ebook img

The discovery of the optical/IR counterpart of the 12s transient X-ray pulsar GS 0834-43 PDF

6 Pages·0.23 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The discovery of the optical/IR counterpart of the 12s transient X-ray pulsar GS 0834-43

Mon.Not.R.Astron.Soc.000,000–000 (2000) Printed1February2008 (MNLATEXstylefilev1.4) The discovery of the optical/IR counterpart of the 12 s ⋆ transient X–ray pulsar GS 0834–43 † G. L. Israel,1, S. Covino,2 S. Campana,2,† V.F. Polcaro,3 P. Roche,4 L. Stella,1,† A. Di Paola,1 D. Lazzati,2,5 S. Mereghetti,6 E. Giallongo,1 A. Fontana,1 and F. Verrecchia7 1Osservatorio Astronomico di Roma, ViaFrascati 33, I–00040 Monteporzio Catone (Roma), Italy 0 2Osservatorio Astronomico di Brera, Via E. Bianchi 46, I–23807 Merate (Lecco), Italy 0 3 Istituto di Astrofisica Spaziale, Area di Ricerca di Roma–Tor Vergata, Via Fosso del Cavaliere, I–00133 Roma, Italy 0 4 Dept. of Physics & Astronomy, Univ. of Leicester, Leicester,UK 2 5 Dipartimento di Fisica, Universit`a degli Studi, via Celoria 13, I–20133 Milano, Italy n 6 Istituto di Fisica Cosmica “G.P.S. Occhialini” del C.N.R.,Via Bassini 15, I–20133 Milano, Italy a 7 Universit`a“La Sapienza”, Dipartimento di Fisica “Guglielmo Marconi”, Piazzale A. Moro 5, I–00185, Roma, Italy J 6 Received1999September 16,Accepted 2000January6 1 v 5 ABSTRACT 8 Wereportthe discoveryoftheopticalcounterpartofthe12.3stransientX–raypulsar 0 GS0834–43. We re–analysed archival ROSAT PSPC observations of GS0834–43 ob- 1 tainingtwonewrefinedpositions,∼14′′ and∼18′′ awayfromthepreviouslypublished 0 one,andanewspinperiodmeasurement.Basedontheseresultswecarriedoutoptical 0 and infra–red (IR) follow–up observations. Within the new error circles we found a 0 relativelyfaint (V=20.1)earlytype reddened star (V–R=2.24).The opticalspectrum / h shows a strong Hα emission line. The IR observations of the field confirm the pres- p ence of an IR excess for the Hα–emitting star (K′=11.4, J–K′=1.94) which is likely - surrounded by a conspicuous circumstellar envelope. Spectroscopic and photometric o r data indicate a B0–2 V–IIIe spectral–type star located at a distance of 3–5kpc and t confirm the Be–star/X–raybinary nature of GS0834–43. s a : Key words: binaries: general — stars: emission–line, Be — pulsar: individual v (GS0834–43)— Infrared: stars — X–ray: stars. i X r a 1 INTRODUCTION 10–100) and low–luminosity (≤1036 ergs−1) pulsed persis- tent emission (Negueruela 1998). 4U0115+634 (P=3.6s), Be/X–ray binary systems (BeXBs) represent the majority V0332+30 (P=4.4s) and EXO2030+375 (P=41.7s) are all of the known High Mass X–ray Binaries (HMXBs) host- examples of the first two classes. Among the latter group, ing an accreting rotating magnetic neutron star (White, there are the well known X–ray pulsators XPer (P=835s) Nagase & Parmar 1995). Phenomenologically, in the X– andRXJ0146.9+6121(P=1455s).Moreover,differencesbe- ray band, BeXBs can be divided into at least three sub- tween the Galaxy and the Magellanic Cloud population of classes: (i) bright transientswhich display giant X–ray out- BeXBshavebeenstudiedandareprobablyduetothediffer- bursts up to Lx=1038ergs−1 (Type II; Stella et al. 1986) entstarformationrate(seeStevensetal.1999).B–emission unrelated with the orbital phase, with high spin–up rates, (Be)spectral–typestarsarecharacterizedbyhighrotational (ii) transients which display periodic outbursts of rela- velocities (up to 70% of their break–up velocity), and by tivelyhighluminosity(Lx≃1036–1037ergs−1;TypeI)gen- episodes of equatorial mass ejection which might produce a erally occurring close to the periastron passage of the neu- rotating ring of gas around the star at irregular time inter- tron star, and (iii) sources displaying no outbursts, but vals.Atopticalwavelengths,Bestarsaredifficulttoclassify comparatively moderate variations (up to a factor of ∼ duetothepresenceofthecircumstellarenveloperesponsible for theemission–lines. The hard X–ray transient GS0834–43 (lII∼262.0, ⋆ Partially based on observations carried out at ESO, La Silla, bII∼–1.51) was discovered by theWATCH experiment on- Chile(62.H–0513) boardGRANATin1990atafluxlevelofabout1Crabinthe † AffiliatedtoICRA. 5–15keVenergyband(Sunyaev1990).Thesourcewaslater (cid:13)c 2000RAS 2 Israel et al. observedbyGINGA(Makino1990a,1990b)andROSATas apartoftheAllSkySurvey(Hasingeretal.1990)providing amuchbetterpositionalaccuracy(radiusof50′′).Moreover pulsations at a period of 12.3 s were observed during the GINGA, ROSAT and ART–P observations (Makino 1990c; Aokiet al.1992; Hasinger etal. 1990; Grebenev&Sunyaev 1990). A target of opportunity ROSATpointing performed in 1991 May allowed the source position to be determined with an uncertainty radius of 9′′ (Belloni et al. 1993). An optical follow–up observation of the stars within this error circlewasperformedattheESONewTechnologyTelescope (NTT) in January 1991: no plausible optical counterpart wasfounddowntoalimitingmagnitudeofR∼23.5(Belloni et al. 1993). Figure 1.The1991December 17–21 ROSATPSPC lightcurve GS0834–43wasalsomonitoredbytheBurstAndTran- foldedatthebestperiodP=12.307s. sientSourceExperiment(BATSE)ontheComptonGamma Ray Observatory (CGRO) between April 1991 and July 1998.InparticularsevenoutburstswereobservedfromApril (May 5) up to 1.14 ct s−1 (December 21) corresponding 1991 and June 1993 with a peak and intra–outburst flux to a variation of a factor of ∼20. We note that the flux we of about 300mCrab and <10mCrab, respectively (Wilson obtainedforsequence160062isconsistentwiththatinferred et al. 1997). The recurrence time of 105–115 days was in- byBellonietal.(1993).Thesourcewasalsodetectedduring terpreted as the orbital period of the system. However, no sequence160061 (see Table1). furtheroutburstshavebeenobservedsinceJuly1993either For each ROSAT observability window of GS0834–43 with CGRO/BATSE and the All Sky Monitor (ASM) on we obtained an independent source position. board the Rossi X–ray Timing Explorer. All these findings These were determined to be R.A.=08h35m55s.6, Dec.=– suggested that GS0834–43 is a new Be–star/X–ray binary 43◦11′07′.′3 (sequence 160061; May 91; equinox 2000), and system in an eccentric orbit (Wilson et al. 1997). However R.A.=08h35m55s.2, Dec.= –43◦11′10′.′3 (sequence 500127– thelackofanyplausibleopticalcounterpartremainedakey 8;Dec17–21;equinox2000).Thestatisticaluncertaintycor- point against this interpretation. responds to an error radius of only 0′.′5 and 0′.′2 for May 5 In this paper we report the discovery of the optical and December 17–21, respectively (90% confidence level). counterpartofGS0834–43 aV=20.4Bespectral–typestar. However due to the uncertainty in the boresight correction Starting from three public ROSAT PSPC observations of theerrorradiusincreasesto10′′.Weexcludedfrom ourpo- GS0834–43weobtainedtwonewindependentpositionmea- sition analysis sequence 160062 as the source was close to surements (uncertainty radius of 10′′). Within these new the circular support rib (radius of ∼20′) of the PSPC, re- error circles we found a highly reddened star (V–R=2.24), sulting in a higher uncertainty (error radius of >∼20′′). We the optical spectrum of which shows a strong Hα emission notethat thenewrefined positions of GS0834–43 lie about line. The optical counterpart was also observed in the IR ∼18′′ (160061) and ∼15′′ (500127–8) away from that ob- showing that this star is by far the brightest object in the tained from sequence 160062 (Belloni et al. 1993; error ra- field (K′=11.4). Our findings together, obtained from ob- dius9′′). servations in three different energy bands, support the Be– The ROSATeventlist and spectra of GS0834–43 were star/X–ray binary natureof GS0834–43. extractedfromacirclearoundthebestX–rayposition(with anextractionradiuscorrespondingtoanencircledenergyof 90%attherelevantoff–axisangle).Thephotonarrivaltimes 2 X–RAY OBSERVATIONS were corrected to the barycentre of the solar system and a background corrected 1s binned light curve accumulated The PSPC (0.1–2.4 keV) detector on board ROSAT ob- foreachobservation.Inordertomaximizetheperiodsearch served the field including GS0834–43 several times. In the sensitivityweanalyzedonlytheobservationwiththehighest ROSAT public archive there are 5 observations performed statistics,namelysequence500127–8merged.Apowerspec- between April and December 1991. PSPC images were ac- trum was calculated over the entire observation duration cumulated in the 0.5–2.0 keV range in order to reduce the following the method described by Israel & Stella (1996). strong and spatially inhomogeneous local background dom- Toincreasethesearchsensitivitywesearchedforsignificant inated by thesoft X–ray emission from the Vela Supernova peaks in a narrow period interval centered around the pe- Remnant. riod value detected by BATSE between 1991 December 28 Both a sliding cell and a Wavelet transform–based de- and1992January2(Wilsonetal.1997;12.307s),thusonly tection algorithm were used in order to characterize the a few days after the ROSAT observation. We found a sig- physical parameters (position, count rate, S/N ratio, etc.) nificant peak at a confidence level of 99.5% at a period of ofGS0834–43whendetected,andtoobtaina3σ countrate 12.307±0.003s(90%uncertaintiesareusedthroughoutthis upper limit in case of non–detection (Lazzati et al. 1999; paper). The pulsed fraction is 7%±2%, while the 0.1–2.4 Campanaetal.1999).Table1summarizestheresultsofthis keV pulse shape is well fitted by two sinusoidal waves (see analysis. Fig.1). A similar shape and pulsed fraction value were ob- GS0834–43 was detected in May and December 1991 tained at higher energies in 1991 DecemberbyBATSE(see observations as a highly variable source: from 0.067 ct s−1 Fig.5, 11 and 12 in Wilson et al. 1997). (cid:13)c 2000RAS,MNRAS000,000–000 The optical/IR counterpart of the 12s transient X–ray pulsar GS0834–43 3 Table 1.ROSATandASCAobservations ofGS0834–43. Pointing Instr. Expos. StartTime StopTime Countrate† Off–axis Coordinates‡ Number (s) (cts−1) angle(′) 500015 PSPC 1854 1991Apr2513:05 1991Apr2513:30 <0.20 44 — 160062 PSPC 2191 1991May0516:41 1991May0517:18 0.510±0.025 22 seeBellonietal.1993 160061 PSPC 2005 1991May0519:46 1991May0520:21 0.067±0.018 0 R.A.=08h35m55s.6 Dec.=–43◦11′07′.′3 500015 PSPC 8666 1991May0606:40 1991May0614:58 <0.11 44 — 500128 PSPC 1316 1991Dic0401:19 1991Dic0401:41 0.237±0.023 12 — 500127–8 PSPC 18235 1991Dic1711:31 1991Dic2108:38 1.137±0.019 12 R.A.=08h35m55s.2 Dec.=–43◦11′10′.′3 42023000 GIS 35916 1994Nov2807:45 1994Nov2819:01 <0.01 10 — †ROSATPSPCandASCAGISlocallybackgroundcorrectedcountrateswereobtainedinthe0.5–2.0keVand0.5–10keVenergy bands, respectively. The ROSAT PSPC count rates are vignetting and PSF corrected. Errorsare at 1σ level whileupper limits at3σ. ‡ Equinox2000.Errorradiusof10′′ at90%confidence level. 3 OPTICAL FOLLOW–UP Table 2.ROSATPSPCspectral resultsforGS0834–43 BasedonthenewX–raypositions,wecarriedoutanoptical follow–up from the ESO (La Silla, Chile) on 1999 January Parameter May1991 May1991 Dec1991 18–20withthe1.5mDanishtelescopeandonMarch13with (160062) (160061) (500127–8) theNew Technology Telescope (NTT). Power–lawmodel Imaging and photometry in V, R and Gunn–i bands NH (1022 cm−2) 2.3±00..53 1.1±00..84 2.3±00..53 (200sexposuretimeeach)wereperformedon1999January Γ 0.7(fixed) 0.7(fixed) 0.7±0.7 FX (10−11) 1.73 0.17 5.46 18–19 with the Danish Faint Object Spectrometer Camera LX (NH=0;1035) 2.58 0.13 8.05 (DFOSC), while spectroscopy of the brightest stars within the X–ray position uncertainty regions was obtained with Blackbodymodel thesameinstrumenton1999January19–20.Thedatawere NH (1022 cm−2) 2.0±00..53 0.8±00..84 2.0±00..32 reduced using standard ESO–MIDAS procedures for bias kT(keV) 1.0(fixed) 1.0(fixed) 1.0±00..43 subtraction, flat–field correction, aperture photometry and FX (10−11) 1.71 0.16 5.44 LX (NH=0;1035) 1.781 0.10 5.50 one dimensional stellar and sky spectra extraction. Profile fitting photometry was also carried out with DAOPHOTII Radius(km@5kpc) 9.2 2.1 16.7 (Stetson1987).Cosmicrayswereremovedfromeachframe, Note. — The X–ray fluxes (units are ergcm−2s−1) and the un- and the spectrum corrected for the atmospheric extinction absorbed luminosities (units are ergs−1; a distance of 5kpc was and flux calibrated. Figure2 shows the field of GS0834–43 in the R filter (left panel) with the new X–ray uncertainty assumed)refertothe0.1–2.4keVenergyband. circles obtained from the 1991 May and December ROSAT observations superimposed. The earlier X–ray error circle The PSPC Pulse Height Analyser (PHA) rates were (labelledasOLD)isalsoshown.StarsAandstarClieout- grouped so as to contain a minimum of 20 photons per sidethenewuncertaintyregions(∼2′′and∼6′′away,respec- energy bin. The spectra of sequences 160062, 160061 and tively) while star D is the only object consistent with both 500127–8 (December 17–21) were fitted simultaneously. By circles andit islocated at R.A.=08h35m55s.4andDec.=– using the brightest spectrum parameters as templates we 43◦11′11′.′9(equinox2000;calibratedwithDSS1plates;un- fittedthethreedatasetskeepingfixedthephotonindexand certainty 1′′). Photometry measurements for stars A, B, C the temperature of the power–law and blackbody, respec- and D are reported in Table3. tively, for the two fainter spectra. A power–law (Γ=0.7) Since the spectroscopic properties of star A were in- as well as a blackbody (kT=1keV) model gave good fits vestigated by Belloni et al. 1993 (star A is a late spec- (χ2ν=1.09 and χ2ν=1.11, respectively). traltypestarwithoutanysignificant emission features), we The field of GS0834–43 was also observed on 1994 focused our attention on star D. We obtained three low– November 28 with the ASCA satellite. The source was not resolution (11˚A) spectra (30min exposure time each; 1′.′5 detected in the 0.5–10 keV band and a 3σ upper limit of slit; 1′.′2 seeing) of star D on 1999 January 20 with a grism 0.01cts−1 wasinferred(correspondingto∼4×10−13ergs−1 covering the spectral range 5200–10000˚A (see upper line of cm−2assumingthebestpower–lawmodelparametersofTa- Fig.3) . Notethat thebluepart of thespectrum, beingrel- ble2). ativelyfaint(V=20.4),wasbelowtheinstrumentsensitivity (telescope+CCD+grism). Afterreduction,thespectra were summedtoincreasetheS/Nratio.StarDwasalsoobserved on 1999 March 13 with the ESO Multi–Mode Instrument (EMMI) mounted on the adaptor–rotator at the Nasmyth (cid:13)c 2000RAS,MNRAS000,000–000 (cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0) 4 Israel et al. Figure 2. R–band (left) and K′–band (right) images of the field of GS0834–43 together with the new X–ray position uncertainty regions (10′′ radius) obtained with the 1991 ROSAT PSPC observations. North is top, east is left. Stars D represents the proposed opticalcounterpart ofGS0834–43. 5466.87˚Adoublet)arerecognizable,suggestingaB2spectral Table 3.OpticalandIRresultsforstarA,B,CandD type.Howevertheuncertaintyon thespectral classification islarge,rangingfromanO8etoaB3estar.Emissionfeatures Star V R V–R J H K′ J–K′ corresponding to HeI lines (e.g. 6678 and 7281˚A) are also evident,whiletheHeIlinesat7065and7818˚Alookfilledin, A 18.9 17.8 1.1 15.86 15.06 14.80 1.06 aswellasfaintnebular[NII]linesonbothsidesofHα,which B 20.4 19.0 1.4 16.20 15.24 14.98 1.22 most likely are due to the superposed emission from the C 22.9 20.8 2.1 15.40 13.81 13.29 2.11 D 20.4 18.2 2.2 13.33 12.26 11.39 1.94 Vela SNR (see Fig.3). In the EMMI spectrum the Hα EW is –33±2˚A, while the FWZH is 41±3˚A, corresponding to Note — Optical magnitude absolute uncertainty is ∼0.2, IR is a stellar wind terminal velocity Vwind≃1800 km s−1. Deep ∼0.02. interstellar lines and bands are clearly visible in the star spectra, the NaD2 doublet having an EW of 4.1±0.8˚A. Star B the position of which is still marginally consis- B focus of the NTT. A 30min low–resolution (11˚A; 2′′ slit; tent with the new X-ray error circle was observed on 1999 2′′ seeing) spectrum was obtained in the4000–8500˚A range January 19. We obtained a low–resolution (11˚A) spectrum (see Fig.3; lower line). (1hexposuretime;2′.′0slit;1′.′7seeing)withagrismcovering Due to its faintness, star D is difficult to study. The the3500–7000˚A spectralrange.StarBisevenmoredifficult S/N ratio of the summed DFOSC spectrum is acceptable to study being fainter than star D. Although the spectrum only above ∼6000˚A, while at >7500˚A the signal is domi- hasalow S/Nratio, wedetectedlarge anddeep absorption natedbyinterferencefringes.Thesteepriseofthespectrum features typical of late type stars (probably an early M). in the UV argues for a very hot and reddened object. The Moreover no emission lines were visible in its spectrum. absenceofstrongforbiddenlinesrulesoutthepossibility of apre–mainsequenceobjectoracataclysmicvariable.More- over the absence of strong absorption features points to an 4 IR OBSERVATIONS OB spectral–type star. The main features of the DFOSC spectrum are: (i) a strong Hα emission–line with equiva- Infrared observations were carried out on 1993 April1 dur- lent width EW∼–30±2˚A, and (ii) pronounced interstellar ing service observing time using the Infrared Imager