ebook img

The detection of C60 in the well-characterized planetary nebula M1-11 PDF

1.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The detection of C60 in the well-characterized planetary nebula M1-11

PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 THEDETECTIONOFC60INTHEWELL-CHARACTERIZEDPLANETARYNEBULAM1-11 MASAAKIOTSUKA1,2,F.KEMPER1,S.HYUNG3,B.A.SARGENT2,4,M.MEIXNER2,A.TAJITSU5,K.YANAGISAWA6 1InstituteofAstronomyandAstrophysics,AcademiaSinicaP.O.Box23-141,Taipei10617,Taiwan,R.O.C.;[email protected] 2SpaceTelescopeScienceInstitute,3700SanMartinDrive,Baltimore,MD21218,U.S.A. 3SchoolofScienceEducation(Astronomy),ChungbukNationalUniversity,CheongJu,Chungbuk361-763,Korea 4CenterforImagingScienceandLaboratoryforMultiwavelengthAstrophysics,RochesterInstituteofTechnology,54LombMemorialDrive,Rochester,NY 14623,USA 5SubaruTelescope,NAOJ,650NorthA’ohokuPlace,Hilo,Hawaii96720,U.S.A.and 6OkayamaAstrophysicalObservatory(OAO),NAOJ,Kamogata,Okayama719-0232,Japan 3 (Received;Revised;Accepted) 1 0 ABSTRACT 2 We performed multiwavelength observations of the young planetary nebula (PN) M1-11 and obtained its n elementalabundances,dustmass,andtheevolutionarystatusofthecentralstar. TheAKARI/IRC,VLT/VISIR, a andSpitzer/IRSspectrashowfeaturesduetocarbon-richdust,suchasthe3.3,8.6,and11.3µmfeaturesdue J topolycyclicaromatichydrocarbons(PAHs), a smoothcontinuumattributableto amorphouscarbon,andthe 9 broad11.5and30µmfeaturesoftenascribedtoSiCandMgS,respectively. Wealsoreportthepresenceofan 2 unidentifiedbroadfeatureat16–22µm,similartothefeaturefoundinMagellanicCloudPNewitheitherC-rich orO-richgas-phasecompositions. We identifyforthe firsttimeinM1-11spectrallinesat8.5(blendedwith ] R PAH),17.3,and18.9µmthatweattributetotheC60fullerene.Thisidentificationisstrengthenedbythefactthat otherGalacticPNeinwhichfullerenesaredetected,havesimilarcentralstars,similargas-phaseabundances, S and a similardust compositionto M1-11. The weak radiationfield due to the relativelycoolcentralstars in . h thesePNemayprovidefavorableconditionsforfullerenestosurviveinthecircumstellarmedium. Usingthe p photo-ionizationcodeCLOUDY,combinedwithamodifiedblackbody,wehavefittedthe∼0.1–90µmspectral - energydistributionanddeterminedthedustmassinthenebulatobe∼3.5×10- 4M . Ourchemicalabundance o ⊙ r analysisandSEDmodelsuggestthatM1-11isperhapsaC-richPNwithC/Oratiointhegas-phaseof+0.19 t dex,andthatitevolvedfroma1–1.5M star. s ⊙ a Subjectheadings:ISM:planetarynebulae:individual(M1-11),ISM:abundances [ 1 1. INTRODUCTION coolcentralstar(29300K, Phillips2003),andthe nebulais v relativelycompact,withasizeof.6′′indiameterinHαemis- 4 ThemoststablefullereneisC60 (Draine2011). Fullerenes sion,anditappearstobeaveryyoungobject(∼1000yrafter 0 togetherwithothercarbondustsuchasgraphiteareexpected leavingtheAGBphase,thispaper).Henryetal. (2010)mea- 1 tobeimportantcomponentsoftheinterstellarmedium(ISM), sured the C abundance in M1-11 using recombination lines 7 because they contribute to interstellar extinction. For exam- (RLs) and the O abundance with collisionally excited lines . ple, Dopitaet al. (1997)arguedthe possibilitythatthe deep 1 (CELs, number density ratio of C/O = 79.4). To date, only 0 2200Åabsorptionfeatureinthelow-excitationplanetaryneb- upper limits to the intensities of the CELs C III] 1906 and 3 ula(PN)SMP LMC8mightbebyasurfacechargeslop res- 1909Å areobtained(Kingsburgh&Barlow 1994),andthus :1 aornoaunncde tohnisCw60a.velTenhgethgrdapuheitteogπr→ainπs∗healveectaronspeexctcriataltpioenask. thegasphaseC/OratioofM1-11derivedfromthesametype v of emission line is still unknown. However, M1-11 is also Fullerene and polycyclic aromatic hydrocarbons(PAHs) re- i known to be a dust-rich PN, showing predominantly C-rich X semblegraphite;thereforesuchgrainshavestrongelectronic dust. Silicon carbide (SiC) and amorphous silicate features transitionsaround2200Å(Draine2011).Theinvestigationof r areseenintheIRAS/LRSdata(Zhang&Kwok1990).Asig- a circumstellarcarbongrainssuchasC wouldbeimportantto 60 nificantnear-infraredexcesssuggeststhepresenceofhotdust understandISMevolutionmoredeeply. (Phillips & Ramos-Larios 2005; Zhang & Kwok 1990), al- RecentSpitzer/IRSstudiesshowthatfullerenesC arede- 60 thoughthereisalsoacontributionfromthe3.3 µmemission tectedinseveralyoungPNe,aproto-PN,andtwopostasymp- feature due to PAHs in the near infrared(Allen et al. 1982). totic giantbranchstars (postAGB) in the MilkyWay (Cami Longerwavelengthemissionfeaturesat6.2,6.9,7.7,and8.6 et al. 2010; García-Hernándezet al. 2010; Zhang & Kwok µmduetoPAHsarereportedbyCohenetal. (1986). Avery 2011; Gielen et al. 2011) and also in a handfulyoung PNe weakandtentativefeatureisseenaround6.9-7.0µm(seeCo- in the Magellanic Clouds (García-Hernández et al. 2011a; hen et al. 1986). Indeed, there are other C transitions at Bernard-Salaset al. 2012). The detectioncases are increas- 60 7.0and8.5µmbutCohenetal. (1986)showsomeevidence ing,howevertheexcitationandformationmechanismisstill (althoughthequalityoftheirdataisnotsatisfactory)forapos- unclear(e.g.,Camietal.2011;García-Hernández2012).The sibledetectionalsoinM1-11. Therefore,M1-11isperhapsa detectionsgenerallysuggestthatfullerenescansurviveorbe C-richPN. observedinaC-richenvironmentwithaweakradiationfield. To confirm whether C in M1-11 is real and also obtain M1-11(PN G232.8- 04.7)is a good sample in C forma- 60 60 insightsaboutC formation,weneedtoinvestigatethephys- tioninacircumstellarenvironment,becausemostoftheC 60 60 ical and chemical properties of the dust and ionized nebula PNehavecoolcentralstars(∼30,000K)andC-richnebulae, and the nature of the central star, then we need to compare andtheyareveryyoung(∼1000yr). Indeed,M1-11hasthe 2 Otsukaetal. thederivedquantitieswiththoseinC PNe. Tocharacterize signal-to-noiseratio(S/N)ofthecontinuumisnecessary. The 60 M1-11,weobtainedcontinuousdatafromtheUVtothefar- resulting S/N after subtraction of the sky background was infrared using several instruments, and we comprehensively foundto range from ∼5 at ∼3700 Å to ∼30 at ∼5200 Å in investigatedthisPN. thebluespectrum,andfrom ∼5at∼4800Åto15at∼6700 Inthispaper,wediscussC inM1-11basedontheinfor- 60 Åintheredone. mationofthedustandgascompositionsandtheevolutionary Data reduction of the Subaru/HDS spectra and analysis status of the central star. In section 2, we describe the UV- of the emission lines was done with the long-slit reduction tomid-infrared(mid-IR)spectroscopicdatafromtheInterna- packagenoao.twodspecavailableinIRAF7,andwasper- tional Ultraviolet Explorer (IUE), Subaru/HDS, OAO/ISLE, formed in the same manner as described by Otsuka et al. AKARI/IRC,VLT/VISIR,andSpitzer/IRS,aswellasnarrow- (2010). Whenmeasuringthefluxesoftheemission-lines,we band imaging obtained with WFPC2 on the Hubble Space assumedthattheline profileswereGaussianandweapplied Telescope (HST). The description in Section 2.6 includes a amultipleGaussianfittingtechnique. listofdustfeaturesseeninM1-11,specifically,wereportthe Thelinefluxeswerede-reddenedusing discovery of weak features at 8.5, 17.3 and 18.9 µm lines, which are attributed to the C fullerenes. The derivationof I(λ) F(λ) 60 log =log +c(Hβ)f(λ), (1) the ionic and elemental abundances in the ionized nebula is 10(cid:20)I(Hβ)(cid:21) 10(cid:20)F(Hβ)(cid:21) givenin Section 3. In Section 4, we discuss the observedC andOgasabundancesandcomparethemwiththepredictions whereI(λ)andF(λ)arethede-reddenedandtheobserved fromnucleosynthesismodelsforAGBstars.Usingthephoto- fluxes at λ, respectively, and f(λ) is the interstellar extinc- ionizationcode CLOUDY (Ferlandetal. 1998),wefitted the tionparameteratλ,fromthereddeninglawofCardellietal. spectral energy distribution (SED) and determined the dust (1989) with RV = 3.1. The interstellar reddening correction massandtheevolutionarystatusofthecentralstar. Section4 wasperformedusingthereddeningcoefficientc(Hβ),atHβ. alsoincludesadiscussionontheformationofC ,andacom- We compared the observed Balmer line ratios of Hγ (blue 60 parisonofthephysicalpropertiesofM1-11tothoseofother spectrum) or Hα (red spectrum) with Hβ to the theoretical GalacticPNethatexhibitfullerenefeatures. Asummaryand ratio computed by Storey & Hummer (1995) assuming the futureprospectsaregiveninSection5. electron temperature T = 104 K and the electron density n e e =104 cm- 3 assumingthatthenebulaisopticallythickinLy- 2. OBSERVATIONSANDDATAREDUCTION α (Case B of Baker & Menzel 1938). We derived c(Hβ) = 2.1. Subaru/HDSobservations 1.677±0.008fortheblueand1.218±0.017fortheredspec- tra. We obtained optical spectra of M1-11 using the High- Thefluxscalingwasperformedusingallemissionlinesde- DispersionSpectrograph(HDS;Noguchietal.2002)attached tectedintheoverlapregionbetweentheblueandtheredspec- tooneofthetwoNasmythfociofthe8.2-mSubarutelescope, tra. Thede-reddenedrelativeintensitiesI(λ)detectedinboth on October 6, 2008 (programID: S08B-110, PI: M.Otsuka) spectra are consistent within 10% of each other. The com- andOctober18,2005(PI:A.Tajitsu). Thespectraweretaken bined de-reddened spectrum is presented in Fig. 1, and the in two wavelength ranges: 3600–5400 Å (the blue spectra, detectedlinesarelistedintheAppendix(Table16). Wehave taken in 2008) and 4600–7500 Å (the red spectra, taken in detectedover160emissionlines,thusexceedingthenumber 2005). of detections by Henry et al. (2010), who report more than Whenweobtainedthebluespectra,anatmosphericdisper- 70 lines in the 3700–9600Å spectra. Our measurements of sioncorrector(ADC)wasusedtominimizethedifferentialat- thelineintensitiesI(λ)areinagreementwiththeresultsfrom mosphericdispersionoverthe broadwavelengthregion. We Henryetal.(2010)withina∼14%error. used a slit width of 1.′′2 (0.6 mm) and a 2×2 on-chip bin- Specifically,wedetectedCII,NII,andOIIRLs,andhighly ning. We set the slit length to be 8′′ (4.0 mm), which fitted excitedlinesduetoHeII,CIII,andNIII. Thesehighexcita- thenebulawellandallowedustodirectlysubtractskyback- tionlinesshowarelativelybroadFWHM(∼0.8-1.6Å)com- groundfromtheobjectframes. Theslitpositionangle(P.A.) paredtotypicalnebularlines(∼0.2–0.5Å).Itispossiblethat was ∼225◦. The CCD sampling pitch along the slit length projectedonthe skywas ∼0.′′276perbinnedpixel. There- theHeII,CIII,andNIIIlinesarenotofnebularoriginbutof stellarorigin,becausetheeffectivetemperatureofthecentral solving power reached around R >33000, which is derived star(29300K;Phillips2003)isnothighenoughforspecies from the mean of the full width at half maximum (FWHM) withanionizationpotential(IP)&40eVtoexistinthenebula. of narrow Th-Ar and night sky lines. The total exposure Forexample,wedidnotdetectanynebularlinesfromspecies time was 600 sec (=300 sec ×2 frames). For the flux cali- withanIP&40eV,suchas[NeIII]λλ3876/3967(IP>41eV) bration,blazefunctioncorrection,andairmasscorrection,we and[ArIV]λ4711/40(>40.7eV).TheIPsofHeII,CIII,and observedG192B2Basastandardstar. NIIIare54.4,47.9,and47.5eV,respectively. Fortheredspectra,weusedtheredimagede-rotatorandset For our analysis, we also used the emission-line fluxes in ittoP.A.=90◦. Wesettheslitwidthto0.′′6andtheslitlength to7′′ andselecteda1(wavelengthdispersion)×2(spatialdi- the 7700–9300 Å range measured by Henry et al. (2010) scaledinsuchawaythattheshorterwavelengthpartoftheir rection)on-chipbinning. TheresultingspectralresolutionR spectrummatchesourHDSobservations. is >65000. We used an exposure time of 300 sec and ob- servedG192B2Basastandardstar. 2.2. HST/WFPC2archivedata Forbothsetsofobservations,wetookseveralbias,instru- mental flat lamp, and Th-Ar comparison lamp frames. We 7 IRAFisdistributedbytheNationalOptical AstronomyObservatories, are interested in detecting weak C, N, and O recombination whichareoperatedbytheAssociationofUniversitiesforResearchinAstron- lines. The peak intensities of these lines are typically ∼10- omy(AURA),Inc.,underacooperativeagreementwiththeNationalScience 20% higher than the local continuum, and therefore a high Foundation. ThedetectionofC inthePNM1-11 3 60 FIG.1.—Thescaledandde-reddenedHDSspectrumofM1-11.Thewave- lengthisshiftedtotherestwavelengthinair. We downloaded archival HST/WFPC2 photometry in the F656N(6564Å/28Å)filter(P.I.:R.Sahai;PID:8345),which tracestheHαemission. Wereducedthephotometricdataus- ingthestandardHST pipelinewithMultiDrizzle,andpresent thedrizzledM1-11F656NimageinFig.2. Theplatescaleis 0.025′′pixel- 1. TheimageshowsthatM1-11isanelongated FIG.2.—HST/WFPC2F656NimageofM1-11,rotatedaccordingtoelon- nebula; the dimensions of the bright rim are ∼0.8′′ along gationofthenebula. Intheinner2′′×2′′box,thegrayscaleisadjustedto showthebrightnessofthebrightrimandthecentralstar. Theradialprofiles P.A.=–27◦and∼0.5′′alongP.A.=+63◦. inHαandn(H+)fromA(Dec.relativeposition=–0.5′′)towardsB(–2.7′′) arepresentedinFig.3(a)and(b),respectively. 2.2.1. ThetotalHαandHβfluxes withT =5400KderivedfromtheBalmerjump(Seesection e The de-reddening formula (eq. (1)) requires the total Hβ 3.2),D=2.1kpc(Tajitsu&Tamura1998),andassumingn e flux over the entire nebula to obtain the line fluxes in the ≃ n(H+), n(H+) can be written as a function of the distance AKARI and Spitzer spectra. This can be derived from the fromthecentralstarRincmas WFPC2 Hα image. We find thatthe totalfluxin theF656N filter is 1.77(–11) ± 3.48(–13) erg s- 1 cm- 2 integrated over n(H+)≃3.74×1019 Il(Hα) 0.5. (4) the entire PN (we will use the notation X(- Y) for X×10- Y, (cid:18) ǫR (cid:19) hereafter),whereweassumethattheuncertaintycorresponds The resulting n(H+) profile from A towards B with different tothestandarddeviationofthebackground. UsingtheHDS values for ǫ is presented in Fig. 3(b). If we assume that the redspectrumandthe transmissioncurveofthe F656Nfilter, ionized gas is concentrated within R=1.0′′ and that the den- weestimated∼12.5%ofthetotalmeasuredfluxtobedueto a localcontinuumandthe [NII] 6548Å line flux. Thus, we sity has a constant value of 105 cm- 3 obtained from Balmer estimatedthesoloHαlinefluxtobe1.55(–11)ergs- 1 cm- 2. decrements,thenwefindthatǫisaround0.2. Weusedthese UsingtheobservedF(Hα)/F(Hβ)ratio(6.57)intheHDSred n(H+)profileswithdifferentvaluesforǫintheSEDmodeling spectrum,wederivethetotallogF(Hβ)tobe–11.629ergs- 1 (Seesection4.2). cm- 2,whichiscomparabletologF(Hβ)=–11.84ergs- 1cm- 2 2.3. ISLEObservations measuredbyCahnetal. (1992). We obtained J and Ksband medium-resolution(R∼2500) 2.2.2. Thehydrogendensityprofile spectrausingthenear-infraredimagerandspectrographISLE (Yanagisawa et al. 2006, 2008) attached to the Cassegrain InFig.3(a),wepresenttheradialprofilefromAtowardB focusofthe 1.88-mtelescopeattheOkayamaAstrophysical indicated in Fig. 2. Based on this radial profile, we exam- inedtheionizedhydrogendensity n(H+)asa functionofthe Observatory. Theobservationswere donein ISLE engineer- ingtime in March2008(Ks) andJanuary2010(J). The de- distance from the central star R. When we restrict the inte- tectorofISLEisa1K×1KHgCdTeHAWAIIarray. Weused grationtotheoptionalportionofthenebula,thede-reddened a science grade detector for the J-band observations and an observedHα flux using c(Hβ)=1.218andthe reddeninglaw ofCardellietal. (1989)withR =3.1,I(Hα)inergs- 1 cm- 2 engineeringgradedetectorfortheKs-bandobservations.The V l entranceslit widthwas 1′′ forbothsets of observations. We isgivenby: fixed the P.A. at 90◦ during the observations. The sampling pitchesinwavelengthwere∼1.68×10- 4and∼3.4×10- 4µm 4πD2Il(Hα)=Z 4πj(Hα)ǫdVl, (2) pixel- 1 in the J and Ks spectra, respectively, while the sam- pling pitch in the space direction was 0.′′25 pixel- 1 for both whereDisthedistancetoM1-11fromus; j(Hα)istheemis- spectra. We observed standard stars HIP35132 (A0V) and sioncoefficient;andǫisthefillingfactorwhichisthefraction HIP35180(A1V)fortheJ-bandandHIP31900(F0V)forthe ofthenebularvolumefilledbyionizedgas. V isthevolume l Ks-bandspectraatdifferentairmassestocalibratethefluxlev- oftheofthenebula.InCaseB, els,andcorrectfortelluricabsorptionandairmassextinction. 4πj(Hα) 104 - 1.077 We observedM1-11ina seriesof120sec exposuresinboth ≃3.856×10- 25 . (3) observing modes. The total exposure times were 3600 sec n(H+)n (cid:18) T (cid:19) e e 4 Otsukaetal. FIG.4.—TheISLEJKs-bandspectraofM1-11. BD+30◦3639;Hora&Latter1994forM2-9).Thedifference FIG.3.—TheradialprofilesfromAtoB(Fig.2)inHα(upper)andn(H+) oftheexcitationtemperaturebetweendifferentrotationlevels (lower)withdifferentfillingfactorsǫ. (T ∼2150Kforv=1andT ∼1000Kforv≥2)indicates rot rot H linesarecollisionally(shock)excitedinapart(thecenter) 2 for the J-band spectra and 3480 sec for the Ks-band spec- of the nebula. However, it is evident that the UV excitation tra, respectively. Dark frames with the same science expo- in PDR isstill dominantforthe mostpartof H emissionin 2 sure time, Ar and Xe lamp frames, and on- and off-dome M1-11. flat frames were also taken. For furtherwavelength calibra- Any pure rotational lines in Spitzer/IRS are not detected tionanddistortioncorrection,OH-linesrecordedintheobject (seeTable2). frames were used. The data reduction was performed in a Thelinesat1.15and1.19µmareidentifiedwith[P II](in standardmannerusingIRAF. Theinterstellarreddeningcor- the3P–1D and3P –1D transitions,respectively),represent- 1 2 2 2 rectedspectraarepresentedinFig.4(a)and(b). Forthiscor- ingthediscoveryoftheselinesinM1-11. Adoptingthetran- rection,weadoptedc(Hβ)appliedintheHDSredspectrum. sitionprobabilitiesofMendoza& Zeippen(1982),the colli- TheresultingS/Nsare>40intheJ-bandand>30inKs-band sional impacts of Tayal (2004a) and the level energy listed spectraatthecontinuumlevel. in Atomic Line List v2.05b128, the expected [P II] I(1.19 We detectedmorethan50linesinthesespectra,including µm)/I(1.15µm) ratio is 2.63 in T=10000 K andn =5×104 e e a series of vibration-rotation excited lines of molecular hy- cm- 3. The observedline ratio (2.79±0.44)agreeswell with drogen (H2), as listed in the Appendix (Table 17). The line thetheoreticalvalue,whichconfirmstheidentificationofthe fluxes were normalized such that I(Paβ)=100 in the J-band [P II]1.15/1.19µmlines. Ourmeasurementofthe I([KrIII] andI(Brγ)=100intheKs-bandspectra. 2.19µm)/I(Brγ)ratioof3.44±0.23alsoagreeswithSterling Fig.5showsthespatialprofilesofBrγ andH2 1-0S(1)/2-1 &Dinerstein(2008;3.22±0.26). S(1)linesintheK-bandspectrum.Inthebothspectra,theH 2 lines are easily distinguished with other ionic lines by their 2.4. IUEarchivaldata spatialspreadupto∼16′′inthediameter.TheratioofH21-0 TheN2+ abundancecanbeestimatedfromtheNIII]λ1750 S(1)/2-1S(1)isatraditionalshockindicator(e.g,Hora&Lat- line,presentinarchivalIUEspectrawhichweretrievedfrom ter1994,1996;Kelly&Hrivnak2005).TheratioinM1-11is the Multi-mission Archive at the STScI (MAST). We col- ∼4.5atthecenterofthenebula,anditdecreasesupto ∼1.0 lected low-resolution IUE spectra taken by the Short Wave- outside of the ionized region. The ratio of H 1-0 S(1)/2-1 2 lengthPrime(SWP)andLongWavelengthPrime(LWP)cam- S(1) = 4.5 along the optical nebula (.6′′ in diameter) indi- eras(fileID:SWP25846,LWP05896,andLWP05897),allof catesamixofUVandshockexcitation(thisisusualinproto- whichweremadeusingthelargeaperture(10.3×23arcsec2). PNe,e.g.,Kelly&Hrivnak2005).Furthermore,thedetection ofaseriesofH lineswithuppervibrationallevel(v≥3)in In these spectra, we identified the He II 1640 Å and N III] 2 J-band indicates that these lines are excited by fluorescence 1750Ålines.Wedeterminedthatc(Hβ)=0.67±0.12,bycom- throughtheabsorptionofUVphotonsfromthecentralstarin paringthetheoreticalratioofHeIII(λ1640)/(λ4686)=6.56to photodissociationregion(PDR). theobservedvalue,inthecaseofTe=104Kandne=104cm- 3 The excitationdiagram of H lines in the entire slit of the as given by Storey & Hummer (1995). The interstellar ex- 2 spectra is shown in Fig.6. An ortho-to-pararatio of 3 is as- tinction correction was made using equation (1). The flux sumed.Itclearlyshowsthatthevibrationalexcitationtemper- measurementsofthedetectedlinesalongwiththenormalized ature(T )exceedstherotationexcitationtemperature(T ), vib rot indicating fluorescence emission (cf. Shupe et al. 1998 for 8seehttp://www.pa.uky.edu/∼peter/newpage/ ThedetectionofC inthePNM1-11 5 60 TABLE1 LINESDETECTEDINTHEIUESPECTRA. λlab Ion f(λ) F(λ)a I(λ) (Å) (ergs- 1cm- 2) (I(Hβ)=100) 1640 HeII 1.177 5.03(–14)±9.99(–15) 0.51±0.20 1750 NIII] 1.154 1.51(–13)±1.52(–14) 1.48±0.51 alogF(Hβ)=–11.63ergs- 1cm- 2. tion, we used the IRC Spectroscopy Toolkit for the Phase 3 dataversion.Fig.7showstheIRCspectrumwithalocaldust continuum subtracted. The S/N is >30 for the dust contin- uum. Several prominent lines are visible, and their central wavelengths are indicated by dotted lines. The line fluxes are listed in Table2. For the IRC spectra, we derived that c(Hβ)=1.40±0.03bycomparingtheobservedintensityratios ofHI4–5(Brα4.051µm),4–6(Brβ2.625µm),and5–7(Pfβ 4.653µm)toHβandthetheoreticalvaluesofStorey&Hum- mer(1995)forthecaseof104Kand104cm- 3. Tocorrectfor interstellar reddening, we used the ratio of the extinction at eachwavelengthtotheB- V colorexcess,Aλ/E(B- V),given by Fluks et al. (1994), in combination with the correlation betweenHβ andthecolorexcess,c(Hβ)=1.47E(B- V),from FIG.5.—SpatialprofilesofBrγ(upperpanel),H21- 0S(1)and2- 1S(1) Seaton(1979). lines(lowerpanel)alongtheslitintheK-bandspectrum.Aftersubtractedthe In the AKARI spectra we also found an emission band at 0coSn(1ti)n.uum,profilesarenormalizedbytheintensitypeakofBrγ andH21- 3.2–3.6µm,whichmaybeduetoaromaticandaliphatichy- drocarbonspecies. AsimilarfeatureisseeninPNNGC7027 and proto-PN (PPN) IRAS21282+5050, the latter of which hasa[WC11]centralstar. ISO/SWSarchivalspectraofNGC 7027andIRAS21282+5050areshownforreferenceinFig.7. The resonance at 3.3 µm is attributed to vibrational transi- tionsinpolycyclicaromatichydrocarbons(PAHs;e.g.Draine 2011). We also recognize the 6.2, 7.7, and 11.3 µm reso- nances due to PAHs in the spectra of M1-11. In particular, the 11.3 µm C-H out-of-plane bending mode is seen in the Spitzer/IRSspectrum(Seenextsection). Cohenetal. (1986) already detected the 6.2, 6.7, 7.7, and 8.6 µm resonancesin M1-11. The 3.3 µm band profile of M1-11 is similar to the onesseen in NGC 7027 and IRAS 2182+5050,and thus we assumethattheemissionseeninM1-11isalsoduetoPAHs. Indeed, the 3.3 µm feature was first detected by Allen et al. (1982),whoalsomeasureditsflux. Usingthetheoreticalin- tensity ratio of H I I(5–9) to I(5–11) = 1.86 in the case of T=104Kandn =104cm- 3,weremovedthecontributionfrom e e FIG.6.— MolecularhydrogenexcitationdiagramfromthefullJ-(opencir- HIn=5–9tothe3.3µmfeatureandestimatedthefluxdueto cles)andK-band(filledcircles)spectra.Shownaretheupperstatevibration- PAHsI(PAH3.3µm)tobe7.63(–12)ergs- 1 cm- 2,whichis rotation level populations relative to that in the v=1, J=3 level plotted againsttheenergyoftheupperstateinKelvin(K).gisthestatisticalweight. abouttwiceaslargeasthemeasurementbyAllenetal.(1982; Anortho-to-pararatioof3isassumed. Thepointswithinvibrationallevels 3.1(–12)ergs- 1cm- 2). fallonseparatelines, asexpected fluorescent-excited emission. Linearfits tothedataoneachvibrational level areplottedwiththederivedrotational temperatures. 2.6. Spitzer/IRSandVLT/VISIRarchivaldata M1-11 was observed by Spitzer on November 10, 2006 valuesarelistedinTable1. WhilewedidnotdetecttheCIII] with the 9.9-19.6 µm (SH) and 18.7-37.2 µm (LH) modes λλ1906/09ÅlinesintheSWPandLWPspectra,Kingsburgh on the Infrared Spectrograph (IRS, Houck et al. 2004), as & Barlow (1994) show I(C III]λλ1906/09) to be 6 with an part of program ID 30430 (PI: H. Dinerstein; AORKEY: uncertaintygreaterthanafactorof2. 19903232).Wedownloadedthearchivalspectralimages,and aftermaskingbadpixelsusingIRSCLEAN,weextractedthe 2.5. AKARI/IRCarchivaldata one-dimensionalspectrausingSPICE.TheS/Nis>30forthe Weanalyzedthe2.5–5.5µmprismspectraofM1-11taken dustcontinuum. with the Infrared Camera spectrograph (IRC; Onaka et al. InthespectrumofCohenetal.(1986),veryweakandtenta- 2007)onboardoftheAKARIsatellite(Murakamietal.2007). tivefeaturesareseenaround7.0and8.5µmthatmayariseat The data were obtained as part of a mission program, PN- leastpartiallyfromfullereneC withpossibleblendingfrom 60 SPEC (data ID: 3460037, PI: T.Onaka), on April 11, 2009. the PAH 8.5µm band. However, the quality of theirdata is The used observingwindowwas 1′×1′. For the data reduc- insufficient to be confident of these features. To check the 6 Otsukaetal. FIG.7.— Comparison of the AKARI/IRC spectrum of M1-11 (upper line), the archival ISO/SWS spectra of the PN NGC7027 and the PPN IRAS21282+5050 (middle&lower). Theidentified lines areindicated by thethebrokenlines.TheIDsareindicatedbylowercaseletters;a:Brβ2.63 µm;b:HI5-112.86µm;c:PAH3.29µmC-Hstretch+HI5-93.29µm;d: PAH3.38/3.40µmasymmetricCH3,CH2stretch;e:PAH3.46µmloneC-H stretch;f:PAH3.49/3.51µmsymmetricCH3,CH2stretch;g:PAH3.56µm aldehydesC-Hstretch;h: HI6-19,203.63µm;j: Brα4.05µm;k: HI4- FIG.8.—TheSpitzerspectraofM1-11(blackline)andM1-12(grayline). 5,6-144.05µm;l:HeI3-54.30µm;m:HI6-124.38µm;n:Pfβ4.65µm (innerbox)Theline-profilesofC6017.33and18.94µm.Theline-profilesof (Referenceofthewavelengthofthehydrocarbonlines:Kwok2007). C60at8.5µminM1-11andM1-12arepresentinFig.10. presenceof the C 8.5µm feature,we downloadedthe7.7- 60 13.3µmarchivalspectraldataobtainedusingtheVLT spec- TABLE2 trometerandimagerforthemid-infrared(VISIR)atESOVLT DETECTEDLINESINTHEAKARI/IRC,Spitzer/IRS,ANDVLT/VISIR UT3(ID:084.D-0868A;PI:E.Lagadec).Wereducedtheraw OBSERVATIONS. datausingESOgasgano. TocomparetheVISIRdatawith the Spitzer spectra of other C PNe and also to combine it λvac Ion f(λ) F(λ)a I(λ) 60 (µm) (ergs- 1cm- 2) (I(Hβ)=100) withtheM1-11’sSpitzer spectrum,wedegradedtheoriginal VISIRspectralresolvingpowerof∼400downto90byusing 2.63 HI(Brβ) –0.955 2.09(–12)±2.32(–13) 4.1±0.5 aGaussianconvolutiontechnique.TheS/Noftheconvoluted 2.86 HI5–11 –0.962 6.12(–13)±8.41(–14) 1.2±0.2 3.29 PAH –0.971 8.81(–12)±2.55(–13) 16.2±1.0 VISIRspectrumis>70. +HI5–9 TheIRSandVISIRcombined7.7-37.2µmspectrumwhich 3.41 PAH –0.973 1.47(–12)±2.98(–13) 2.7±0.6 is shown in Fig. 8, reveals the solid-state/molecularfeatures 3.49 PAH –0.974 2.04(–12)±3.77(–13) 3.7±0.7 andatomiclinesonthedustcontinuumthermalemission.The 3.56 PAH –0.975 6.92(–13)±3.47(–13) 1.3±0.6 3.63 HI6–19 –0.976 1.59(–12)±4.08(–13) 2.9±0.8 detectedlinesarelistedinTable2. Theemissionaround8.5 +HI6–20 µmisthecomplexofC60 8.5µmandPAH8.6µm. Wemea- 3.73 HI5–8 –0.977 1.06(–12)±4.58(–13) 1.9±0.8 suredthefluxdensityofC 8.5µmbyusingmultipleGaus- 33..8921 HHII66––1165 ––00..997789 16..1295((––1123))±±85..3480((––1133)) 21..11±±11..50 sian fitting to separate its fl60ux from the PAH 8.6 µm feature 4.05 HI(Brα) –0.980 4.94(–12)±7.94(–14) 8.9±0.5 (See section 2.6.3). We performedthe interstellarreddening +HI6–14 correction in a similar way as described in Section 2.5. By 44..3380 HHeII63––152 ––00..998822 56..7927((––1133))±±76..0572((––1144)) 1.30.1±±01..14 comparingtheobservedintensityratiosH IF(n=6–7)/F(Hβ) 4.65 HI(Pfβ) –0.984 8.99(–13)±1.17(–13) 1.6±0.2 & F(n=8–11)/F(Hβ) to the theoretical values of Storey & +HI6–11 Hummer(1995) forthe case B assumption in Te=104 K and 88..56 CPA60Hbc ––00..997700 35..6160((––1122))±±45..5097((––1133)) 69..84±±01..90 ne=104cm- 3,wederivedthatc(Hβ)=1.63±0.02. 8.99 [ArIII] –0.959 1.60(–12)±1.75(–13) 3.1±0.4 12.37 HI6-7,8-11 –0.980 9.68(–13)±4.24(–14) 1.0±0.1 2.6.1. Broadspectralfeaturesat10–13and16–22µm 12.71 HeI –0.982 4.85(–13)±5.35(–14) 0.5±0.1 M1-11 appears to have C-rich dust, as evidenced by the 12.81 [NeII] –0.983 2.90(–11)±4.35(–13) 30.9±1.5 presence of a broad 10-13 µm feature, which is usually at- 1187.7.31 [CS60IdII] ––00..998811 14..3611((––1122))±±74..2778((––1143)) 14..49±±00..16 tributedtoSiCintheliterature.Thisfeature(centeredaround 18.9 C60e –0.981 6.88(–12)±2.55(–13) 7.4±0.4 11.3µm)is seenontopofa featurelesscontinuum,presum- 33.16 HeI –0.993 1.47(–12)±2.57(–13) 1.5±0.3 ablyduetoamorphouscarbon(AC).ThePAHfeaturesaround 35.83 HeI –0.993 3.89(–12)±2.85(–13) 4.0±0.3 10–11µm are also visible in the spectrum. A second broad NOTE. — For interstellar reddening correction, we used feature is seen around approximately 16–22 µm, similar in c(Hβ)=1.403±0.025 for the AKARI/IRC and 1.629±0.020 for the appearance to broad features reported in several PNe in the Spitzer/IRCspectra,respectively. MagellanicClouds(Stanghellinietal. 2007;Bernard-Salaset alogF(Hβ)=–11.63ergs- 1cm- 2. al. 2009; García-Hernándezetal. 2011a;García-Hernández bTheFWHMis0.17µm. cThesumoftwoGaussiancomponentsrepresentingthePAH8.6µm.See etal. 2012) textindetail. WhileStanghellinietal.(2007)associatethisemissionfea- dTheFWHMis0.51±0.04µm. ture with carbon-richdust, Bernard-Salaset al. (2009)show eTheFWHMis0.36±0.03µm. thatthe16–22µmbroadfeaturediffersfromthePAHplateau ThedetectionofC inthePNM1-11 7 60 TABLE3 TABLE4 CANDOABUNDANCESDERIVEDFROMCELS,FORMAGELLANIC ADOPTEDOPTICALCONSTANTSFOREACHMODELDUSTCOMPONENT. CLOUDPNESHOWINGTHE16–22µMFEATURE. Dustspecies Datasource Nebula Ca Oa C/O Ref. SiC Pegourie(1988) SMC1 8.11 8.26 0.71 (1) amorphouscarbon(AC) Rouleau&Martin(1991) SMC6 8.03 8.22 0.65 (1) MgS Begemannetal.(1994) LMC8 7.93 8.26 0.47 (2) HAC Honyetal.(2003) LMC25 8.29 8.17 1.32 (3),(4) LMC48 8.40 8.24 1.45 (3),(4) LMC85 8.74 8.40 2.19 (2) dustgrainsisgivenby REFERENCES. —(1)Idiartetal. (2007);(2)Dopitaetal. (1997);(3) 4 - 1 SatTahneghneulmlinbieertdaeln.s(i2ty00r5el)a;t(iv4e)Ltoeitshye&hyDdreongneenfeilsdd(e2fi0n0e6d)aslogH=12. Fλ= (cid:18)3πaiρiD2(cid:19) md,iQλ,iπBλ(Td,i), (5) Xi around16–20 µm (Van Kerckhovenet al. 2000) and the 21 whereaiisthegrainradiusofcomponenti,ρiisthedustden- µm feature sometimes seen in carbon-rich post-AGB stars sity, md,i is the dust mass, Qλ,i is the absorption efficiency, (e.g.Volketal.2011)andPNe(Honyetal.2001),andismore andBλ(Td,i)isthePlanckfunctionforadusttemperatureTd,i. similartothe18µmamorphoussilicatefeature,thusassign- We adopt a distance D=2.1 kpc (Tajitsu & Tamura 1998). ingaoxygen-richcarrierforthisfeatureinobjects. Bernard- In Table 4 we list the optical constants that we use for each Salas et al. (2009)imply thatif the silicate identificationfor ofthedustspeciesconsidered. ForMgS,weusedtheoptical thisfeatureiscorrect,theMagellanicCloudPNeoftenshow constants of nearly pure MgS, e.g. Mg0.9Fe0.1S, from Bege- adualdustchemistry,althoughearlierinthesamestudythey mannetal. (1994). FortheHACs,weadopttheQλ ofHAC state that not a single source in their sample shows a mixed inthecaseofH/(H+C)=0.3calculatedbyHonyetal. (2003). chemistry, thus underminingthe silicate identificationof the In two models, we consider differentcompositions, consist- 16–22µmbump.Indeed,inacomprehensivestudyofalarge ingof combinationsofPAHs, amorphouscarbon(AC),SiC, sample of Galactic and Magellanic Cloud PNe, Stanghellini MgS,andHAC(Fig.9). Weconsidered9.9-37.2µmSpitzer etal. (2012)concludethatnoneoftheLMCPNeconsidered spectrumandAKARI FIS65/90µmphotometrydata,except show a dual chemistry, lending more credibility to the idea forthe16-22µmbroadband. Weassumesphericallyshaped thatthe16–22µmfeatureiscarriedbyacarbon-basedmate- grainswitharadiusofa=0.5µmforAC,SiC,andHACs,and rial. weexcludedPAHs. Toreproducethebroad30 µmemission Consideringthegaschemistryaddstotheconfusion.Table usingMgS,asdiscussedinHonyetal.(2003),weconsidered 3showstheCandOgas-phaseabundancesderivedfromthe a continuousdistributionof ellipsoids(CDE, e.g., Bohren& CELsforsixofthePNewith16–22µmemissionfeaturesdis- Huffman1983;Fabianetal.2001;Minetal.2003)andcalcu- cussedbyBernard-Salasetal.(2009)andGarcía-Hernández latedQλofCDEMgSusingEq.18givenbyMinetal.(2003). etal. (2011a). ThreeofthesixareO-richin theirgas-phase Tosimplify,weassumethatthevalueofeachellipsoidMgS material, while the remaining three MC PNe actually show grainis≃4πa3/3,whereais0.5µm. a C-rich chemistry. Since the C abundances of SMC1 and The results of the modified blackbody fitting is shown in SMC6haverelativelylargeuncertainty(0.25dex),thesetwo Fig. 9, and the derived T , m , and mass fraction for each d,i d,i SMCPNecouldbeC-rich. Evenwiththisinformation,itre- dustcomponentaresummarizedinTable5.Model1withAC, mainsunclearwhetherthe16–22µmbumpisduetoanO-rich SiC,andMgScanexplaintheobservedspectrumreasonably ora C-richcarrier. Thuswe donotassign anyidentification well,whilethemodel2withHACinsteadofMgSpredictsan tothisfeature,anddonotincludefittingthe16–22µmbump unseen broademission featurearound20 µm. However, we inouranalysis. should keep in mind that it is extremely difficult to charac- terizecarboncompoundswithamixedaromaticandaliphatic 2.6.2. 30µmbroadfeature content-suchasHACs-inthelaboratorybecausetheseopti- calconstantsarestronglyvariablefordifferentchemical and The carrier of the 30 µm feature remains somewhat of a physical conditions. Jones (2012) presents HAC theoretical mystery.WhileMgShasbeenproposedandoftenusedasthe modelsthatshowtheextremevariabilityofHACspectrade- carrierofthisfeature(Honyetal.2003),recentworkhascast pendingonparameterssuchashydrogen-content,grainsize, doubt on the identification with MgS (see e.g., Zhang et al. etc. Inanycase, the 20µmfeatureismuchweakerthanthe 2009;García-Hernándezetal. 2010;Zhang& Kwok2011). 30µmfeature(seeGhriskoetal. 2001)andonecoulddetect Nevertheless,weconsiderMgSasapossibledustcomponent the30µmfeatureswhilenotdetectingthe20µmfeature. At inM1-11toexplainthe30µmfeatureinthespectrum. present, therefore, we do notcompletelyrule outthat HACs Other potential carriers, in particular hydrogenated amor- asacarrierofthe30µmbroadfeature. phous carbon (HAC) (see Grishko et al. 2001; Hony et al. In this paper, therefore, we assume that SiC and MgS are 2003),shouldalsobeconsidered.IntheSEDmodelforproto- themaincontributorstothe10–13and30µmbroadfeatures, PNHD56126,Honyetal.(2003)showedthatbroademission respectively. In the remainder of our analysis, we will only featuresaround7-9µmand10-13µmarepartlyduetoHACs, considerPAHs,SiC,AC,andMgStomodelthedustemission makingtheidentificationofthe30µmbandwithHACs(Gr- intheSED. ishkoetal.2001),a possibility. We examinedwhetherHAC can be the main contributor to the 10–13 and 30 µm broad 2.6.3. 8.5,17.3,and18.9µmemissionduetoC fullerenes featuresbyapplyingamodifiedblackbodymodeltotheIRS 60 spectrum,includingbothMgSandHACs. IntheVISIRandSpitzercombinedspectrumofM1-11,we TheobservedfluxdensityFλduetothermalemissionfrom see infrared features at 8.5 (although blended with the PAH 8 Otsukaetal. Thelineat8.6µminM1-11canberepresentedbythreeplus oneGaussiancomponents,as showninFig.10a. We assume that the profile of the PAH 8.6µm line is represented by the sum of two Gaussians at the peak wavelengths of ∼8.7 and ∼8.8µm. TheFWHMofthePAH8.6µmrepresentedbythe sumofthesetwoGaussianis0.2µm,whichisconsistentwith NGC7027(0.23µminISO/SWSspectrumshowninFig.7). TheFWHMoftheC 8.5µmlineindicatedbytheblueline 60 is0.17µm. TheFWHM oftheC andPAH complexis0.3 60 µm. TheresultantGaussianfittingforM1-12ispresentedin Fig.10b. The PAH 8.6µm is representedby the sum of two Gaussians at ∼8.6 and ∼8.7 µm. The FWHMs of the C 60 andthePAHsforM1-12areassameasthoseofM1-11. The FIG.9.—Theobserved Spitzer/IRSandVLT/VISIRspectrum ofM1-11 measuredfluxesoftheC 8.5µmandPAH 8.6µm linesin (graylines) andthe predicted SEDfrommodified blackbody fitting (thick 60 lines).Eachcomponentisindicatedbyathinline.ACstandsforamorphous M1-11arelistedinTable2. carbon. TheexcitationtemperatureandthenumberofC werede- 60 rivedby creating a vibrationexcitationdiagramas shown in Fig.10c. WefollowedthemethodofCamietal. (2010).N is u TABLE5 the numberof C moleculesin the uppervibrationallevels. 60 RESULTSFROMTHEMODIFIEDBLACKBODYFITTINGTOTHE N iswrittenby Spitzer/IRSSPECTRUM. u 4πI(C )D2 λ Models Dust Td md Nu= 60 , (6) Comp. (K) (M⊙) A hc model1 SiC 160 2.85(–5) where I(C ) is the fluxes of C lines in erg s- 1 cm- 2, D is 60 60 (Fig.9a) AC 120 2.97(–4) the distance to M1-11 (2.1 kpc; Tajitsu & Tamura 1998), A MgS 220 3.17(–6) model2 SiC 170 1.75(–5) are the transition probabilities (4.2, 1.1, 1.9 s- 1 for C60 8.5, (Fig.9b) AC 120 1.77(–4) 17.3, and 18.9 µm, respectively, from García-Hernández et HAC 80 0.11 al. 2011b),hisPlanck’sconstant,andcisthespeedoflight. Thevibrationaldegeneracyisgivenbyg . Inthermalequilib- u rium,theBoltzmannequationrelatestheN totheexcitation 8.6µm,seebelow),17.3,and18.9µm,mostlikelyduetothe u temperatureT : fullereneC . ext 60 In our own Milky Way Galaxy, these C60 infrared fea- Nu∝guexp(- Eu/kText). (7) tureswererecentlydetectedinfivePNe,includingTc1,M1- 12, M1-20, K3-54, and M1-60 (Cami et al. 2010; García- Eu and k are the energy of the excited level and the Boltz- Hernández et al. 2010; García-Hernández et al. 2012), a mannconstant,respectively.Weconfirmedthatourmeasured C-rich PPN (IRAS01005+7910; Zhang & Kwok 2011), and excitation temperature, Text of 338±9 K in Tc 1 using Eqs. twoO-richpost-AGBstars(IRAS06338+5333andHD52961; (6)and(7)isconsistentwithCamietal. (2010;332K).Ac- Gielen et al. 2011). In Fig.8, we show the IRS spectrum cordingly, we obtained Text of 399±36 K and the N(C60) of of M1-12 in comparison to M1-11. The C60 17.3 and 18.9 4.57±1.23(+46).ThetotalmassofC60 mC60is2.75(–8)M⊙. µm features seem to be present in M1-11 although they are OurestimatedText,N(C60),andmC60inM1-12are345±35 much weakerthan those in M1-12. The spectrumof M1-12 K,5.30±1.23(+46),and3.18(–8)M⊙,respectively,adopting shows spectral features due to PAHs, SiC, AC, MgS, and a Dof3.9kpc(Tajitsu& Tamura1998). García-Hernandezet veryweak16–22µmfeature,whichresemblesthatofM1-11. al. (2010)measuredthe Text in M1-12of546K. Theirmea- The16–22µmfeatureisnotseeninTc1,M1-20,K3-54,and sured FWHM of C60 8.5 µm is 0.237 µm. The Text discrep- M1-60. Some other PNe with fullerenes in the Magellanic ancybetweentheirsisduetothedifferencesinthemeasured Cloudsexhibitthe16–22umfeature(García-Hernándezetal. linefluxofthisline. 2011a;García-Hernándezetal. 2012). Inthe insetofFig.8, 3. RESULTS the∼16-20µmspectraofM1-11andM1-12withalocaldust 3.1. CELsplasmadiagnostic continuumsubtracted, are shown. The wavelengthpositions oftheintensitypeakandthelinewidthsofC60 17.3and18.9 We determined the electron temperatures Te and densities µm lines in M1-11 are almost coincidentwith those in M1- neusing11diagnosticCELs,andlistedtheresultsinTable7. 12. Inaddition,thecomplexlinearound8.5-8.6µm-which For [NII] λ5755 and [OII]λλ7320/30, we subtracted the turns out to be a blend of PAH 8.6 µm and C 8.5 µm - in recombinationcontaminationfrombothlinesusing 60 M1-11isverysimilartothatinM1-12,asshowninFig.10. I ([NII]λ5755) T 0.33 N2+ These comparisonwith M1-12 supportsthe identification of R =3.19 e × , (8) thisfeatureasaC +PAHblend. I(Hβ) (cid:18)104(cid:19) H+ 60 Toquantifytheexcitationtemperatureandthetotalnumber and ofC ,weneedtoseparatefluxofC 8.5µmfromthePAH 60 60 8.6µmband. Camietal. (2010)reportedthattheFWHMof I ([OII]λλ7320/30) T 0.44 O2+ C608.5µminthePNTc1is0.15µmbyGaussianfitting.Tc1 R I(Hβ) =9.36(cid:18)10e4(cid:19) × H+ . (9) showsstrongC linesbutveryweakPAHbands. Assuming 60 thattheFWHMofC 8.5µmis∼0.15µminM1-11andM1- givenbyLiuetal. (2000).AdoptingN2+ andO2+ ionicabun- 60 12, we fit the broadline at 8.6 µm with multiple Gaussians. dancesderivedfromN IIandOIIlines(seeSection3.4),we ThedetectionofC inthePNM1-11 9 60 FIG.11.—ne-Tediagram. EachcurveislabeledwithanIDnumbergiven inTable7. Thesolidlinesindicate diagnostic linesoftheTe. Thebroken linesindicatediagnosticlinesofthene. TABLE6 FIG.10.—(panels(a)and(b))Theline-profilesofC60at8.5µminM1-11 ADOPTINGneANDTeFORTHECELIONICABUNDANCE andM1-12(bluelines). Thelocal dustcontinua aresubtracted. Thegray CALCULATIONS. linesaretheobservations. Wefitthebroadlineat8.6µmbythreeorfour GThaeusrseidanl.inTehseadreecthoenvsoulmvedofptrhoefisleescoarmepinodniecnattse.dTbhyetheembislasicokna-lnindeblaureoulinndes9. Zone Ions ne(cm- 3) Te(K) µmis[ArIII]8.99µm.(panel(c))TheexcitationdiagramforC60inM1-11 1 N0,O0 1380 9240 andM1-12. ThefilledandopencirclesaretheobserveddatainM1-11and 2 N+,O+,P+,S+,Cl+ 36490 8410 M1-12,respectively.Thelinesindicatedrepresentthebestfittothedata.See 3 O2+,Ne+,S2+,Cl2+, 51120 9540 textindetail. Ar2+,Fe2+,Kr2+ derivedthatIR([NII]λ5755)=0.12andIR([OII]λλ7320/30) is for ions with 0<IP.13.6 eV (zone 2). ne([SIII]) and = 2.11. The recombinationcontaminationis ∼2 % in [NII] the averaged temperature among Te([OIII]), Te([SIII]), and λ5755and∼8%in[OII],respectively. Te([ArIII])isforionswithI.P.=14.4–35.5eV(zone3). The resulting n –T diagnostic diagram is shown in e e Fig. 11. The solid lines indicate diagnostic lines for 3.2. RLplasmadiagnostics the electron temperatures, while the broken lines are We calculate the He, C, N, and O abundances using RLs electron density diagnostics. Since the gas in M1-11 oftheseelementsbyadoptingtheT derivedfromtheBalmer has much higher density than the critical densities of e the density sensitive lines [OII] λλ3726/29 and [SII] discontinuity together with HeI line ratios and the ne from theBalmerdecrements,listedinTable7. TheBalmerdiscon- λλ6717/31, the ratios of [OII] I(λλ3726/29)/I(λλ7320/30) tinuitytemperatureT(BJ) was determinedusingthe method and [SII] I(λλ6717/31)/I(λλ4069/76) are density-sensitive e describedby Liu et al. (2001), which we used to obtain the rather than temperature-sensitive. The critical densities C2+,N2+,andO2+ abundancesfromrecombinationlines. a∼t98T0e=c1m00- 30,0reKspefcotrive[lOy,IIa]ndλλt3h7o2se6/2o9f [aSreII]∼λ4λ5607017a/n3d1 TheHeI electrontemperaturesTe(HeI)werederivedfrom are ∼1400 and ∼3600 cm- 3, respectively. The densities theratiosofHeII(λ7281)/I(λ6678),I(λ7281)/I(λ5876),and I(λ6678)/I(λ5876) assuming a constant electron density of derived from the [OII] λλ3726/29 and [SII] λλ6717/31 106cm- 3,estimatedfromtheBalmerdecrements(seebelow). ratios might be the value for thin shell region, while those from the [OII] I(λλ3726/29)/I(λλ7320/30) and [SII] WeadoptedtheemissivitiesofHeIbyBenjaminetal.(1999). I(λλ6717/31)/I(λλ4069/76)wouldbethevalueforthebright TheTe(HeI)derivedfromthreedifferentlineratiocombina- rim.Todeterminen ,weadoptedT=10000Kforalldensity- tionsis3980-6980K.WeadoptedTe(HeI)derivedfromHeI e e I(λ7281)/I(λ6678)for the He+ abundancecalculations. The cdmia-g3n,oswtichilcihnesi.s Tthe(e[NaIvIe])rawgeasbceatlwcueleantedneu([sOingII]n)e=d3e6ri4v9ed0 Oretassuoknawethayl.th(i2s0T1e0()H.eI)isthemostreliablewasdiscussedin fromI(λλ3726/29)/I(λλ7320/30)(ne([OII]n/a)hereafter)and The intensity ratios of the high-orderBalmer lines Hn (n: ne([SIII]). For Te([SIII]), Te([OIII]), and Te([ArIII]), we the principalquantumnumberof the upperlevel) to a lower adopted ne([SIII]). For Te([OI]), we adopted ne([NI]). Our Balmer line, e.g., Hβ, are also sensitive to the electron den- estimatesforTe([NII]),Te([OIII]),andTe([SIII])areinexcel- sity. In Fig. 12, we plot the ratios of higher-order Balmer lent agreementwith those by Henry et al. (2010), who esti- lines to Hβ compared to the theoretical values by Storey & mated10720,9996,and9100K,respectively. Theestimates Hummer (1995) for T(BJ) and n of 105, 5×105, and 106 forn andT aresummarizedinTable7. e e e e cm- 3. Theelectrondensityintherecombinationlineemitting To calculate the CEL ionic abundances, we adopt a three zone model based on n -T diagram. The T and n combi- regionsseems to be >105 cm. Care when dealing with this e e e e nationsforeachionarelistedinTable6. FortheN0 andO0 valueisnecessary,becauseitapparentlyhaslargescatter. abundances,weadoptedTe([OI])andne([NI])(zone1). The 3.3. CELionicabundances averagedneisfromne([OII]n/a)andne([SIII]);andTe([NII]) 10 Otsukaetal. TABLE7 PLASMADIAGNOSTICRESULTS. ID Diagnostic Value Result Te (1) [NII](λ6548/83)/(λ5755) 42.45±1.14a 8410±90 (K) (2) [OIII](λ4959/5007)/(λ4363) 182.94±20.32 9740±330 (3) [ArIII](λ7135)/(λ5192) 132.44±26.92 10060±780 (4) [OI](λ6300/63)/(λ5577) 74.62±14.31 9240±640 (5) [SIII](λ9069)/(λ6313) 9.96±2.63 8830±980 HeI(λ7281)/(λ6678) 0.20±0.01 6890±330 HeI(λ7281)/(λ5876) 0.052±0.002 5920±230 HeI(λ6678)/(λ5876) 0.26±0.01 3980±160 Average 5600 BJ BalmerJump 5400±1300 ne (6) [NI](λ5198)/(λ5200) 1.63±0.13 1380±350 (cm- 3) (7) [OII](λ3726)/(λ3729) 2.75±0.05 5750±380 (8) [OII](λ3626/29)/(λ7320/30) 3.11±0.10b 21860±780 (9) [SII](λ6716/31)/(λ4069/76) 0.63±0.02 35350±1400 (10) [SIII](λ18.71µm)/(λ9069) 0.44±0.11 51120±15550 (11) [ClIII](λ5517)/(λ5537) 0.40±0.10 22110-63730 Balmerdecrements 105–106 aCorrectedrecombinationcontributionfor[NII]λ5755. bCorrectedrecombinationcontributionfor[OII]λλ7320/30. (2008). The discrepancies between our N+, O+, S+ abun- dancesandtheresultsbyHenryetal.(2010)aremainlydue toadoptedelectrontemperature;Henryetal.adopted10200 K. Note that they employed three different Ts and a con- e stant n =20000 cm- 3 in their models. With their Ts, we e e would find N+, O+, and S+ abundances comparable to their results. Lastly,aminordiscrepancyfortheN+ andO+ abun- dancesmustbeduetotherecombinationcontaminationinthe [NII]λ5755and[OII]λλ7320/30lines,respectively. 3.4. RLionicabundances OurvaluesfortheionicabundancesderivedfromRLsare listed in Table 9. In general, the Case B assumption applies tolinesfromlevelshavingthesamespinasthegroundstate, and the Case A assumption applies to lines of other multi- plicities. Inthelastofthelineseriesofeachion,wepresent theadoptedionicabundanceandtheerrorestimatedfromthe FIG.12.— PlotoftheintensityratioofthehigherorderBalmerlinesto Hβ (CaseBassumption)withthetheoretical intensityratiosinTe=5400K line intensity-weightedmean. Effectiverecombinationcoef- anddifferentne. ficients for the lines’ parent multiplet are the same as those used by Otsuka et al. (2010). The RL ionic abundancesare The derivedionic abundancesare listed in Table 8. In the insensitive to the electron density under .108 cm- 3 (Zhang last line of the transition series for each ion, we present the &Liu2003). Fortheionicabundancecalculations,wethere- adopted ionic abundance in bold face. The adopted values fore adoptedthe effective recombinationcoefficientsin case represent the line intensity weighted mean in case two or of n =104 cm- 3 for C2+ and N2+. For He+ and O2+ calcula- more lines are detected. As references, the results by Ster- e tions, we adopted n =106 cm- 3 and 104 cm- 3, respectively. ling& Dinerstein(2008,forKr)andHenryetal. (2010,for e theothers)arealsolisted inthelastcolumn. Thisisthefirst SinceHeII,CIII,CIV,NIII,andOIIIappearedtobeofstel- time the Ne+, P+, and Fe2+ abundances are derived for M1- larorigin,wedidnotestimatetheabundancesoftheseions. TheHe+ abundancesaredeterminedusingelectrondensity 11. Intotal,fifteenionicabundancesaredeterminedbysolv- ing fora >5 levelatomicmodel, with the exceptionofNe+, insensitivesix HeI linesto reduceintensityenhancementby collisional excitation from the He0 2s 3S level. For the C2+ forwhichtheabundancewascalculatedusingatwolevelen- abundances,theV6andV17.06lines,whichhavehigheran- ergy model. We adopted the same collisional strengths and gular momentum as upper levels, seem to be unaffected by transitionprobabilitiesusedinOtsukaetal. (2010,2011)ex- ceptforCl+,forwhichweadoptedthetransitionprobabilities both resonance fluorescence by starlight and recombination fromtheCHIANTIatomicdatabase9,thecollisionalimpacts fromexcited2S and2D terms. ComparisonoftheC2+ abun- ofTayal(2004b),andthe levelenergylisted in AtomicLine dances derived from V6 and V17.06 lines indicated that the List v2.05b12. We subtractedthe recombinationcontamina- observedCII lines would haveless populationenhancement tion in the [NII]λ5755 and [OII]λλ7320/30 lines to derive mechanisms.OurestimatedHe+andC2+abundancesarecon- theN+ andO+ abundances. sistentwithHenryetal. (2010;3.56(–2),4.48(–4)). In general, our derived abundances are comparable to the WeestimatedtheO2+abundancesusingtheOIIlinesshow- values of Henry et al. (2010) and Sterling & Dinerstein ing the least contaminationfrom otherionic transitions. We excludedtheOII4676.23ÅlinewhendeterminingO2+abun- 9http://www.ukssdc.ac.uk/solar/chianti/ dance, because this line is much stronger than the other V1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.