T cells (29), these three basal sites are transitions.TheroleoftheC-terminaldomainmaybetoinhibitArte- unlikely to be the phosphorylation sites of ATM (or of ATR) upon misintheabsenceofDNAdouble-strandbreaks.Onceadouble-strand exposure to ionizing radiation. Perhaps a common kinase present in DNAbreakisgenerated,DNA-PK isactivateduponassociationwith vertebratesandinvertebrates(Fig.1B)phosphorylatesthesethreesites cs DNAends,andthenArtemiscanbeturnedonbyassociationwithand invivo. phosphorylation by DNA-PK and function in V(D)J recombination OnegrouphasshownthatSer-645ofArtemisisphosphorylatedin cs andNHEJ. cellstreatedwithIRinanATM-dependentmanner(31).Wecreateda The Role of Basal Phosphorylation—Phosphatase-treated Artemis S645AmutantandfoundthatcellsexpressingthisArtemismutantwere andArtemisthathasmutationsatthethreeMS-identifiedbasalphos- indistinguishablefromwtintheirsurvivalinresponsetoIR(supple- phorylationsites(ARM49)stillretainDNA-PK -dependentendonu- mentalFig.S1).Therefore,althoughthissitemaybephosphorylatedin cs cleolyticactivities(Figs.4and6),andARM49cansupportV(D)Jrecom- responsetoIRinanATM-dependentmanner,itdoesnotappeartobe binationinaDNA-PK -dependentmanner(TABLETWOanddata functionallycritical. cs not shown). This illustrates that the DNA-PK -independent basal IsDNA-PK RequiredtoRecruitArtemistotheDNASubstrate?—We cs cs phosphorylationdoesnotaffecttheabilityofArtemistobeactivatedby have shown previously that after pre-phosphorylation of Artemis DNA-PK .Recently,therehavebeenreportsthat,inadditiontoDNA- immunobeadsbyDNA-PK andextensivewashes,thephosphorylated cs cs PK ,activationofataxiatelangiectasiamutated(ATM)kinaseandpos- Artemis does not have endonucleolytic activities. We suggested that cs siblytheATM-andRad3-relatedkinase(ATR)canleadtothephos- thiswaslikelybecauseDNA-PK waswashedaway,andtherefore,the cs phorylation of Artemis, although it was not clear whether this is via physical presence of DNA-PK is required to recruit Artemis to the cs directphosphorylationorviaanindirectpathway(27–30).Weconsid- DNAsubstrate(10).However,datafromthisstudysuggestthatauto- ered the possibility that the basal phosphorylation identified in our phosphorylated DNA-PK has very high affinity for Artemis and cs studycorrespondstoATM-and/orATR-dependentphosphorylation remains associated with the Artemis immunobeads after stringent ofArtemis.Hence,inadditiontoV(D)Jrecombination,wealsoexam- washes. inedtheionizingradiation(IR)sensitivityofcellstransfectedwithwt WorkfromothersmayshedlightonthephysicalrolesofDNA-PK cs ArtemisortheARM49expressingplasmid(supplementalFig.S1).The incomplexwithArtemis.Somehavesuggestedthatautophosphory- OCTOBER7,2005•VOLUME280•NUMBER40 JOURNALOFBIOLOGICALCHEMISTRY 33845 ArtemisPhosphorylatedbyDNA-PKOnlyinC-terminalDomain latedDNA-PK dissociatesfromDNAends(32,33),whereasothers 7. Rooney,S.,Chaudhuri,J.,andAlt,F.W.