Oxford Lecture Series in Mathematics and its Applications 30 Series Editors John Ball Dominic Welsh OXFORD LECTURES SERIES IN MATHEMATICS AND ITS APPLICATIONS Books in the series 1. J.C. Baez (ed.): Knots and quantum gravity 2. I.FonsecaandW.Gangbo: Degreetheoryinanalysisandapplications 3. P.L. Lions: Mathematical topics in fluid mechanics, Vol. 1: Incom- pressible models 4. J.E. Beasley (ed.): Advances in linear and integer programming 5. L.W. Beineke and R.J. Wilson (eds): Graph connections: Relation- ships between graph theory and other areas of mathematics 6. I. Anderson: Combinatorial designs and tournaments 7. G. David and S.W. Semmes: Fractured fractals and broken dreams 8. Oliver Pretzel: Codes and algebraic curves 9. M. Karpinski and W. Rytter: Fast parallel algorithms for graph matching problems 10. P.L. Lions: Mathematical topics in fluid mechanics, Vol. 2: Com- pressible models 11. W.T. Tutte: Graph theory as I have known it 12. AndreaBraidesandAnnelieseDefranceschi: Homogenization of mul- tiple integrals 13. Thierry Cazenave and Alain Haraux: An introduction to semilinear evolution equations 14. J.Y. Chemin: Perfect incompressible fluids 15. Giuseppe Buttazzo, Mariano Giaquinta and Stefan Hildebrandt: One-dimensional variational problems: an introduction 16. Alexander I. Bobenko and Ruedi Seiler: Discrete integrable geometry and physics 17. Doina Cioranescu and Patrizia Donato: An introduction to homoge- nization 18. E.J. Janse van Rensburg: The statistical mechanics of interacting walks, polygons, animals and vesicles 19. S. Kuksin: Hamiltonian partial differential equations 20. Alberto Bressan: Hyperbolic systems of conservation laws: the one- dimensional Cauchy problem 21. B. Perthame: Kinetic formulation of conservation laws 22. A. Braides: Gamma-convergence for beginners 23. RobertLeeseandStephenHurley: MethodsandAlgorithmsforRadio Channel Assignment 24. Charles Semple and Mike Steel: Phylogenetics 25. Luigi Ambrosio and Paolo Tilli: Topics on Analysis in Metric Spaces 26. Eduard Feireisl: Dynamics of Viscous Compressible Fluids 27. Anton`ın Novotny` and Ivan Straˇskraba: Introduction to the Mathe- matical Theory of Compressible Flow 28. Pavol Hell and Jarik Nesetril: Graphs and Homomorphisms 29. PavelEtingofandFredericLatour: ThedynamicalYang-Baxterequa- tion, representation theory, and quantum integrable systems 30. Jorge Ramirez Alfonsin: The Diophantine Frobenius Problem The Diophantine Frobenius Problem J.L. Ram´ırez Alfons´ın Equipe Combinatoire Universit´e Pierre et Marie Curie, Paris 6 4 Place Jussieu, 75252 Paris Cedex 05 1 3 GreatClarendonStreet,OxfordOX26DP OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwidein Oxford NewYork Auckland CapeTown DaresSalaam HongKong Karachi KualaLumpur Madrid Melbourne MexicoCity Nairobi NewDelhi Shanghai Taipei Toronto Withofficesin Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore SouthKorea Switzerland Thailand Turkey Ukraine Vietnam OxfordisaregisteredtrademarkofOxfordUniversityPress intheUKandincertainothercountries PublishedintheUnitedStates byOxfordUniversityPressInc.,NewYork (cid:1)c OxfordUniversityPress2005 Themoralrightsoftheauthorhavebeenasserted DatabaserightOxfordUniversityPress(maker) Firstpublished2005 Allrightsreserved. Nopartofthispublicationmaybereproduced, storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans, withoutthepriorpermissioninwritingofOxfordUniversityPress, orasexpresslypermittedbylaw,orundertermsagreedwiththeappropriate reprographicsrightsorganization. Enquiriesconcerningreproduction outsidethescopeoftheaboveshouldbesenttotheRightsDepartment, OxfordUniversityPress,attheaddressabove Youmustnotcirculatethisbookinanyotherbindingorcover andyoumustimposethissameconditiononanyacquirer BritishLibraryCataloguinginPublicationData Dataavailable LibraryofCongressCataloguinginPublicationData Dataavailable TypesetbySPIPublisherServices,Pondicherry,India PrintedinGreatBritain onacid-freepaperby BiddlesLtd.,King’sLynn. Norfolk ISBN0-19-856820-7 978-0-19-856820-9 1 3 5 7 9 10 8 6 4 2 `a Sylvie This page intentionally left blank Contents Preface xi Acknowledgements xv 1 Algorithmic aspects 1 1.1 Algorithms for computing g(a ,a ,a ) 3 1 2 3 1.1.1 Rødseth’s Algorithm 3 1.1.2 Davison’s Algorithm 4 1.1.3 Killingbergtrø’s method 6 1.2 General algorithms 8 1.2.1 Scarf and Shallcross’ method 8 1.2.2 Heap and Lynn method 11 1.2.3 Greenberg’s Algorithm 18 1.2.4 Nijenhuis’ Algorithm 19 1.2.5 Wilf’s Algorithm 19 1.2.6 Kannan’s method 21 1.3 Computational complexity of FP 24 1.4 Supplementary notes 28 2 The Frobenius number for small n 31 2.1 Computing g(p,q) is easy 31 2.2 A Formula for g(a ,a ,a ) 35 1 2 3 2.3 Results when n = 3 36 2.3.1 Hofmeister’s formula and its generalization 39 2.3.2 More special cases 40 2.3.3 Johnson integers 42 2.4 g(a ,a ,a ,a ) 42 1 2 3 4 2.5 Supplementary notes 43 3 The general problem 45 3.1 Formulas and upper bounds 45 3.2 Bounds in terms of the lcm(a ,...,a ) 57 1 n 3.3 Arithmetic and related sequences 59 3.4 Regular bases 61 3.5 Extending basis 62 viii Contents 3.6 Lower bounds 63 3.7 Supplementary notes 68 4 Sylvester denumerant 71 4.1 From partitions to denumerants 71 4.2 Formulas and bounds for d(m;a ,...,a ) 73 1 n 4.3 Computing denumerants 77 4.3.1 Partial fractions 77 4.3.2 Bell’s method 78 4.4 d(m;p,q) 80 4.5 d(m;a ,a ,a ) and d(m;a ,a ,a ,a ) 81 1 2 3 1 2 3 4 4.6 Hilbert series 86 4.7 A proof of a formula for g(a ,a ,a ) 89 1 2 3 4.8 Ehrhart polynomial 91 4.9 Variations of the denumerant 95 4.9.1 d(cid:2)(m;a ,...,a ) 96 1 n 4.9.2 d(cid:2)(cid:2)(m;a ,...,a ) 98 1 n 4.10 Supplemetary notes 100 5 Integers without representation 103 5.1 Sylvester’s classical result 103 5.2 Nijenhuis’ and Wilf’s results 105 5.3 Formulas for N(a ,...,a ) 108 1 n 5.4 Arithmetic sequences 110 5.5 The sum of integers in N(p,q) 111 5.6 Related games 113 5.6.1 Sylver Coinage 113 5.6.2 The jugs problem 114 5.7 Supplemetary notes 117 6 Generalizations and related problems 119 6.1 Special functions 119 6.2 The modular generalization 124 6.3 The postage stamp problem 127 6.4 (a ,...,a )-trees 128 1 n 6.5 Vector generalization of FP 130 6.6 Supplementary notes 133 7 Numerical semigroups 135 7.1 Gaps and non-gaps 135 7.1.1 Telescopic semigroups 139 7.1.2 Hyperelliptic semigroups 140 Contents ix 7.2 Symmetric semigroups 141 7.2.1 Intersection of semigroups 148 7.2.2 Ap´ery sets 149 7.3 Related concepts 150 7.3.1 Type sequences 150 7.3.2 Complete intersection 152 7.3.3 The Mo¨bius function 153 7.4 Supplementary notes 154 8 Applications of the Frobenius number 159 8.1 Complexity analysis of the Shell-sort method 159 8.2 Petri Nets 161 8.2.1 P/T systems 161 8.2.2 Weighted circuits systems 163 8.3 Partition of a vector space 165 8.4 Monomial curves 168 8.5 Algebraic geometric codes 171 8.6 Tilings 174 8.7 Applications of denumerants 175 8.7.1 Balls and cells 175 8.7.2 Conjugate power equations 177 8.7.3 Invariant cubature formulas 179 8.8 Other applications 179 8.8.1 Generating random vectors 179 8.8.2 Non-hamiltonian graphs 181 8.9 Supplementary notes 183 Appendix A Problems and conjectures 185 A.1 Algorithmic questions 185 A.2 g(a ,...,a ) 186 1 n A.3 Denumerant 187 A.4 N(a ,...,a ) 187 1 n A.5 Gaps 188 A.6 Miscellaneous 189 A.6.1 Erdo˝s’ Problems 191 Appendix B 193 B.1 Computational complexity aspects 193 B.2 Graph theory aspects 194 B.3 Modules, resolutions and Hilbert series 194 B.4 Shell-sort method 197 x Contents B.5 Bernoulli numbers 198 B.6 Irreducible and primitive matrices 200 B.6.1 Upper bounds of index of primitivity 202 B.6.2 Computation of index of primitivity 203 References 205 Index 241