Spec- absorption lines for NaII (5890˚A and 6270˚A). The Hα line trograph (IRIS) instrument (Allen 1993) mounted at the showsanextendedandasymmetricprofile.At11˚Aspectral Cassegrain focus of the 3.9m Anglo–Australian Telescope resolution, this might indicate a line splitting, possibly due (AAT), Siding Springs Observatory, New South Wales. Im- tothepresence of adisk. Allthis evidenceclearly pointsto ages were obtained in theJ (60s), H (20s) and K′ (5 secs.) theassociation of this object with theX–ray source. bands. The data were reduced using the Starlink Figaro The EMMI spectrum has a slightly better S/N ratio software (Shortridge et al. 1998), and analysed using the and allows us to extend the spectral region into the 5500– PHOTOM package (Eaton & Draper 1998). The standard 8400˚A range. However, a precise spectral classification is stars HD 84090 and HD 100231 were used for calibration not yet possible. A few SiII lines (e.g. the strong 5466.43– purposes,givingabsoluteuncertaintiesofaround0.02 mag- (cid:13)c 2000RAS,MNRAS000,000–000 The optical/IR counterpart of the 12s transient X–ray pulsar GS0834–43 5 Figure 3.Low–resolutionspectraofGS0834–43 obtainedon1999January20(upperline;Danish+DFOSC)andMarch13(lowerline; NTT+EMMI).Fluxesarearbitrarlynormalisedandaconstant wasaddedtotheJanuary20one. nitudesin each band(although theH bandimage was near type of star D assuming that it is placed at the Galactic the saturation limit of the detector and should be treated border. For an O9, B0 or B2 dwarf star we obtain a red- with a little more suspicion). dened (AR ∼ 7) R magnitude at 6 kpc (distance modulus Taking the colours of a B2V star from Wegner of ∼ 14) of 16.5, 17 and 18.5, respectively. When compared (1994)as(V–K)=–0.67,(J–K)=–0.18and(H–K)=–0.04,us- with theobserved Rmagnitudeof 18.2 for starD,thissug- ing the reddening relationships which gives E(J–K)/E(B– gests a B2Ve spectral–type star. V)=+0.50,andcombiningthesewiththeobservedvaluesfor Also the derived E(B–V)=+4.0 from the IR data sug- GS0834–43,wefindE(J–K)=+2.0andthusE(B–V)=+4.0. gestsahighlyreddenedobject.Usingtherelationshipforthe TakingtheparameterRext=3.3(Rext=AV/E(B–V)),wees- contribution of the circumstellar (cs) environment derived timate an extinction of AV=13.2 from theIR magnitudes. byFabregatandReglero(1990),whereEcs=0.0049–0.00185 EW(Hα), and given the observed EW(Hα)∼–30˚A, we es- timate Ecs to be only 0.06 magnitudes. This suggests that the bulk of the extinction is interstellar rather than local 5 DISCUSSION toGS0834–43.Thisresultsconfirmthatthecontributionof thedisc(whichisclearly present,giventhelargeequivalent The X–ray, optical and IR observations of the field of widthinferredforHα)totheobservedIRcolorsisrelatively GS0834–43’s presented here, led to the identification of small. the optical counterpart of this 12s transient X–ray pulsar discovered in 1990. The measurement of the distance to However the value of AV∼13 derived from the IR ob- servationsdifferssignificantly from that estimated from the GS0834–43 based on the optical data is hampered by the uncertainties in thespectral classification. optical data (where AR∼7, and thus AV∼9.4), suggesting that the object is either earlier in spectral class than B2, However some information can be inferred based on closer that 5–6kpc, or possibly not a main sequence ob- our optical and IR photometric measurements. The intrin- sic V −R color for GS0834–43 is∼−0.1 (assuming amain ject. The observed magnitudes are similar to those of EXO 2030+375 (see e.g. Negueruela 1998), which is compatible sequencestarwithspectraltypeintheO9–B3range).Since theobservedV−Ris∼2.25thereddeningshouldamountto with a B0V star at ∼3kpcor a B0III at ∼5kpc. EV−R∼2.35,andassumingastandardreddeninglaw(Fitz- Based on both photometric and spectroscopic findings patrick1999)thisconvertstoAR ∼7(regardlessofwhether weconcludethatstarDismostlikelyaB0–2V–IIIestarat thereddeningmediumisuniformlydistributedalongtheline a distance of 3–5kpc. A more accurate distance and spec- of sight orisintrinsic tothesource). Moreoverfrom theX– tralclassificationwillhavetoawaitdetailedopticalspectro- ray spectral fits, we derive a NH of 1–2 × 1022 which is scopic observations in theblue end of the spectrum. ingoodagreementwiththephotometricreddeningestimate For a distance of 5kpc and extrapolating the 0.1– (Bohlinetal.1978).TheobservedmagnitudeofGS0834–43 2keV ROSAT fluxes to the 1–10 keV band (we as- isR∼18.2andtheabsoluteRmagnitudeofastarwiththe sume the spectral model fitted by Aoki et al. 1992 using assumed spectral type is within −2.5and−5. Taking into Ginga data) we obtain an outburst peak luminosity LX(1– account theeffects of reddening,a distancemoduluswithin 10keV)≃5–8×1036ergs−1.Asomewhat higherluminosity 13.7−16.2 can be derived. This translates to a distance of (≃1037erg s−1) would be inferred by extrapolating the 20– ∼5-17kpc, well beyond the Vela SNR located at ∼500pc. 100keV BATSE peak flux reported by Wilson et al. (1997) However the Galaxy edge in the direction of GS0834–43 is to the 1–10keV band. Such a peak luminosity is a typical located at ∼6kpc, so we can put a limit on the spectral– valueshownbyX-raypulsarswhichalsodisplayTypeIout- (cid:13)c 2000RAS,MNRAS000,000–000 6 Israel et al. bursts (Stella et al. 1986; Negueruela 1998) occurring close tothetimeofperiastronpassage andwithaperiodicrecur- rence given by theorbital period of the system. ACKNOWLEDGMENTS This work was partially supported through ASI grant. PR thankstheservice observing programme of theAAO. REFERENCES Allen D., 1993, IRIS Users Manual, Anglo-Australian Observa- torymanual30a,version2.5 AokiT.,DotaniT.,EbisawaK.,etal.,1992, PASJ,44,641 BelloniT.,HasingerG.,PietschW.,etal.,1993,A&A,271,487 BohlinR.C.,SavageB.D.,&DrakeJ.F.,1978,ApJ,224,132 Campana S., Lazzati D., Panzera R., et al., 1999, ApJ, 524, in press Eaton N. & Draper P.W., 1998, PHOTOM Users guide version 1.7,StarlinkUserNote45.8 FabregatJ.&RegleroV.,1990,MNRAS,247,407 FitzpatrickE.L.,1999,PASP,111,63 GrebenevS.&SunyaevR.,1991,IAUCirc.5294 HasingerG.,PietschW.,&BelloniT.,1990, IAUCirc.5142 LazzatiD.,CampanaS.,RosatiP.,etal.,1999,ApJ,524,inpress MakinoF.,1990a, IAUCirc.5142 MakinoF.,1990b, IAUCirc.5139 MakinoF.,1990c, IAUCirc.5148 Negueruela,I.,1998, A&A,338,505 Shortridge K., Meyerdierks H., Currie M., et al., 1998, Figaro Usersguideversion5.4-0,StarlinkUserNote86.16 StellaL.,WhiteN.E.,&RosnerR.,1986,ApJ,208,669 StetsonP.B.,1987,PASP,99,191 Stevens J.B., Coe M.J., & Buckley D.A.H., 1999, MNRAS, in press(astro–ph/9906106) SunyaevR.,1990,IAUCirc.5122 Wegner W.,1994,MNRAS,270,229 White, N.E.,Nagase, F.,& Parmar,A. N.,1995 ,in X–ray Bi- naries,Eds.W.H.G.Lewin,J.vanParadijs&E.P.J.vanden Heuvel(CambridgeUniversityPress),p.1. WilsonC.A.,FingerM.H.,HarmonB.A.,etal.,1997, ApJ,479, 388 (cid:13)c 2000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.