The Development of an Antagonistic SMA Actuation Technology for the Active Cancellation of Human Tremor by Anupam Pathak A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) in the University of Michigan 2010 Doctoral Committee: Associate Professor Diann Erbschloe Brei, Co-Chair Assistant Research Scientist Jonathan E. Luntz, Co-Chair Associate Professor Brent Gillespie Associate Professor John A. Shaw © Anupam Pathak All Rights Reserved 2010 Acknowledgements I am sincerely grateful for my advisor, Diann Brei, who has offered her guidance and support through my graduate school career and enabled me to complete this dissertation. Diann’s mentorship helped to foster my creativity both as a researcher and engineer, and she has always encouraged me to pursue new ideas and opportunities. I have felt, among the rest of her students, a part of an extended family, which is something I have always appreciated. Jon Luntz, my co-advisor, has also played a key part in my work. I have been fortunate to experience his passion for technical knowledge almost every day, and he has always encouraged me to have the confidence to learn new topics, no matter how difficult they seem. My committee members, John Shaw and Brent Gillespie have offered significant guidance in this process, for which I am thankful. Several portions of this dissertation could not have been accomplished without John Shaw’s help and the use of his experimental facilities. My excellent science and math instructors in the past have collectively influenced my pursuit of this dissertation through their guidance, and encouragement for personal development. My Berkeley professors have all challenged me to learn, pursue research, and attempt to solve the many social issues we experience today. I particularly want to thank Benson Tongue my research advisor at Berkeley for his generous mentorship and support, both past and present. His instruction helped me immensely, and his comedy has taught me to enjoy life and stay optimistic. I’d like to thank all of my friends all across the world for their support and camaraderie, and I want to give a special thanks to the participants in the China EAPSI ii program for their interest and discussion regarding my research. My lab mates (past and present) -- Paul Alexander, Jarod Kelly, Jim Otten, Monica Toma, Nathan Wilmot, Brian Barnes, John Redmond, Julianna Abel, Brent Utter, Won Hee Kim, Shishira, and Poorna Mane -- have all supported me along the way, and I have always enjoyed sharing our common interests in creativity and invention. Most importantly, I must acknowledge my family. I’m thankful for my girlfriend Karolina who has supported me through this entire process, and served as an inspiration through her love for learning, and her artistic creativity. She has been a wonderful influence in my life. My two sisters, Smita and Shalini, who I love very much, have always been proud and supportive of my endeavors and I am so lucky to have them. My brilliant parents have been and continue to be role models that I aspire to. Both my Mom and Dad have always offered unconditional love and support that has enabled me to take risks in life and pursue areas I’m passionate about. iii Table of Contents Page Acknowledgements ............................................................................................................... ii List of Figures ........................................................................................................... x List of Tables .......................................................................................................... xvi Abstract ................................................................................................................ xviii Chapter 1: Introduction .............................................................................................. 1 1.1 Tremor ....................................................................................................... 3 1.1.1 Tremor Classifications .......................................................................................... 3 1.1.2 Tremor Motion Characteristics ............................................................................. 4 1.1.3 Treatments for Essential Tremor .......................................................................... 6 1.1.3.1 Pharmacological Treatments ............................................................................ 7 1.1.3.2 Surgical Treatments ......................................................................................... 7 1.1.3.3 Assistive Devices ............................................................................................. 8 1.1.4 Mitigation of Physiological Tremor ................................................................... 10 1.1.4.1 Medical Sector ............................................................................................... 11 1.1.4.2 Manufacturing Sector .................................................................................... 12 1.1.4.3 Military Sector ............................................................................................... 13 1.2 Classification of Tremor Reduction Approaches ....................................... 15 1.2.1 Isolation .............................................................................................................. 15 1.2.2 Suppression ......................................................................................................... 16 1.2.3 Active Cancellation ............................................................................................ 17 1.2.4 Summary and Downselection ............................................................................. 18 1.3 Actuator Selection for Active Cancellation ............................................... 20 1.3.1 Conventional Actuation vs. Smart Material Actuation ....................................... 21 1.3.2 Smart Materials ................................................................................................... 25 1.3.2.1 Magnetostrictors ............................................................................................ 25 1.3.2.2 Electrostrictors ............................................................................................... 26 1.3.2.3 Piezoelectrics ................................................................................................. 27 1.3.2.4 Shape Memory Alloys ................................................................................... 28 1.4 Shape Memory Alloy Background ........................................................... 29 1.4.1 History of Shape Memory Alloys ....................................................................... 30 iv 1.4.2 Shape Memory Phenomena ................................................................................ 31 1.4.2.1 Shape Memory Effect .................................................................................... 32 1.4.2.2 Pseudoelasticity ............................................................................................. 33 1.4.3 Applications ........................................................................................................ 34 1.4.3.1 Military and Aerospace .................................................................................. 34 1.4.3.2 Medical Field ................................................................................................. 35 1.4.3.3 Consumer Market .......................................................................................... 36 1.4.4 Antagonistic Architecture ................................................................................... 37 1.4.5 Research Issues ................................................................................................... 40 1.4.5.1 Cyclic Repeatability ....................................................................................... 40 1.4.5.2 Actuation Frequency ...................................................................................... 42 1.4.5.3 Prediction and Control ................................................................................... 43 1.5 Research Goals and Objectives ................................................................. 45 1.6 Research Approach .................................................................................. 45 1.6.1 The Study of Shakedown in the Quasi-Static Design of the SMA Stabilizing Handgrip ........................................................................................... 46 1.6.2 Investigations of Convective Heat Transfer from SMA ..................................... 47 1.6.3 Transient Thermodynamic Modeling and Experimental Validation of the Antagonistic SMA Actuation Architecture ................................................... 48 1.6.4 Dynamic Design of the Active Cancellation of Tremor System ........................ 48 1.7 Contributions ........................................................................................... 49 Chapter 2: The Study of Shakedown in the Design of the SMA Stabilizing Handgrip ............................................................................................................... 52 2.1 Dynamic Weapons Modeling ................................................................... 54 2.1.1 Generic Weapons Model .................................................................................... 55 2.1.1.1 System of Equations ...................................................................................... 58 2.1.1.2 Estimating Human Disturbances ................................................................... 61 2.1.1.3 Generation of Actuator Requirements ........................................................... 63 2.1.2 Weapon System Case Studies ............................................................................. 64 2.1.2.1 M24 Sniper Rifle ........................................................................................... 65 2.1.2.1.1 Human Disturbance Estimation........................................................................ 65 2.1.2.1.2 Actuator Requirements ..................................................................................... 66 2.1.2.2 M16 Assault Rifle ........................................................................................... 67 2.1.2.2.1 Human Disturbance Estimates ......................................................................... 68 2.1.2.2.2 Actuator Requirements ..................................................................................... 69 2.1.3 M16 Stabilizing Handgrip Specifications ........................................................... 70 2.2 Stacked Platform Design .......................................................................... 71 2.2.1 Architecture and Operation ................................................................................. 72 2.2.2 Loading Theory .................................................................................................. 73 2.3 Quasi-Static Design Methodology ............................................................ 75 2.3.1 Stabilizing Handgrip Prototype .......................................................................... 76 v 2.3.2 Initial System Load Lines ................................................................................... 77 2.3.2.1 Experimental Setup and Procedure ................................................................ 77 2.3.2.2 Initial Azimuth Load Lines ............................................................................ 78 2.3.2.3 Initial Elevation Load Lines .......................................................................... 79 2.3.2.4 Pre-Shakedown SMA Load Lines ................................................................. 80 2.3.3 Post-Shakedown SMA Load Lines ..................................................................... 81 2.3.3.1 Shakedown Experimental Setup and Procedure ............................................ 81 2.3.3.2 SMA Shakedown Results and Empirical Modeling ...................................... 82 2.3.3.3 Post-Shakedown Material Characterization ................................................... 84 2.3.3.4 SMASH SMA Length Selection .................................................................... 84 2.4 Platform Characterization ......................................................................... 85 2.4.1 Quasi-Static Platform Performance .................................................................... 85 2.4.1.1 Azimuth Testing with Shaken Down Wire .................................................... 86 2.4.1.2 Elevation Testing with Shaken Down Wire ................................................... 87 2.4.2 Device Motion Performance ............................................................................... 88 2.4.2.1 Test Results .................................................................................................... 88 2.4.2.2 Spooling Effects ............................................................................................. 89 2.4.3 Dynamic Performance: Motion and Power Draw ............................................... 91 2.4.4 Feasibility Studies for Cancellation of Motion Disturbances ............................. 93 2.4.4.1 Initial Tremor Tests ....................................................................................... 94 2.4.4.1.1 Experimental Setup for Cancellation ............................................................... 94 2.4.4.2 Cancellation Trials ......................................................................................... 96 2.4.4.2.1 Square Wave Input ........................................................................................... 97 2.4.4.2.2 Smoothing Functions........................................................................................ 99 1 Hz .............................................................................................................................. 100 2 and 3 Hz ..................................................................................................................... 101 2.4.4.3 Smoothing Summary ................................................................................... 101 2.5 Conclusions ........................................................................................... 102 Chapter 3: Investigations of Convective Heat Transfer from SMA Wires............... 106 3.1 Transformation Strain Based Method for Convective Heat Transfer Characterization of Shape Memory Alloy Wires .................................... 107 3.1.1 Transformation Strain to Temperature Correlation .......................................... 111 3.1.2 Transformation Strain Based Experimental Method ........................................ 113 3.1.2.1 Experimental Procedure ............................................................................... 114 3.1.2.2 Convection in Air......................................................................................... 115 3.1.2.2.1 Free Convection in Air ................................................................................... 115 3.1.2.2.1.1 Validation ................................................................................................ 116 3.1.2.2.1.2 Empirical Correlation .............................................................................. 119 3.1.2.2.2 Forced Convection in Air ............................................................................... 121 3.1.2.2.2.1 Empirical Correlation .............................................................................. 121 3.1.2.3 Free Convection in Mineral Oil ................................................................... 123 3.1.2.4 Effective Convection in Thermal Grease ..................................................... 124 vi 3.1.2.5 Free Convection in Water ............................................................................ 126 3.1.2.6 Comparison of Cooling Media .................................................................... 127 3.2 Carbon Nanotube (CNT) Fins for the Enhanced Cooling of Shape Memory Alloy Wire .............................................................................. 129 3.2.1 CNT Growth ..................................................................................................... 131 3.2.2 Experimental Setup and Procedure ................................................................... 134 3.2.3 Results and Discussion ..................................................................................... 136 3.2.3.1 Cooling Model ............................................................................................. 137 3.2.3.2 Cooling Comparison .................................................................................... 139 3.3 Conclusions ........................................................................................... 140 Chapter 4: Transient Thermodynamic Modeling and Experimental Validation of an Antagonistic SMA Actuation Architecture ........................................... 145 4.1 Model of SMA Wire in Antagonistic Architecture .................................. 147 4.1.1 SMA Modeling Background ............................................................................. 148 4.1.1.1 Empirical Modeling ..................................................................................... 149 4.1.1.2 Microstructure Modeling ............................................................................. 150 4.1.1.3 Thermomechanical Modeling ...................................................................... 150 4.1.2 Model Formulation ........................................................................................... 152 4.1.3 Antagonistic Compatibility Relations ............................................................... 155 4.1.3.1 Antagonistic Wire Taught ............................................................................ 156 4.1.3.2 Antagonistic Wire Slack .............................................................................. 157 4.1.4 Energy Balance and Convective Heat Transfer ................................................ 157 4.1.5 Solution Procedure for Transient Model .......................................................... 160 4.2 Experimental Validation of the Transient Thermodynamic Model .......... 161 4.2.1 Experimental Setup and Procedure ................................................................... 162 4.2.2 Model Analysis ................................................................................................. 164 4.2.2.1 Convective Coefficient ................................................................................ 165 4.2.2.2 Slack ............................................................................................................ 168 4.2.2.3 Boiling ......................................................................................................... 171 4.2.2.4 Friction ......................................................................................................... 171 4.2.2.5 Inertia ........................................................................................................... 172 4.2.2.6 Summary ...................................................................................................... 174 4.2.3 Varying Experimental Conditions .................................................................... 175 4.2.3.1 Frequency Tests ........................................................................................... 176 4.2.3.2 Partial Transformation Tests ........................................................................ 177 4.2.3.3 Duty Cycle Tests .......................................................................................... 180 4.2.3.4 Wire Diameter Tests .................................................................................... 182 4.3 Design Studies ....................................................................................... 184 4.3.1 Mechanical Advantage ..................................................................................... 185 4.3.2 Environmental Effects ...................................................................................... 188 vii 4.3.2.1 Convective Coefficient ................................................................................ 189 4.3.2.2 Ambient Temperature .................................................................................. 190 4.3.3 Duty Cycle ........................................................................................................ 192 4.3.4 Summary and Design Implications ................................................................... 196 4.4 Conclusions ........................................................................................... 198 Chapter 5: Dynamic Case-Study: The Active Cancellation of Tremor (ACT) System ............................................................................................................. 202 5.1 Handheld Tremor Cancellation Device ................................................... 203 5.1.1 ACT System Architecture and Operation ......................................................... 203 5.1.2 Motion Generating Platform Kinematics .......................................................... 205 5.1.3 ACT System Model Solution ............................................................................ 207 5.2 Parameter Analyses ................................................................................ 208 5.2.1 Assumptions ..................................................................................................... 208 5.2.1.1 Variables ...................................................................................................... 209 5.2.1.2 Constraints ................................................................................................... 210 5.2.2 Convective Coefficient ..................................................................................... 211 5.2.3 Diameter ........................................................................................................... 213 5.2.4 Length ............................................................................................................... 214 5.2.5 Controller Gain ................................................................................................. 215 5.2.6 Wire Angle ....................................................................................................... 217 5.3 Tremor Cancellation Device and Experiments ........................................ 220 5.3.1 ACT Prototype .................................................................................................. 220 5.3.2 Cancellation Test Procedure ............................................................................. 223 5.3.3 Single Frequency Testing ................................................................................. 223 5.3.4 Human Tremor Cancellation ............................................................................ 227 5.3.5 Power Consumption.......................................................................................... 229 5.4 Conclusions ........................................................................................... 230 Chapter 6: Conclusion ........................................................................................... 233 6.1 Contributions ......................................................................................... 234 6.1.1 Quasi-Static Design Accounting for Shakedown ............................................. 234 6.1.2 Investigation of Convective Heat Transfer ....................................................... 236 6.1.3 Thermodynamic Modeling ............................................................................... 239 6.1.4 ACT Case Study ............................................................................................... 241 6.1.5 Antagonistic SMA Actuator Characteristics and Design Strategies ................. 242 6.1.5.1 Environmental Conditions ........................................................................... 243 6.1.5.2 Geometric Properties ................................................................................... 245 6.1.5.3 Electric Heating Input .................................................................................. 247 6.2 Limitations and Future Work.................................................................. 248 viii 6.2.1 SMA Material ................................................................................................... 248 6.2.2 Cooling Techniques .......................................................................................... 249 6.2.3 Modeling ........................................................................................................... 250 6.2.4 Active Tremor Cancellation ............................................................................. 251 6.3 Future Applications and Spinoffs ........................................................... 252 References ............................................................................................................. 255 ix
Description: