ebook img

The “Destabilizing” Effect of Cannibalism in a Spatially Explicit Three-Species Age Structured ... PDF

16 Pages·2017·2.82 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The “Destabilizing” Effect of Cannibalism in a Spatially Explicit Three-Species Age Structured ...

Hindawi Complexity Volume 2017, Article ID 3896412, 15 pages https://doi.org/10.1155/2017/3896412 Research Article ( ) The Destabilizing Effect of Cannibalism in a Spatially Explicit Three-Species Age Structured Predator-Prey Model AladeenAlBasheer,JingjingLyu,AdomGiffin,andRanaD.Parshad DepartmentofMathematics,ClarksonUniversity,Potsdam,NY13699,USA CorrespondenceshouldbeaddressedtoRanaD.Parshad;[email protected] Received1July2016;Revised6October2016;Accepted7November2016;Published11January2017 AcademicEditor:DimitriVolchenkov Copyright©2017AladeenAlBasheeretal.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttribution License,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperly cited. Cannibalism,theactofkillingandconsumptionofconspecifics,isgenerallyconsideredtobeastabilisingprocessinODEmodels ofpredator-preysystems.Ontheotherhand,Sunetal.werethefirsttoshowthatcannibalismcancauseTuringinstability,inthe classicalRosenzweig-McArthurtwo-speciesPDEmodel,whichisanimpossibilitywithoutcannibalism.Magnu´sson’sclassicwork isthefirsttoshowthatcannibalisminastructuredthree-speciespredator-preyODEmodelcanactuallybedestabilising.Inthe currentmanuscriptweconsiderthePDEformofthethree-speciesmodelproposedinMagnu´sson’sclassicwork.Weprovethat,in theabsenceofcannibalism,Turinginstabilityisanimpossibilityinthismodel,foranyrangeofparameters.However,theinclusion ofcannibalismcancauseTuringinstability.Thus,tothebestofourknowledge,wereportthefirstcannibalisminducedTuring instabilityresult,inspatiallyexplicitthree-speciesagestructuredpredator-preysystems.Wealsoshowthat,intheclassicalODE modelproposedbyMagnu´sson,cannibalismcanactasalifeboatmechanism,fortheprey. 1.Introduction predator-preymodelshavebeeninvestigated[6,10–16].Most worksintheliteratureconsidercannibalisminthepredator Background.Cannibalismisdefinedastheactofkillingand species. However, there are a few works that involve canni- atleastpartialconsumptionofconspecifics.Itisubiquitous balismamongpreyaswell[17].Inmostmodels,cannibalism innaturalpredator-preycommunities[1]andisobservedin is seen to have a strong stabilising influence [11, 14]. But morethan1300speciesinnature[2].Itoccursasasocioan- some works do report that it can destabilize as well [18]. thropological as well as ecological phenomenon [3, 4], in Since species disperse in space in search of food, shelter, manyvariedforms.Forexample,asectofasceticsinNorth- and mates and to avoid predators, spatially dispersing pop- ern India, called “Aghoris,” consume corpses in the belief ulations are often modeled via partial differential equations thatsuchritualisticpractice,orendocannibalism,willenable themtoattainimmortality[5].Cannibalismisalsorampant (PDE)/spatiallyexplicitmodelsofinteractingspecies[19–22]. amongst certain insects. Many arachnid species practice OfparticularinteresttomanyisthephenomenonofTuring sexualcannibalism,wherethefemalecannibaliseshermate, instability,firstintroducedbyTuring[23],whichshowsthat before, during, or after copulation. In population models, diffusioninasystemcanleadtopatternforminginstabilities. theinclusionofcannibalismcanbringaboutinterestingand Inthecontextofcannibalism,thereareveryfewworksinthe sometimes counter intuitive dynamics, such as the life boat literaturethatconsiderspatiallyexplicitmodelsandinvesti- mechanism.Thereintheactofcannibalismcausespersistence gateTuringinstabilitytherein.Sunetal.[24]werethefirstto in a population, otherwise doomed to go extinct [6]. The showthatcannibalismintheclassicaldiffusiveRosenzweig- effectsofclimatechangeinducedcannibalismhavealsobeen McArthurmodelcanbringaboutTuringpatterns.Thisisan intenselyinvestigatedrecently[7–9]. impossibilityinthesystemwithoutcannibalism.Fasaniand A detailed survey of the current and past mathemat- Rinaldi[25]generalisedthecannibalismtermfrom[24]and ical literature on cannibalism shows that various types of foundthatcannibalismcanstillbringaboutTuringpatterns. 2 Complexity Theabovemodelsconsidercannibalismamongstthepreda- (i)Thisscalingdoesnotpermitonetoconsiderthelim- tors.In[17]wefoundthatcannibalismamongstpreycanalso iting case of no cannibalism (𝑆 = 0), in a tractable bringaboutTuringpatterns,inthespatiallyexplicitHolling- way. Tannermodel,withratiodependentfunctionalresponse. (ii)There is a prey free equilibrium or no “cost” to the One approach in the literature, when considering ODE adultashecannibalisesthejuvenile. models, has been to structure the predator class into adults andjuvenilesandallowcannibalismofthejuvenilepredator RescaledModelofTang.Partoftheseissueswasfirstaddressed by the adult predator. This essentially yields a three-species in[26],whereamorerefinedformofscalingisintroduced. age structured ODE model. The reader is referred to [12, 14, 27], and again therein cannibalism is seen to provide a 𝑉 𝑢1 = 𝑋, stabilisinginfluence,dependingonparameterregime.How- 𝑀 1 ever,dependingonmodelstructureandparameterregimes, 𝑉𝐴 cannibalismcanalsodestabilize[1,17,18].Tothebestofour V1 = 𝑌, knowledge, there is a complete lack of investigation of the 𝑀2 1 effects of cannibalism, on the stability of spatially explicit/ (2) 𝐶 PDEthree-speciespredator-preymodels,withagestructure 𝑟1 = 𝑍, 𝑀 (orwithout). 1 𝑀 ClassicalModelofMagnu´sson.Tothisendweinvestigatethe 𝜏= 1𝑡, 𝐶 spatially explicit version of the model first proposed in [18] by Magnu´sson and further analyzed by Kaewmanee et al. where𝑡1 =𝑇/𝑀1,𝑚=(𝐴+𝑀2)/𝑀1,𝑟=𝑅𝐴/𝑀12,𝑢=𝑈/𝐶, [s2tr6u,c2t8u]r.eMdatghnreu´es-ssopnepcireospporseeddaatnodr-pinrveeystmigoadteedl,thwehfeorlelo𝑋wi(n𝑡)g, 𝛾=𝛾󸀠𝑀1/𝐴,𝑠=𝑆/𝑉. This yields the following nondimensionalised system, 𝑌(𝑡),and𝑍(𝑡)arethebiomassofanadultpredator,ajuvenile withfewerparameters predator,andprey,atagiventime𝑡.Theinteractionbetween thesethreeclassesisdescribedbelow: 𝑑𝑢1 =−𝑢1+V1+𝑢1𝑟1+𝛾𝑠𝑢1V1 𝑑𝜏 𝑑𝑋 =−𝑀 𝑋+𝐴𝑌+𝐶𝑋𝑍+𝛾󸀠𝑆𝑋𝑌 𝑑V1 𝑑𝑡 1 =𝑟𝑢1−𝑚V1−𝑠𝑢1V1 (3) 𝑑𝜏 𝑑𝑌 𝑑𝑡 =𝑅𝑋−𝐴𝑌−𝑀2𝑌−𝑆𝑋𝑌 (1) 𝑑𝑟1 =𝑡 𝑟1−𝑢(𝑟1)2−𝑢1𝑟1. 𝑑𝜏 1 𝑑𝑍 =𝑇𝑍−𝑈𝑍2−𝑉𝑋𝑍. Here typically 𝛾 < 1, but not necessarily. Now the can- 𝑑𝑡 nibalismparameter𝑠canbefollowedclosely.Infactonecan tractablytakethelimitas𝑠→0,toobtainthemodelwithout Essentiallythepredatorspeciesisstructuredintoadults cannibalism, 𝑋(𝑡)andjuveniles𝑌(𝑡),withtheadultpredatorsfeedingona 𝑑𝑢1 preyspecies𝑍(𝑡).Noteallparametersarepositiveconstants, =−𝑢1+V1+𝑢1𝑟1 𝑑𝜏 and the system goes along with suitable positive initial cthoenddietaiothnsr.a𝑀te1ofisjutvheenidleeapthredraatteorosf, 𝐴adiusltthperegdroatwotrhs,r𝑀ate2oisf 𝑑𝑑V𝜏1 =𝑟𝑢1−𝑚V1 (4) adultspredators(juvenilesgrowintoadults),𝑅isthegrowth rate of juveniles due to adults, 𝐶 is the predators growth 𝑑𝑟1 =𝑡 𝑟1−𝑢(𝑟1)2−𝑢1𝑟1. rateduetopreying,𝑇isthebirthrateofprey,and𝑉isthe 𝑑𝜏 1 predatorsattackrateonprey.𝑆isthecannibalismrate,and 𝛾󸀠 istheconversionefficiencyofeatenjuvenilesintoadults. TheresultsthatKaewmaneeandTangfindareinaccor- dance with Magnu´sson; that is increasing the cannibalism For further details see [18]. Magnu´sson finds that, in this parameter can lead to the stable interiorequilibriumlosing particular model, the effect of including cannibalism is to stability, leading to limit cycle dynamics. Kaewmanee and destabilise the interior equilibrium, leading to limit cycle Tang’s results, unlike Magnu´sson, are not limited to the dynamics,throughaHopfbifurcation.Thisresultiscontrary casewherethereishighjuvenilemortalityand/orlowadult tomanyothersintheliterature,wherecannibalismisfound recruitment. However, the Hopf bifurcation analysis as to be stabilising. Note one of the problematic issues in [18] isthescalingofthepredatorattackrateparameter,𝑉,which workedoutin[26]isincorrect. scaleslike𝑉≈1/𝑆,where𝑆isthecannibalismrateparameter. Ourprimarycontributionsinthecurrentmanuscriptare Apossiblereasoninghereisthatif𝑉 ≈ 1/𝑆,then𝑆 ≈ 1/𝑉. thefollowing: Soifpredation/attackrateonregularpreyishigh,or𝑉 ≫ 1, (i)Weexplorethespatiallyexplicitformsofthemodels, thereisalmostnoneedforcannibalism,and𝑆≪1.Acloser (3)and(4),andshowglobalexistenceofsolutionsvia examinationofthemodelrevealstwocausesforconcern: Theorem2andCorollary3. Complexity 3 (ii)We show that the spatially explicit model without Here 𝑢1(𝑥,⋅), V1(𝑥,⋅), 𝑟1(𝑥,⋅) are the concentrations/ cannibalism does not possess Turing instability in populationdensitiesoftheprey,thejuvenilepredator,andthe anyparameterregimeviaTheorem4.However,intro- adultpredator,atanygiventime𝑡,respectively.Wenextstate ducing cannibalismcancertainlybringaboutTuring theformoftheone-dimensionalspatiallyexplicitmodelwith instability,viaTheorem14.Tothebestofourknowl- cannibalism edge, this is the first cannibalism induced Turing instabilityresult,inagestructuredthree-speciesPDE 𝑢1 =𝑑 𝑢1 −𝑢1+V1+𝑢1𝑟1+𝛾𝑠𝑢1V1 (8) 𝑡 1 𝑥𝑥 models. V1 =𝑑 V1 +𝑟𝑢1−𝑚V1−𝑠𝑢1V1 (9) 𝑡 2 𝑥𝑥 (iii)WederivethecorrectformofHopfbifurcationinthe classicODEmodelproposedin[18]viaTheorem15. 𝑟1 =𝑑 𝑟1 +𝑡 𝑟1−𝑢(𝑟1)2−𝑢1𝑟1, (10) 𝑡 3 𝑥𝑥 1 NoteagainthatthepreviousHopfbifurcationanalysis asworkedoutin[26]isincorrect. 𝛾<1,andourdomainΩ=[0,𝜋]. WeprescribeNeumannboundaryconditions (iv)Wenumericallyshowthatcannibalismcanactasalife boatmechanisminthepreyandconjecturethatitcan actasalifeboatmechanisminbothpredatorandprey 𝑢1 =V1 =𝑟1 =0 (11) 𝑥 𝑥 𝑥 viaConjectures16and18. andsuitablepositiveinitialconditions (v)We discuss ecological interpretations, based on our work. 𝑢1(𝑥,0)>0, We relegate the details of the ODE stability analysis, as V1(𝑥,0)>0, (12) wellasgenericTuringinstabilityconditions,totheAppendix. Someofthesearealsoreadilyavailableintheliterature[19, 𝑟1(𝑥,0)>0. 26],sotheyareincludedintheAppendixonlyforcomplete- nessandbenefitofthereader. Here 𝑢1(𝑥,⋅), V1(𝑥,⋅), 𝑟1(𝑥,⋅) are the concentrations/ populationdensitiesoftheprey,thejuvenilepredator,andthe 2.SpatiallyExplicitModel adultpredator,atanygiventime𝑡,respectively. Since species disperse in space in search of food, shelter, 2.1. Functional Preliminaries and Local Solutions. We now and mates and to avoid predators, spatially dispersing pop- presentvariousfunctionspacenotationsanddefinitionsthat ulations are often modeled via partial differential equations willbeusedfrequently.TheusualnormsinthespacesL𝑝(Ω), (PDE)/spatiallyexplicitmodelsofinteractingspecies[19–22]. L∞(Ω),andC(Ω)are,respectively,denotedby In this section we shall investigate the effects of diffusion induced instability in the models (4) and (3). We state the 1 formoftheone-dimensionalspatiallyexplicitmodelwithno |𝑢|𝑝 = ∫ |𝑢(𝑥)|𝑝𝑑𝑥, 𝑝 |Ω| cannibalism, Ω (13) |𝑢|∞ =max|𝑢(𝑥)|. 𝑢1 =𝑑 𝑢1 −𝑢1+V1+𝑢1𝑟1 𝑥∈Ω 𝑡 1 𝑥𝑥 V1 =𝑑 V1 +𝑟𝑢1−𝑚V1 It is well known that, under the “regularizing effect 𝑡 2 𝑥𝑥 (5) principle”toproveglobalexistenceofsolutionsto(8)–(10), 𝑟1 =𝑑 𝑟1 +𝑡 𝑟1−𝑢(𝑟1)2−𝑢1𝑟1, [29],itsufficestoderiveuniformestimateson𝐿𝑝,normsof 𝑡 3 𝑥𝑥 1 thereactionterms,on[0,𝑇max[,forsome𝑝 > 𝑛/2,where𝑛 is the spatial dimension of the domain Ω, and the reaction 𝛾<1,andourdomainΩ=[0,𝜋]. termsinoursettingaregivenin(8)–(10).Here𝑇maxdenotes WeprescribeNeumannboundaryconditions theeventualblowing-uptimeinL∞(Ω).Thefollowinglocal existenceresultiswellknown[30]. 𝑢𝑥1 =V𝑥1 =𝑟𝑥1 =0 (6) Lemma1. System(8)–(10)admitsaunique,classicalsolution (𝑢1,V1,𝑟1)on[0,𝑇max[×Ω.If𝑇max <∞then andsuitablepositiveinitialconditions 𝑢1(𝑥,0)>0, 𝑡↗li𝑇mmax{󵄩󵄩󵄩󵄩󵄩𝑢1(𝑡,⋅)󵄩󵄩󵄩󵄩󵄩∞+󵄩󵄩󵄩󵄩󵄩V1(𝑡,⋅)󵄩󵄩󵄩󵄩󵄩∞+󵄩󵄩󵄩󵄩󵄩𝑟1(𝑡,⋅)󵄩󵄩󵄩󵄩󵄩∞}=∞. (14) V1(𝑥,0)>0, (7) Proof. Since the reaction terms are continuously differen- tiableinthepositiveoctant,thenforanyinitialdatainC(Ω) 𝑟1(𝑥,0)>0. or L𝑝(Ω), 𝑝 ∈ (1,+∞), it is easy to check directly their 4 Complexity Lipschitz continuity on bounded subsets of the domain of the𝑢1V1term.However,integrating(9)inΩ×[0,𝑇]=Ω𝑇we a fractionalpower of theoperator 𝐼3(𝑑1,𝑑2,𝑑3)𝑡Δ, where 𝐼3 obtain is the three-dimensional identity matrix, Δ is the Laplacian operator,and()𝑡denotesthetransposition. ∫ V1(⋅,𝑇)𝑑𝑥+𝑠∫ 𝑢1V1𝑑𝑥𝑑𝑡 Ω Ω 𝑇 (19) 2.2.ControlofMassand𝐿1(Ω)Estimates. Note,inorderto =𝑟∫ 𝑢1−𝑚∫ 𝑟V1+∫ V1𝑑𝑥. deriveglobalexistenceviaapplicationof[29],wearerequired 0 toderiveuniformintime𝐿𝑝estimatesonthereactionterms Ω𝑇 Ω𝑇 Ω in(8)–(10),for𝑝>1/2.Wewillrestrictourselvestothecase 𝑛 = 1.Tothisend(8)posesadifficultyviathe𝛾𝑠𝑢1V1 term. Thus Weproceedbymultiplying(9)by𝛾andaddingupequations (8)and(9)toyield 󵄩󵄩󵄩󵄩󵄩𝑢1V1󵄩󵄩󵄩󵄩󵄩Ω ≤ 𝑟𝑠 ∫ 𝑢1+ 1𝑠 ∫ V01𝑑𝑥 𝑇 Ω Ω 𝑇 𝑢t1+𝛾V𝑡1 =𝑑1𝑢𝑥1𝑥+𝑑2𝛾V𝑥1𝑥+(𝑟𝛾−1)𝑢1 ≤ 𝑟𝑠 ∫𝑇󵄩󵄩󵄩󵄩󵄩𝑢01+𝛾V01󵄩󵄩󵄩󵄩󵄩𝐿1(Ω)𝑒(𝐶max((𝑟𝛾−1),(1−𝛾𝑚),‖𝑟1‖∞))𝑡𝑑𝑡 (15) 0 +(1−𝛾𝑚)V1+𝑢1𝑟1. + 1𝑠 󵄩󵄩󵄩󵄩󵄩V01󵄩󵄩󵄩󵄩󵄩𝐿1(Ω) (20) inteWgraetenothwedaebfionveeethqeuagtrioounpiendspvaacrieatboleo𝑊btai=n 𝑢1 +𝛾V1 and = 𝑟𝑠󵄩󵄩󵄩󵄩󵄩𝑢(01𝐶+m𝛾aVx01󵄩󵄩󵄩󵄩󵄩(𝐿(1𝑟(𝛾Ω)−𝑒(1𝐶)m,a(x1((𝑟−𝛾−𝛾1𝑚),(1)−,𝛾󵄩󵄩󵄩󵄩𝑚𝑟)1,‖󵄩󵄩󵄩󵄩𝑟1‖∞))))𝑇 ∞ 1 𝑑 𝑑𝑡∫Ω𝑊(𝑥,𝑡)𝑑𝑥 − 󵄩󵄩󵄩󵄩𝑢01+𝛾V01󵄩󵄩󵄩󵄩𝐿1(Ω). =∫ ((𝑟𝛾−1)𝑢1+(1−𝛾𝑚)V1+𝑢1𝑟1)𝑑𝑥 This follows from the 𝐿1(Ω) estimate on 𝑢1, via (17). ≤mΩax((𝑟𝛾−1),(1−𝛾𝑚),󵄩󵄩󵄩󵄩󵄩𝑟1󵄩󵄩󵄩󵄩󵄩 ) ThThuusswweehsaevee𝐿w1e(Ωc𝑇an)counntirfoorlmoflythebopuronbdleamllatoifcnthoenlrineaecatriiotyn. ∞ termsin𝐿1(Ω𝑇)andbybootstrapargumentthenboundthem ⋅∫ (𝑢1+V1)𝑑𝑥≤𝐶 (16) uniformly in 𝐿𝑝 to deduce global existence [29]. So we can Ω statethefollowingtheorem. ⋅max((𝑟𝛾−1),(1−𝛾𝑚),󵄩󵄩󵄩󵄩󵄩𝑟1󵄩󵄩󵄩󵄩󵄩∞) Theorem2. Considerthespatiallyexplicitthree-speciesmodel withcannibalism(8)–(10),wherethespatialdimensionofthe ⋅∫ (𝑢1+𝛾V1)𝑑𝑥=𝐶 physicaldomainis𝑛 = 1.Solutionstothismodelareclassical, Ω thatis,(𝑢1,V1,𝑟1)∈𝐶1(0,𝑇;𝐶2(Ω)),andexistgloballyintime. ⋅max((𝑟𝛾−1),(1−𝛾𝑚),󵄩󵄩󵄩󵄩󵄩𝑟1󵄩󵄩󵄩󵄩󵄩∞)∫ 𝑊(𝑥,𝑡)𝑑𝑥. AsimplecorollarytoTheorem2canbestatedconcerning Ω themodelwithoutcannibalism. Now the uniform in time 𝐿1 bound on 𝑊 and thus on Corollary3. Considerthespatiallyexplicitthree-speciesmod- 𝑢1,V1 easily follows via applying Gronwall’s lemma on (16), elwithoutcannibalism(5).Solutionstothismodelareclassical, onanytimeinterval[0,𝑇],toyield thatis,(𝑢1,V1,𝑟1)∈𝐶1(0,𝑇;𝐶2(Ω)),andexistgloballyintime. 󵄩󵄩󵄩󵄩󵄩𝑢1󵄩󵄩󵄩󵄩󵄩𝐿1(Ω) ≤󵄩󵄩󵄩󵄩󵄩𝑢01+𝛾V01󵄩󵄩󵄩󵄩󵄩𝐿1(Ω)𝑒(𝐶max((𝑟𝛾−1),(1−𝛾𝑚),‖𝑟1‖∞))𝑇, (17) 2C.a3n.nNiboanliesxmis.teWnceesotaftTeuarnindgpIrnosvteabthileityfoilnlowthiengMtohdeeolrwemith.out 󵄩󵄩󵄩󵄩󵄩V1󵄩󵄩󵄩󵄩󵄩𝐿1(Ω) Theorem4. Considerthethree-speciesspatiallyexplicitmodel withoutcannibalism(5).Thespatiallyhomogenoussteadystate ≤󵄩󵄩󵄩󵄩󵄩𝑢01+𝛾V01󵄩󵄩󵄩󵄩󵄩𝐿1(Ω) 𝛾1𝑒(𝐶max((𝑟𝛾−1),(1−𝛾𝑚),‖𝑟1‖∞))𝑇 (18) f(o𝑢r∗1a,Vn∗1y,p𝑟∗a1r)aomftehtiesrmreogdimeleca.nnotbedrivenunstablebydiffusion, Proof. Weshowthisdirectlybycheckingthenecessarycon- withthebounddependingononlythefinaltime𝑡 = 𝑇.This ditionsforTuringinstabilityfrom[19].NoteforTuringinsta- followsastheequationfor𝑟1isamenabletomakeessentially bility to occur we have certain necessary conditions on the any estimate on 𝑟1, by comparing it to the diffusive logistic coefficients of the characteristic polynomial, gotten by lin- equation. We now deal with the problematic term which is earizing (5), around the spatially homogenous equilibrium Complexity 5 Table1:Coefficientsofcubicfunctions𝐴1(𝑘2)𝐴2(𝑘2)−𝐴3(𝑘2)usedindeterminingconditionsforTuringinstability. Coefficient 𝐴 (𝑘2) [𝐴 𝐴 −𝐴 ](𝑘2) 3 1 2 3 𝐽 𝐽 𝐽 −(𝐽 +𝐽 +𝐽 )(𝐽 𝐽 −𝐽 𝐽 +𝐽 𝐽 +𝐽 𝐽 − ℎ 𝐽 𝐽 𝐽 +𝐽 𝐽 𝐽 −𝐽 𝐽 𝐽 11 22 33 11 22 33 11 22 12 21 11 33 22 33 11 32 23 12 21 33 11 22 33 𝐽 𝐽 ) −𝐽 𝐽 𝐽 −𝐽 𝐽 𝐽 23 32 11 23 32 12 21 33 𝑑 (2𝐽 𝐽 +2𝐽 𝐽 +2𝐽 𝐽 +𝐽 𝐽 +𝐽 𝐽 −𝐽 𝐽 )+ 1 11 33 11 22 22 33 33 33 22 22 12 21 𝑑 𝑑 (𝐽 𝐽 −𝐽 𝐽 )+𝑑 𝐽 𝐽 +𝑑 (𝐽 𝐽 −𝐽 𝐽 ) 𝑑 (2𝐽 𝐽 +2𝐽 𝐽 +2𝐽 𝐽 +𝐽 𝐽 +𝐽 𝐽 −𝐽 𝐽 − 1 22 33 32 23 2 11 33 3 11 22 12 21 2 22 11 22 33 33 11 11 11 33 33 21 12 𝐽 𝐽 )+𝑑 (2𝐽 𝐽 +2𝐽 𝐽 +2𝐽 𝐽 +𝐽 𝐽 +𝐽 𝐽 −𝐽 𝐽 ) 23 32 3 22 11 22 33 33 11 11 11 22 22 23 32 −𝐽 (𝑑 +𝑑 )(2𝑑 +𝑑 +𝑑 )−𝐽 (𝑑 +𝑑 )(𝑑 +2𝑑 +𝑑 )− 𝑐 −𝑑 𝑑 𝐽 −𝑑 𝑑 𝐽 −𝑑 𝑑 𝐽 11 2 3 1 2 3 22 1 3 1 2 3 1 2 33 1 3 22 2 3 11 𝐽 (𝑑 +𝑑 )(𝑑 +𝑑 +2𝑑 ) 33 1 2 1 2 3 𝑏 𝑑 𝑑 𝑑 (𝑑 +𝑑 )(𝑑 𝑑 +𝑑 𝑑 +𝑑 𝑑 +𝑑 𝑑 ) 1 2 3 2 3 1 1 2 3 1 2 1 3 (𝑢∗1,V∗1,𝑟∗1).SeetheAppendixandTheoremC.1therein.Note Wenextcheckthecoefficient𝑑of𝐴1𝐴2−𝐴3, thattheJacobianmatrixofthereactiontermsofthemodel withoutcannibalismatthespatiallyhomogenousequilibrium 2𝑟 (𝑢∗1,V∗1,𝑟∗1)isgivenby 𝑑=𝑑1(𝑚2𝑢(𝑚−𝑟)+𝑟+2𝑢(𝑚−𝑟) 1 2 𝑟 𝑢𝑟 +( 𝑢(𝑚−𝑟)) +(𝑚)2+𝑢1𝑟1) − 1 (−𝑢+ +𝑡 ) 𝑚 ∗ ∗ [ 𝑚 𝑚 1 ] [ ] 𝐽=[[[ 𝑟 𝑟 −𝑚 1 0 ]]]. (21) +𝑑2(𝑚2𝑟2𝑢(𝑚−𝑟)+𝑟+2𝑢(𝑚−𝑟) (25) −1+ 0 − 𝑢(𝑚−𝑟) [ 𝑚 𝑚 ] 1 2 𝑟 2 2𝑟 +( 𝑢(𝑚−𝑟)) +( ) )+𝑑 ( 𝑢(𝑚−𝑟) 𝑚 𝑚 3 𝑚2 WenowcheckthenecessaryconditionsforTuringinsta- 𝑟 2 bility from Table1, where we take the 𝐽𝑖𝑖 entries, from the +2𝑟+2𝑢(𝑚−𝑟)+(𝑚)2+(𝑚) +𝑢∗1𝑟∗1)>0. abovematrix. Wefirstcheckthecoefficient𝑐of𝐴3, Sinceallofthesecoefficientsarepositive,theresultfollowsas anapplicationofTheoremC.1fromtheAppendixandsimple 𝑟 contraposition.Thisprovesthetheorem. 𝑐=−[−𝑑1𝑑2𝑢𝑟∗1 −𝑑1𝑑3(𝑚)−𝑑2𝑑3(𝑚)]>0. (22) Remark 5. Note that Theorem4 shows that there does not existTuringinstabilityinthemodelwithoutcannibalism(5), Wenextcheckthecoefficient𝑐of𝐴1𝐴2−𝐴3, foranyparameterregime. 2.4. ExistenceofTuringInstabilitywithCannibalism. Given 𝑟 𝑐=[ (𝑑 +𝑑 )(2𝑑 +𝑑 +𝑑 ) that there is no Turing instability in the model without 𝑚 2 3 1 2 3 cannibalism (5), we now investigate the effect of including +𝑚(𝑑1+𝑑3)(𝑑1+2𝑑2+𝑑3) (23) cannibalism,onTuringinstabilityinthemodel.Tothisend we investigate the spatially explicit model (8)–(10). We first +𝑢𝑟1(𝑑 +𝑑 )(𝑑 +𝑑 +2𝑑 )]>0. introduce several structure theorems from linear algebra in ∗ 2 1 1 2 3 theliterature[31–33]. Definition 6 (strongly stable). A real matrix 𝐴 is said to be Wenextcheckthecoefficient𝑑of𝐴3, stronglystableif𝐴−𝐷isstableforalldiagonalmatrices𝐷. Definition7. Let𝑃denotetheclassofmatriceswhosesigned 𝑑=𝑑 (𝑚(𝑢𝑟1))+𝑑 ((𝑟1 −1)(−𝑢𝑟1)+𝑢1𝑟1) principal minors are all positive and 𝑃0+ the class whose 1 ∗ 2 ∗ ∗ ∗ ∗ signedprincipalminorsareallnonnegative,withoneofeach +𝑑 (−𝑚(𝑟1 −1)−𝑟) orderpositive. 3 ∗ (24) Theorem8. A3×3realmatrix𝐴isstronglystableifandonly =𝑑1(𝑚(𝑢𝑟∗1))+𝑑2((𝑟∗1 −1)(−𝑢𝑟∗1)+𝑢∗1𝑟∗1) if𝐴∈𝑃+,and𝐴isstable. 0 >0. Theorem9. 𝐴isstronglystableifandonlyif𝐴iss-stable. 6 Complexity Theorem10. Ifthekineticsystem by(28).Consideraparametersetforwhich𝐽isstable,whilst thecannibalismparameter𝑠satisfies 𝑑𝑢 =𝑓(𝑢,V,𝑟) 𝑟1 −1+𝛾𝑠V1 >0, 𝑑𝑡 ∗ ∗ 𝑑V 𝑟∗1 −1+𝛾𝑠V∗1 −𝑚−𝑠𝑢∗1 >0, (29) =𝑔(𝑢,V,𝑟) (26) 𝑑𝑡 𝑜𝑟 𝑟1 −1+𝛾𝑠V1 +𝑡 −2𝑢𝑟1 −𝑢1 >0. ∗ ∗ 1 ∗ ∗ 𝑑𝑟 𝑑𝑡 =ℎ(𝑢,V,𝑟) Thenthereexistdiffusioncoefficients(𝑑1,𝑑2,𝑑3),suchthat the spatially homogenous steady state (𝑢1,V1,𝑟1) of (8)–(10) ∗ ∗ ∗ canbedrivenunstableduetoTuringinstability. is s-stable, then no Turing bifurcation is possible from the uniformsteadystatesolution. Theproofreliesonextractinganunstablesubmatrixfrom (28). This is equivalent to some signed principal minor not Theorem11. Ifthekineticsystem belongingto𝑃+andhence𝐽givenby(28)notbeingstrongly 0 stable. 𝑑𝑢 =𝑓(𝑢,V,𝑟) Proof. Noteifwelookattheminorgottenbyremovingrow3 𝑑𝑡 andcolumn3,weobtainthefollowingsubmatrix: 𝑑V 𝑑𝑡 =𝑔(𝑢,V,𝑟) (27) [𝑟∗1 −1+𝛾𝑠V∗1 1+𝛾𝑠𝑢∗1 ]. (30) 𝑑𝑟 𝑟−𝑠V1 −𝑚−𝑠𝑢1 =ℎ(𝑢,V,𝑟) ∗ ∗ 𝑑𝑡 Thisisclearlyseentobeunstableif𝑟1−1+𝛾𝑠V1−𝑚−𝑠𝑢1 > ∗ ∗ ∗ 0.Also,ifwelookattheminorgottenbyremovingrow2and contains an unstable subsystem, then Turing bifurcation is column2,weobtainthefollowingsubmatrix: possiblefromtheuniformsteadystatesolution. 𝑟1 −1+𝛾𝑠V1 𝑢1 Remark 12. We will now use the above theory to show that [ ∗ ∗ ∗ ]. (31) −𝑟1 𝑡 −2𝑢𝑟1 −𝑢1 cannibalism can in fact induce Turing instability. We will ∗ 1 ∗ ∗ first show that the Jacobian matrix of the reaction terms of the model with cannibalism (8)–(10), given by (A.2), is Thisisclearlyseentobeunstableif𝑟∗1 −1+𝛾𝑠V∗1 +𝑡1 − not strongly stable, for certain values of the cannibalism 2𝑢𝑟∗1 −𝑢∗1 >0. parameter 𝑠. This will yield the result as a simple corollary Thus if either of these conditions are met, 𝐽 given by toTheorems9and10.Notesimilarideaswereusedin[32], (28) contains unstable submatrices. That is, certain signed toshowthatacertainSEIRtypeepidemicsmodeldoesnot principalminorsarenotin𝑃0+.ThusviaTheorem8 𝐽isnot possessTuringinstability,aslongasthedisease-causeddeath stronglystable,whichimpliesviaTheorem9that𝐽isnot𝑠- rate parameter is zero, but can have Turing patterns for stable.Thisthenimpliesthatthereexistdiffusioncoefficients positivedisease-causeddeathrate. (𝑑1,𝑑2,𝑑3)forwhichTuringinstabilityisacertainty,viaan Recall the Jacobian matrix of the reaction terms of the application of Theorems 10 and 11. This proves the theo- modelwithcannibalismisgivenby rem. 𝑟1 −1+𝛾𝑠V1 1+𝛾𝑠𝑢1 𝑢1 3.NumericalAnalysisofTuringInstability ∗ ∗ ∗ ∗ [ ] 𝐽=[[ 𝑟−𝑠V∗1 −𝑚−𝑠𝑢∗1 0 ]] 3.1. The Effect of Cannibalism on Turing Instability. We [ −𝑟∗1 0 𝑡1−2𝑢𝑟∗1 −𝑢∗1] nThoweornemum14ericaarellymdeetm, ownestrcaatne tfihnadt idfiffthuesiocnoncdoiteioffincsienvitas (28) free + + 𝑑1,𝑑2,𝑑3 so as to induce Turing instability in (8)–(10). We =[[ + − 0]]. c1h0o−8o,s𝑑e3th=e0f.o9l,lo𝑟w=in0g.0p1,a𝑚ram=e0te.1r,s𝛾et=,𝑑01.01=,𝑠10=−011.0,1𝑑,2𝑢==10..713×, [ − 0 −] 𝑡1 = 0.21.Forthisparametersetweseethat𝑢∗1 = 0.058844, V1 =0.005850,𝑟1 =1.162736.Thus𝑟1−1+𝛾𝑠V1 =0.1627>0 ∗ ∗ ∗ ∗ Remark13. Noticewewritethesignof𝐽11asfree,becausedue and𝑟∗1−1+𝛾𝑠V∗1−𝑚−𝑠𝑢∗1 =0.0614>0.Thustheconditions tothecannibalismparameter𝑠thesignof𝐽11 =𝑟∗1−1+𝛾𝑠V∗1 ofTheorem14aremet,andwecanexpectTuringinstability. Thisisdemonstratedintheplotsnext. couldnowbepositiveornegative. Theorem14. Considerthethree-speciesmodelwithcannibal- 3.2. Sensitivity Analysis: Turing Space and Dispersion Plots. ism(8)–(10)anditsJacobianmatrix𝐽ofreactionterms,given SincecannibalismisthesolefactorinbringingaboutTuring Complexity 7 instability in (8)–(10), we decide to further investigate this show numerically that a life boat mechanism for the prey result. We perform next a sensitivity analysis, also referred exists.Nextweconjecturethatalifeboatmechanismforthe to as a Turing space analysis, considering the effect on predatoralsoexists. Turing instability with two parameters at a time. Since cannibalism is the central theme under investigation, we 5.1.CannibalismasaLifeBoatforthePrey. Noticethat,inthe check the sensitivity of the cannibalism parameter against specialcasethat𝑟 = 𝑚,apreyfreeequilibrium(𝑢1,V1,0)is ∗ ∗ every other parameter. In our simulations we refer to the possibleinboththenocannibalismmodel(4)andthemodel current literature [8, 34] to keep the parameters close to withcannibalism(3).WeshowinFigure8numericallythata reality.InalloftheplotsinFigures2and3theblueareais lifeboatmechanismforthepreyalsoexists.Thisisnotproved theregionwhereTuringinstabilityexists,andthewhitearea rigorously.Arigorousinvestigationwillhavetoemploythe istheregionwhereitdoesnot.Theresultsarepresentednext. normalformtheory,fornonlinearstabilityanalysis,asthere cannWibeanliesmxtpdaisrpamlayettehre𝑠.dispersion relation, as we vary the aretwozeroeigenvaluesatequilibrium(𝑢∗1,V∗1,𝑟∗1),andthus this equilibrium point is nonhyperbolic. However we can WeinterpretanddiscusstheaboveresultsintheDiscus- makethefollowingconjecture. sionandConclusion(Section6). Conjecture 16. Consider model system (3). Under certain 4.HopfBifurcation parametricrestrictions,ifthereisnocannibalism,thatis,𝑠=0, asmallperturbationtopreyfreestate(𝑢1,V1,0)willstillyield ∗ ∗ 4.1.HopfBifurcationinTermsoftheCannibalismParameter. extinctionoftheprey.However,if𝑠 > 0,thepreypopulation We will now investigate the correct criterion for Hopf willrecover,toreachanontrivial(𝑢1,V1,𝑟1)state. bifurcation in (3), in terms of the cannibalism parameter𝑠. ∗ ∗ ∗ Thecriterionprovidedin[26]isincorrect.SeeFigures6and Remark17. Whatwenoticeisthat,undercertainparametric 7.InordertoinvestigatetheHopfbifurcationofmodelsystem restrictions,thepreyfreestateisgloballystable,butintroduc- (3), we follow the method developed by Liu [35]. It can be ingcannibalismresultsincoexistenceofallspecies,andorbits seenthattheHopfbifurcationat𝑠 = 𝑠∗ canoccurprovided convergetoanontrivialinteriorequilibrium(𝑢1,V1,𝑟1).This that𝐴1(𝑠∗),𝐴3(𝑠∗),andΦ(𝑠∗) = 𝐴1(𝑠∗)𝐴2(𝑠∗)−𝐴3(𝑠∗)are showsthatalifeboatmechanismexistsforthe∗pr∗ey∗aswell. smoothfunctionsof𝑠inanopenintervalof𝑠∈Rsuchthat AlsoseeFigure8. (1)𝐴1(𝑠∗)>0,𝐴3(𝑠∗)>0,andΦ(𝑠∗)=𝐴1(𝑠∗)𝐴2(𝑠∗)− 𝐴3(𝑠∗)=0; 5.2. CannibalismasaLifeBoatforthePredator (2)(𝑑Φ(𝑠)/𝑑𝑠)|𝑠=𝑠∗ ≠0. Conjecture 18. Consider model system (3). Under certain parametric restrictions there exist cannibalism rates 𝛾,𝑠 such Thuswecanstatethefollowingtheorem. thatifthereisnocannibalism,thatis,𝑠 = 0,asmallpertur- bation to the predators in the (0,0,𝑡1/𝑢) state will still yield Theorem15. Under conditions (B.2), (B.3), (B.5), (B.7), and extinction of the predator. However, if 𝑠 > 0, the predator (B.9) there is a Hopf bifurcation of the positive equilibrium populationwillrecover,toreachanontrivial(𝑢1,V1,𝑟1)state. point(𝑢∗1,V∗1,𝑟∗1)at𝑠=𝑠∗ofmodelsystem(3),where𝐴1(𝑠∗)> ∗ ∗ ∗ 0,𝐴3(𝑠∗)>0,and𝐴1(𝑠∗)𝐴2(𝑠∗)−𝐴3(𝑠∗)=0. Remark 19. The Jacobian matrix for the no cannibalism model(4)at(0,0,𝑡1/𝑢)[26]isgivenby Thecoefficients𝐴1,𝐴2,and𝐴3anddetailsofconditions (B.2)–(B.9)areprovidedintheAppendix. 𝑡 1 −1 1 0 Wenownumericallyillustrateacorrectbifurcationpoint [𝑢 ] ftohratHΦo(p𝑠f∗i)ns=ta𝐴bi1li(t𝑠y∗.)W𝐴e2(b𝑠e∗g)in−b𝐴y3t(r𝑠y∗i)ng=to𝑎(fi𝑠n∗d)2a+n𝑠𝑏𝑠=∗𝑠+∗,𝑐su=ch0 𝐽=[[[[ 𝑟𝑡 −𝑚 0 ]]]]. (32) whilst(𝑑Φ(𝑠)/𝑑𝑠)|𝑠=𝑠∗ =2𝑎𝑠∗+𝑏≠0. [ −𝑢1 0 −𝑡1] The form of Φ is complicated and depends on the correctlycalculated𝐴1,𝐴2,𝐴3;seetheAppendix.Wechoose Satisfactionofthefollowingconditions, the same parameters from [26], 𝑟 = 0.5, 𝑚 = 1, 𝑢 = 0.1, 𝛾 = 1.5,𝑡1 = 1.3,butthecorrectformofthecoefficientsas 𝑢>𝑡 , wehaveworkedoutintheAppendixandplotΦ(𝑠). 1 𝑡 (33) 𝑟<𝑚(1− 1), 5.CannibalismasaLifeBoatMechanism 𝑢 Cannibalismoftengivesrisetocounterintuitivephenomenon are sufficient to satisfy the Ruth-Hurwitz criteria for local inpopulationdynamics.Alifeboatmechanismisafeatureof asymptoticstabilityof(0,0,𝑡1/𝑢).Thusifthereexistcannibal- cannibalism,whereanoncannibalisticpopulationisdoomed ismrates𝛾,𝑠suchthat(𝑢1,V1,𝑟1),thenontrivialequilibrium ∗ ∗ ∗ to extinction but can persist under the act of cannibalism. of the model with cannibalism (3), is globally stable and Wenowexploresuchfeaturesinourmodelsystems.Wefirst (33) also holds, then the populations will rebound from 8 Complexity u population v population ×10−3 1000 0.16 1000 10 800 0.14 800 9 600 0.12 600 t t 8 400 0.1 400 7 200 0.08 200 6 0 0.06 0 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 x x Turing system at t = 990 0.096 u 0.094 0.092 0.09 0 0.5 1 1.5 2 2.5 3 ×10−3 x 9.6 9.4 v 9.2 9 8.8 0 0.5 1 1.5 2 2.5 3 x 0.90093 0.900925 r 0.90092 0.900915 0.90091 0 0.5 1 1.5 2 2.5 3 x Figure1:HerewedemonstratethatcannibalismcanindeedinduceTuringinstabilityin(8)–(10).WeseeaspatialTuringpatterninthejuvenile speciesintheleftpanel.Therightpanelshowsthespatialprofileofallthreespecies,afterthesimulationisrunmuchlonger(𝑡=1000).Wesee Turingpersistsinboththeadultandjuvenilepredators,butthepreyhasveryweakTuring.Thevaluesoftheparametershereare𝑑1=10−11, 𝑑2 = 1.7×10−8,𝑑3 = 0.9,𝑟 = 0.01,𝑚 = 0.1,𝛾 = 0.01,𝑠 = 0.01,𝑢 = 0.13,𝑡1 = 0.21.Forthisparametersetweseethat𝑢∗1 = 0.058844, V1 =0.005850,𝑟1 =1.162736. ∗ ∗ (𝜖,𝜖,𝑡1/𝑢 + 𝜖) and be driven up to (𝑢∗1,V∗1,𝑟∗1). This tells in spatially explicit three-species age structured predator- us that a small amount of adult and predator populations prey systems. That is, if one considers the spatially explicit withoutcannibalismcannotsustainthemselvesundercertain version of the three-species age structured ODE model parametric restrictions, as (0,0,𝑡/𝑢) is locally stable. Thus originallyproposedin[18],thatis,(5),thenwithoutcanni- (𝜖,𝜖,𝑡/𝑢 + 𝜖) will be pulled back to (0,0,𝑡/𝑢). However, balism there can be no Turing instability in any parameter the act of cannibalism, under these parametric restrictions regime. This is shown via Theorem4. However, introducing (assuming one can formally prove global stability of the cannibalismbringsaboutTuringinstability,in(8)–(10),seen equilibrium), can cause these small amounts of adult and viaTheorem14.AlsonotethatalthoughtheHopfbifurcation juvenilepredatorpopulationstorise,andso(𝜖,𝜖,𝑡/𝑢+𝜖)can analysis on the model originally proposed by Magnu´sson bedrivenupto(𝑢1,V1,𝑟1). has been done in [26], the results therein are incorrect. We ∗ ∗ ∗ derive the correct conditions for the Hopf bifurcation via 6.DiscussionandConclusion Theorem15.Inthecaseofthepreyspecies,weseenumerical evidenceofalifeboatviaFigure1. Inthecurrentmanuscript,tothebestofourknowledge,we Fromanecologicalpointofview,Theorem14tellsusthat, reportthefirstcannibalisminducedTuringinstabilityresult, forthisspecificmodel,cannibalisminducesTuringinstability. Complexity 9 Turing space Turing space 1 1 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 s 0.5 s 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 0.2 0.4 0.6 0.8 1 r u Turing Turing Figure2:Thevaluesoftheparametershereare𝑑1 = 10−11,𝑑2 = (a) 1.7×10−8,𝑑3 =0.9,𝛾=0.01,𝑚=0.1,𝑢=0.13,𝑡1 =0.21.Welook Turing space attheTuringspace(sensitivity)generatedbyvarying𝑠and𝑟,each intherange[0,1]. 0.9 0.8 0.7 Thus in order to investigate the Turing instability result 0.6 further,weperformasensitivityanalysis,wherewelookatthe s 0.5 Turing space generated by the cannibalism parameter, with everyotherparameterinthesystem. 0.4 We look at how the Turing space changes as we vary 𝑠 0.3 the cannibalism parameter and 𝛾 the rate of intake by the 0.2 cannibalisticadult.WeseethatTuringoccurseverywherein 𝑠 ∈ [0,1],𝛾 ∈ [0,1], so we do not show a plot of this 0.1 case. This tells us that the interplay between the amount of 0 cannibalismandintakerateofthecannibalalwaysproduces 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Turing instability, in this range (to keep things realistic we t1 varytheparametersonlyin[0,1]).Thatis,ifwekeep𝑠fixed andincreaseordecrease𝛾,theTuringinstabilitypersists. Turing In Figure2 we look at how the Turing space changes (b) with respect to the interactions between the cannibalistic adult predator and the juvenile predator. Here we vary 𝑠 Figure3:Thevaluesoftheparametersin(a)are𝑑1 = 10−11,𝑑2 = the cannibalism parameter and 𝑟 the growth rate of the 1.7×10−8,𝑑3=0.9,𝛾=0.01,𝑚=0.1,𝑟=0.01,𝑢=0.13.Welookat theTuringspace(sensitivity)generatedbyvarying𝑠and𝑢,eachin 𝑟ocseacenc∈unthri(bsa0ati,lf0Tisw.ut0ier3ci]inan.gdcFurooelcrtacsltueohrwa𝑟stufvaopadrldtuaosellsat𝑠obooft∈uh𝑠te,[00sj,.ua21yv,]eb,𝑠nuiiftl∈e𝑟npio(s0ot,pvi0feu.rwl2ya]et,iloofTuwnur.,rthWisnaegyer t𝑑eloha2oec=khraai1nnt.g7ttheh×ee[01Tr,0au1n−r]8gi.n,eTh𝑑g[30sep,=1va]ac0.le.u9(e,ss𝛾eon=fsitt0hiv.e0it1py,a)𝑟rga=emne0et.r1ear,tse𝑢din=b(y0b.v)1a3arr,ye𝑚in𝑑g1=𝑠=0a.1n10.d−W𝑡111e,, increase𝑟.Furthermore,weobservethatweloseTuring,for moderatevaluesof𝑟,sayabout0.2ormore,ifweincrease𝑠 past0.5.Thistellsusthattheinterplaybetweentheamount of cannibalism and growth rate of the cannibalistic adult ofthejuvenileessentiallyalwaysactstogiveTuringformost essentiallyalwaysactstoremoveTuringforvaluesof𝑠>0.5. valuesintheconsideredrange,soagainwedonotplotthis HoweverTuringessentiallypersistsforall𝑠,ifsay𝑟∈(0,0.03] case. thatisverylow.Nowwevary𝑠thecannibalismparameterand InFigure3welookathowtheTuringspacechangeswith 𝑚thelossinthejuvenilepopulation,duetonaturaldeathas respect to the interactions between the cannibalistic adult wellastransitioningintotheadultclass.WeseethatTuring predator and the prey species. In Figure3(a) we vary 𝑠 the occursalmosteverywhereexceptforverylowvaluesof𝑠,𝑚, cannibalism parameter and 𝑢 the growth rate of the prey. that is, 𝑠 ∈ (0,0.3] and 𝑚 ∈ (0,0.1]. This tells us that the This particular interaction is probably the most interesting interplay between the amount of cannibalism and loss rate in our opinion. As a first analysis we noticed that Turing 10 Complexity occurs for all 𝑠 ∈ [0,1], for a narrow band of 𝑢 values, say ×106 Dispersion plot 𝑢 ∈ [0.15,0.22].However,uponfurtherdiscretizationofthe 2) 1 k parameter space, we observed that there are disconnected A(3 0.8 patches where Turing occurs, for roughly 𝑠 ∈ [0.65,0.75] − and 𝑢 ∈ [0.55,0.6], and then again for certain values of 2k) 0.6 𝑢 ∈ [0.7,1]. This property is not seen in any of the other A(2 0.4 ) simulations, despite various further discretization in all of 2 the parameters. In Figure3(b) we vary 𝑠 the cannibalism A(k1 0.2 parameter and 𝑡1 the competition coefficient for the prey. on 0 Note the competition mediated effects of cannibalism have elati −0.2 beenthefocusofanumberofrecentstudies[8,36].Wesee n r vtahlalalu𝑡t1eTsvu,arsliaunyegs𝑡,1osc∈acyu[0𝑡r1s.1f1≥o,r00a..21ll],.𝑠fAo∈rlsao[0nT,au1r]rr,ionfwogrobacacnnudarrsoroffow𝑠rvebasalsnuedensto,iaf𝑠l𝑡l∈y1 of dispersio −−−000...864 [0.95,1].Thistellsusthattheinterplaybetweentheamount ff. ofcannibalismandcompetitionamongstpreyessentiallyacts Coe −10 1000 2000 3000 4000 5000 6000 7000 togiveTuringforrestrictedvaluesofcompetitionparameter Wave number (k) 𝑡1. s=0.01 s=0.31 Inthesameveinastheabove,wealsoconductadisper- s=0.21 s=0.41 sionrelationanalysis.Hereweplotthecoefficient𝐴1𝐴2−𝐴3 forvariousvaluesofthewavenumber𝑘.RecallthatTuring Figure 4: Here we plot the dispersion relation of the coefficient instabilityoccurs,ifthiscoefficientdipsbelowthe𝑘axis.We 𝐴1𝐴2 −𝐴3 versus the wave numbers 𝑘, for various values of the constructasequenceof4graphs,byvaryingthecannibalism parameter𝑠.RecallthereisTuringinstabilitywhenatleastsomepart parameter𝑠.Whatwenoticeisthatas𝑠isincreased(forother ofthecoefficient𝐴1𝐴2−𝐴3liesbelowthe𝑘axis. parametricvaluesfixedasinFigure1),weseethecoefficient moves upwards and then becomes positive past 𝑠 = 0.31. Thistellsusthattheeffectofincreasingcannibalismhereis 70 toremovetheTuringinstability. Inlightofourresultswecansummariseafewimportant 60 findings. 50 (1)In the spatially explicit form of the classical model consideredbyMagnu´ssonandthenrescaledbyTang, 40 cannibalismcancauseTuringinstability. 30 (2)TheTuringinstabilityinducedbycannibalismseems tobemostsensitivetothepreygrowthrateparameter 20 𝑢and𝑡1thecompetitioncoefficientfortheprey.Italso seemstobeleastsensitiveto𝛾therateofintakebythe 10 cannibalisticadultand𝑚thelossrateinthejuvenile X: 0.748 0 Y: −3.951 population.Thistellsusthattheadultpredator-prey relation is critical, despite the adult being able to −10 cannibalisethejuvenilepredator. 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 (3)Magnu´sson and Tang’s findings are that, in the Figure5:HereweseeaplotofΦ(𝑠)versus𝑠fortheotherparameters ODEmodel,increasingthecannibalismparameter𝑠 asmentionedearlierfrom[26],𝑟=0.5,𝑚=1,𝑢=0.1,𝛾=1.5,𝑡1= destabilisesthesystem.Giventhatwechoosesimilar 1.3.Weclearlyseethat(𝑑Φ(𝑠)/𝑑𝑠)|𝑠=1.001 >0,and(𝑑Φ(𝑠)/𝑑𝑠)|𝑠=0.75 = parameters, our result suggests that, in the spatially 0.Therootoccursatapproximately𝑠=1.001. explicitcase,increasingthecannibalismparameter𝑠 removestheTuringinstabilityandhencestabilisesthe system; see Figure4. This makes the ODE and PDE modelsquitedifferentdynamically. investigation is considering cannibalism among juveniles. NotetheTuringpatternswecurrentlyobtainarepurely We know for a fact that this does take place in certain spatial.Itwouldbeinterestingtoinvestigateifspatiotemporal amphibian species [36]. One might also consider the effect patternsdrivenbyTuring-Hopftypeinstabilitiesexist.Ifone of cannibalism occurring simultaneously amongst adults can prove otherwise, it raises further interesting questions and juveniles. Lastly, akin to [17] one can investigate the into the nature of cannibalism and its ecological conse- occurrenceofcannibalismintheprey.Furtherinvestigation quences,suchaswhywouldconspecificconsumptionhinder ofthedisconnectedTuringspaceseeninFigure3shouldalso temporal changes in the population, at fixed locations in beafuturedirection.Theissueofwhethercannibalismacts space? The other interesting question for possible future as a life boat mechanism for the predator, in (3), remains

Description:
the absence of cannibalism, Turing instability is an impossibility in this model, for any ern India, called “Aghoris,” consume corpses in the belief.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.