(2004)Immunol.Rev.200,115–131 cs haveraisedthepossibilitythatautophosphorylatedDNA-PK simply 8. deVillartay,J.P.(2002)Curr.Opin.AllergyClin.Immunol.2,473–479 cs 9. Moshous,D.,Callebaut,I.,deChasseval,R.,Corneo,B.,Cavazzana-Calvo,M.,Le changesitsconformation(butremainsassociatedwithDNAends)to Deist,F.,Tezcan,I.,Sanal,O.,Bertrand,Y.,Philippe,N.,Fischer,A.,anddeVillartay, allowthedownstreamNHEJfactorstoaccessDNAends(21,22).Thus, J.P.(2001)Cell105,177–186 upon autophosphorylation of DNA-PK in the Artemis-DNA-PK 10. Ma,Y.,Pannicke,U.,Schwarz,K.,andLieber,M.R.(2002)Cell108,781–794 cs cs complex,ArtemiseitherdissociatesfromDNAends(alongwithDNA- 11. Rooney,S.,Sekiguchi,J.,Zhu,C.,Cheng,H.L.,Manis,J.,Whitlow,S.,DeVido,J.,Foy, D.,Chaudhuri,J.,Lombard,D.,andAlt,F.W.(2002)Mol.Cell10,1379–1390 PK )ortheactivecenterofArtemismaynotbefavorablyconfiguredfor cs 12. Rooney,S.,Alt,F.W.,Lombard,D.,Whitlow,S.,Eckersdorff,M.,Fleming,J.,Fug- substrate binding because of a DNA-PK conformational change. cs mann,S.,Ferguson,D.O.,Schatz,D.G.,andSekiguchi,J.(2003)J.Exp.Med.197, Therefore,theproper(unphosphorylated)conformationofDNA-PKcs 553–565 isprobablystillrequiredtopermittheactivecenterofArtemistobindto 13. Pannicke,U.,Ma,Y.,Hopfner,K.P.,Niewolik,D.,Lieber,M.R.,andSchwarz,K. theDNAsubstrate. (2004)EMBOJ.23,1987–1997 14. Poinsignon,C.,Moshous,D.,Callebaut,I.,deChasseval,R.,Villey,I.,anddeVillartay, ModelofActivationofArtemisbyDNA-PK —Basedontheabove cs J.P.(2004)J.Exp.Med.199,315–321 observations,weproposethattheC-terminaldomainofArtemismay 15. Callebaut,I.,Moshous,D.,Mornon,J.P.,anddeVillartay,J.P.(2002)NucleicAcids haveaninhibitoryroleinthebindingofArtemistoitssubstrate,andthe Res.30,3592–3601 proteinstructureofArtemisisregulatedbyinteractionwithandphos- 16. Kulesza,P.(1999)DNA-dependentProteinKinaseinV(D)JRecombination.Ph.D. thesis,WashingtonUniversity,St.Louis phorylationbyDNA-PK .Basedonthephosphorylationstatus,there cs 17. Smith,G.C.,andJackson,S.P.(1999)GenesDev.13,916–934 areatleasttwoconformationsthatArtemismayadopt(Fig.7).Inthe 18. Meek,K.,Gupta,S.,Ramsden,D.A.,andLees-Miller,S.P.(2004)Immunol.Rev.200, absenceofDNA-PK ,thecatalyticcenterofArtemisismaskedbythe 132–141 cs C-terminaldomain.ThisinactiveconformationdoesnotallowArtemis 19. Douglas,P.,Sapkota,G.P.,Morrice,N.,Yu,Y.,Goodarzi,A.A.,Merkle,D.,Meek,K., Alessi,D.R.,andLees-Miller,S.P.(2002)Biochem.J.368,243–251 toprocessDNA.UponassociationwithandphosphorylationbyDNA- 20. Anderson,C.W.,andCarter,T.H.(1996)Curr.Top.Microbiol.Immunol.217, PK atmultiplesiteswithintheC-terminaldomain,theinhibitionof cs 91–111 the C-terminal domain is alleviated probably by conformational 21. Ding,Q.,Reddy,Y.V.,Wang,W.,Woods,T.,Douglas,P.,Ramsden,D.A.,Lees- changes,andthecatalyticcenterofArtemisisthuscompletelyexposed. Miller,S.P.,andMeek,K.(2003)Mol.Cell.Biol.23,5836–5848 ThisactivatedformofArtemiscanthenprocessDNAhairpinsand5(cid:1) 22. Reddy,Y.V.,Ding,Q.,Lees-Miller,S.P.,Meek,K.,andRamsden,D.A.(2004)J.Biol. and3(cid:1)overhangs. Chem.279,39408–39413 23. Lees-Miller,S.P.,Sakaguchi,K.,Ullrich,S.J.,Appella,E.,andAnderson,C.W.(1992) Mol.Cell.Biol.12,5041–5049 Acknowledgments—WethanktheLieberlaboratory,especiallyJen-YeuWang, 24. Chan,D.W.,Ye,R.,Veillette,C.J.,andLees-Miller,S.P.(1999)Biochemistry38, fortheworkwithsupplementalFig.2,andtheSchwarzlaboratory,especially 1819–1828 Eva-MariaRump.TheArtemisFLAGbaculovirusandmammalianexpres- 25. Yu,Y.,Wang,W.,Ding,Q.,Ye,R.,Chen,D.,Merkle,D.,Schriemer,D.,Meek,K.,and sionplasmidweregenerouslyprovidedbyDrs.JohnHarringtonandSteve Lees-Miller,S.P.(2003)DNARepair(Amst.)2,1239–1252 26. Lee,K.J.,Jovanovic,M.,Udayakumar,D.,Bladen,C.L.,andDynan,W.S.(2004)DNA MurphyatAthersysInc.(Cleveland,OH).Wealsothankthepersonnelinthe Repair(Amst.)3,267–276 W.M.KeckBiomedicalMassSpectrometryLaboratoryattheUniversityof 27. Zhang,X.,Succi,J.,Feng,Z.,Prithivirajsingh,S.,Story,M.D.,andLegerski,R.J.(2004) VirginiaBiomedical,whichisfundedbyagrantfromtheUniversityofVirginia Mol.Cell.Biol.24,9207–9220 PrattCommittee. 28. Poinsignon,C.,deChasseval,R.,Soubeyrand,S.,Moshous,D.,Fischer,A.,Hache, R.J.,anddeVillartay,J.P.(2004)Eur.J.Immunol.34,3146–3155 29. Riballo,E.,Kuhne,M.,Rief,N.,Doherty,A.,Smith,G.C.,Recio,M.J.,Reis,C.,Dahm, REFERENCES K.,Fricke,A.,Krempler,A.,Parker,A.R.,Jackson,S.P.,Gennery,A.,Jeggo,P.A.,and 1. Bassing,C.H.,Swat,W.,andAlt,F.W.(2002)Cell109,(suppl.)45–55 Lobrich,M.(2004)Mol.Cell16,715–724 2. Gellert,M.(2002)Annu.Rev.Biochem.71,101–132 30. Wang,J.,Pluth,J.M.,Cooper,P.K.,Cowan,M.J.,Chen,D.J.,andYannone,S.M. 3. Schwarz,K.,Ma,Y.,Pannicke,U.,andLieber,M.R.(2003)BioEssays25,1061–1070 (2005)DNARepair4,556–570 4. Fugmann,S.D.,Lee,A.I.,Shockett,P.E.,Villey,I.J.,andSchatz,D.G.(2000)Annu. 31. Chen,L.,Morio,T.,Minegishi,Y.,Nakada,S.,Nagasawa,M.,Komatsu,K.,Chessa,L., Rev.Immunol.18,495–527 Villa,A.,Lecis,D.,Delia,D.,andMizutani,S.(2005)CancerSci.96,134–141 5. Jung,D.,andAlt,F.W.(2004)Cell116,299–311 32. Chan,D.W.,andLees-Miller,S.P.(1996)J.Biol.Chem.271,8936–8941 6. Lieber,M.R.,Ma,Y.,Pannicke,U.,andSchwarz,K.(2004)DNARepair(Amst.)3, 33. Merkle,D.,Douglas,P.,Moorhead,G.B.,Leonenko,Z.,Yu,Y.,Cramb,D.,Bazett- 817–826 Jones,D.P.,andLees-Miller,S.P.(2002)Biochemistry41,12706–12714 33846 JOURNALOFBIOLOGICALCHEMISTRY VOLUME280•NUMBER40•OCTOBER7,2005
Description: