THE DESIGN OF MOVING MAGNET ACTUATORS FOR LARGE-RANGE FLEXURE-BASED NANOPOSITIONING by David B. Hiemstra A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering (Mechanical Engineering) at The University of Michigan Advisor: Professor Shorya Awtar i © David B. Hiemstra 2014 All Rights Reserved ii ACKNOWLEDGEMENTS Shorya, it will take me the rest of my life to learn all of what you have taught me and see all the ways you have helped me grow. Thank you. Thank you to many people who collaborated with me during this work, including Gaurav Parmar1, Cory Welch, Yangbing Lou, Zhen Wu, Yi Chen, Yilong Wen, and Adrian Adames. Your help, discussions, insights, support, and machine shop time spent with me on this project are invaluable. Everyone else who supported me during this adventure, especially my family, the Precision Systems Design Laboratory, and all my friends—thank you. 1 A certain portion of this work was done in collaboration with Gaurav Parmar in the Precision Systems Design Laboratory at the University of Michigan. This portion has been published in a journal paper in IEEE/ASME Transactions on Mechatronics [83]. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................ iii TABLE OF CONTENTS ................................................................................................ iv LIST OF FIGURES ......................................................................................................... ix LIST OF TABLES .......................................................................................................... xv ABSTRACT ..................................................................................................................... 16 CHAPTER 1 : Introduction and Motivation ............................................................... 18 1.1 Lorenz-force electromagnetic actuators ..................................................... 19 1.1.1 Moving magnet actuators (MMA) ...................................................... 20 1.1.2 Voice coil actuators (VCA) ................................................................ 22 1.1.3 Characteristics of Lorentz force actuators .......................................... 24 1.1.4 Applications ........................................................................................ 25 1.2 Nanopositioning ......................................................................................... 27 1.2.1 Large range flexure based nanopositioning ........................................ 27 1.2.2 Research goals and impact .................................................................. 30 1.2.3 Challenges in achieving large range nanopositioning ........................ 32 1.3 Design specifications .................................................................................. 34 1.3.1 Motion range ....................................................................................... 36 1.3.2 Motion quality ..................................................................................... 36 1.3.3 Speed ................................................................................................... 37 1.3.4 Temperature stability .......................................................................... 43 1.3.5 Additional considerations ................................................................... 43 1.4 Thesis outline ............................................................................................. 44 CHAPTER 2 : Actuators for Large Range Nanopositioning...................................... 46 2.1 Actuator comparison based on literature survey ........................................ 48 2.2 Actuator comparison using performance indices ....................................... 51 2.2.1 Maximize first natural frequency ........................................................ 57 2.2.2 Maximize scanning frequency ............................................................ 60 2.2.3 Minimize rise time in point to point positioning application .............. 65 2.2.4 Minimize power consumption ............................................................ 66 iv 2.2.5 Minimize positioning resolution ......................................................... 67 2.2.6 Conclusion .......................................................................................... 68 2.3 Piezoelectric actuators ................................................................................ 68 2.3.1 Piezoelectric stack actuators ............................................................... 70 2.3.2 Piezoelectric stacks with amplification mechanism ........................... 71 2.3.3 Comparison between electromagnetic and piezoelectric actuators .... 80 2.4 Piezomotors ................................................................................................ 84 2.4.1 Quasi-static piezomotors ..................................................................... 85 2.4.2 Dynamic piezomotors ......................................................................... 88 2.4.3 Ultrasonic piezomotors ....................................................................... 89 2.5 Magnetorestrictive actuators ...................................................................... 91 2.6 Electromagnetic actuators .......................................................................... 92 2.6.1 Voice coil actuators............................................................................. 94 2.6.2 Moving magnet actuators .................................................................... 99 2.6.3 Multi-phase electromagnetic actuators (linear motors) .................... 103 2.6.4 Additional electromagnetic actuator types ........................................ 104 2.7 Conclusion ................................................................................................ 105 CHAPTER 3 : Prior art concerning moving magnet actuators ............................... 106 3.1 Common MMA architectures ................................................................... 106 3.1.1 Slotting .............................................................................................. 107 3.1.2 Traditional MMA architecture .......................................................... 110 3.1.3 Linear motor MMA architecture ....................................................... 111 3.1.4 “Air” core MMA architecture ........................................................... 113 3.1.5 Slotted MMA (compressor architecture) .......................................... 115 3.2 Additional MMA architectures and design ideas ..................................... 118 3.3 Voice coil actuator designs ....................................................................... 127 3.4 Coil design ................................................................................................ 130 CHAPTER 4 : Design considerations and methodologies ........................................ 134 4.1 Actuator design considerations ................................................................ 134 4.1.1 Force uniformity over stroke ............................................................ 134 4.1.2 Armature reaction ............................................................................. 139 4.1.3 Shorted turn ....................................................................................... 141 4.1.4 Wire selection ................................................................................... 142 4.1.5 Magnetic saturation of circuit components ....................................... 143 4.1.6 Magnet material ................................................................................ 144 4.1.7 Radial instability ............................................................................... 149 v 4.1.8 Thermal management........................................................................ 150 4.1.9 Actuator design considerations map ................................................. 150 4.2 System design considerations ................................................................... 153 4.2.1 Open-loop bandwidth........................................................................ 153 4.2.2 Actuator force ................................................................................... 153 4.2.3 Actuator force uniformity ................................................................. 154 4.2.4 Mechanical load on flexure bearing .................................................. 154 4.2.5 Thermal management........................................................................ 155 4.2.6 System design considerations map ................................................... 156 4.3 Design methodologies .............................................................................. 158 4.4 Figures of merit ........................................................................................ 160 CHAPTER 5 : Dynamic Actuator Constant .............................................................. 162 5.1 Derivation ................................................................................................. 163 5.2 Impact on motion system performance .................................................... 170 CHAPTER 6 : Electromagnetic modeling of an MMA ............................................. 176 6.1 Model neglecting magnetic fringing ........................................................ 180 6.2 Models incorporating magnetic fringing via Rotor’s method .................. 183 6.2.1 Circular flux paths............................................................................. 184 6.2.2 Improved magnetic leakage estimation ............................................ 186 6.2.3 Improved magnetic fringing estimation ............................................ 187 CHAPTER 7 : Actuator design and fabrication ........................................................ 192 7.1 Detailed design ......................................................................................... 194 7.1.1 Pole piece .......................................................................................... 195 7.1.2 Magnet length ................................................................................... 196 7.1.3 Magnet radius and coil thickness ...................................................... 197 7.1.4 Coil length ......................................................................................... 199 7.1.5 Wire gauge ........................................................................................ 200 7.1.6 Back iron ........................................................................................... 201 7.1.7 Coil bobbin........................................................................................ 203 7.1.8 Off-axis attraction forces .................................................................. 205 7.1.9 Mover shaft ....................................................................................... 206 7.1.10 Summary ........................................................................................... 208 7.2 Practical design considerations ................................................................ 208 7.2.1 Mover ................................................................................................ 208 7.2.2 Back iron ........................................................................................... 209 7.2.3 Bobbin ............................................................................................... 210 vi 7.3 Fabrication ................................................................................................ 211 7.3.1 Bobbin ............................................................................................... 211 7.3.2 Coil winding...................................................................................... 212 7.3.3 Back iron ........................................................................................... 215 7.3.4 Magnets ............................................................................................. 215 CHAPTER 8 : Thermal management system ............................................................ 216 8.1 Concept selection ..................................................................................... 218 8.2 Detailed design ......................................................................................... 221 8.2.1 Latent heat sink ................................................................................. 221 8.2.2 Thermal bridge .................................................................................. 224 8.2.3 Thermal housing ............................................................................... 225 8.2.4 TMS thermal model .......................................................................... 226 8.3 Fabrication ................................................................................................ 231 CHAPTER 9 : Double-parallelogram flexure bearing .............................................. 233 9.1 Detailed design ......................................................................................... 234 9.1.1 Material selection .............................................................................. 235 9.1.2 Motion stage design .......................................................................... 235 9.1.3 Beam dimensions .............................................................................. 236 9.1.4 Off-axis stability ............................................................................... 239 9.1.5 Bearing dynamics.............................................................................. 241 9.2 Practical design considerations ................................................................ 243 9.3 Fabrication ................................................................................................ 244 CHAPTER 10 : Experimental Results ........................................................................ 247 10.1 Experimental setup ................................................................................... 248 10.2 Moving magnet actuator ........................................................................... 251 10.2.1 MMA static force characteristics ...................................................... 251 10.2.2 Effect of bobbin material on dynamic response ............................... 252 10.3 Thermal management system ................................................................... 253 10.4 Nanopositioning ....................................................................................... 254 10.4.1 System characterization .................................................................... 255 10.4.2 Nanopositioning performance ........................................................... 255 CHAPTER 11 : Innovations in Actuator Design ....................................................... 259 11.1 Concentric coil ring magnet (CCRM) moving magnet actuator .............. 259 11.1.1 Optimal MMA topology ................................................................... 260 11.1.2 Concentric coil radial magnet (CCRM) module ............................... 263 11.1.3 Single CCRM open face MMA (preferred embodiment) ................. 265 vii 11.1.4 Integrated thermal management ........................................................ 269 11.1.5 Single CCRM closed face MMA design .......................................... 270 11.1.6 Axially spaced dual CCRM MMA designs ...................................... 272 11.1.7 Radially spaced dual CCRM MMA designs ..................................... 274 11.1.8 Planar topologies ............................................................................... 276 11.2 Actuator integration with motion system ................................................. 278 11.3 Coil designs .............................................................................................. 279 11.3.1 MMA featuring non-uniform coil windings ..................................... 279 11.3.2 High-efficiency planar coils .............................................................. 280 11.4 Voice coil actuator concepts ..................................................................... 282 11.4.1 Flexure coil leads .............................................................................. 283 11.4.2 VCA for nanopositioning .................................................................. 284 CHAPTER 12 : Conclusion.......................................................................................... 285 REFERENCES .............................................................................................................. 287 APPENDIX A: Analytical MMA model MATLAB code .......................................... 309 APPENDIX B: Analytical thermal model for selection of heat pipes ...................... 316 viii LIST OF FIGURES Figure 1.1: Conventional MMA cross section .................................................................. 20 Figure 1.2: Opposite coil winding directions produce unidirectional force in MMA ...... 21 Figure 1.3: Off-the-shelf MMAs [6] and [8] .................................................................... 22 Figure 1.4: Conventional VCA cross section and off-the-shelf product .......................... 23 Figure 1.5: Voice coil windings in air gap with radially oriented magnetic field experience force in axial direction .................................................................................... 23 Figure 1.6: Off the shelf Voice Coil Actuator .................................................................. 24 Figure 1.7: Actuator integrated in a mechatronic motion system ([23][24][25]) ............. 26 Figure 1.8: Tradeoff between range and resolution in motion systems ............................ 28 Figure 1.9: Envisioned research impact ............................................................................ 31 Figure 1.10: Raster scanning over 10mm x 10mm sample (not to scale) ......................... 39 Figure 1.11: Motion profile and force requirements for point to point positioning ......... 42 Figure 2.1: Overview of final actuator candidates for large range nanopositioning ........ 47 Figure 2.2: Normalized actuator force-stroke and stress-strain curves ............................. 53 Figure 2.3: Flexure based motion system with amplification mechanism ........................ 55 Figure 2.4: Comparison of performance index E/ρ for various actuators (estimated maximum and minimum ranges shown) ........................................................................... 60 Figure 2.5: Specific actuation stress vs. actuation strain [93]........................................... 62 Figure 2.6: Comparison between performance indices E/ρ and σε/ρ (estimate maximum and minimum ranges shown) ............................................................................................ 64 Figure 2.7: Piezo stack actuator [102] .............................................................................. 70 Figure 2.8: Piezoelectric stack actuators with amplification a) [109] and b) [102] .......... 71 Figure 2.9: Piezo stack actuator model ............................................................................. 72 Figure 2.10: Piezo stack actuator integrated with motion system model ......................... 73 Figure 2.11: Effect of flexure and amplification mechanism stiffness on piezo actuator displacement and force output .......................................................................................... 74 Figure 2.12: Effect of flexure and amplification mechanism stiffness on piezo actuator blocking force output ........................................................................................................ 75 Figure 2.13: Force and displacement of piezo actuator integrated with motion amplification ..................................................................................................................... 76 ix Figure 2.14: First resonant frequency vs. free stroke of commercially available mechanically amplified piezo actuators ............................................................................ 78 Figure 2.15: Blocking force vs. free stroke of commercially available mechanically amplified piezo actuators .................................................................................................. 79 Figure 2.16: First resonant frequency and actuator stroke for an MMA and PZT actuator (Model # P-025.40P) ......................................................................................................... 82 Figure 2.17: First resonant frequency and actuator stroke for an MMA and PZT actuator (Model # P-056.80P) ......................................................................................................... 84 Figure 2.18: “Walker” type piezomotor from PiezoMotor AB [114][115] ...................... 86 Figure 2.19: Ultrasonic piezomotor [144] ........................................................................ 90 Figure 2.20: (Attempt!) at categorization of electromagnetic actuators ........................... 93 Figure 2.21: VCA in inverted configuration eliminates moving wires and reduces heat transfer to the motion stage at cost of higher moving mass .............................................. 97 Figure 2.22: MMA derived from VCA architecture ......................................................... 99 Figure 2.23: Advantages of traditional MMA over VCA for large range nanopositioning ......................................................................................................................................... 102 Figure 3.1: Volumetric force output dependence on magnet material and actuator dimensions (inner actuator diameter, D, and outer diameter D ) for slotted vs. non slotted o MMA architectures [193] ............................................................................................... 108 Figure 3.2: Conventional MMA cross section ................................................................ 110 Figure 3.3: Stacked MMA architecture .......................................................................... 112 Figure 3.4: Flux focusing MMA [197] ........................................................................... 113 Figure 3.5: Air core” MMA allows both axial and radial motion .................................. 114 Figure 3.6: Two axis MMA with maglev force and axial motion [177][56][178] ......... 115 Figure 3.7: Two axis MMA with maglev force and axial motion [57] ........................... 115 Figure 3.8: Slotted MMA for compressor applications showing force direction for positive coil current......................................................................................................... 116 Figure 3.9: Highly variable force over stroke plot of typical slotted MMA [199] (top) [200] (bottom) ................................................................................................................. 118 Figure 3.10: Reduction of cogging force via ferromagnetic end plates [50] .................. 119 Figure 3.11: MMA with fixed magnets at axial ends to increase spring force and system resonant frequency [156] ................................................................................................ 120 Figure 3.12: Active end coils [217] ................................................................................ 121 Figure 3.13: Basic Halbach array.................................................................................... 122 Figure 3.14: Inversed MMA [218].................................................................................. 123 Figure 3.15: Stacked inverted MMA .............................................................................. 124 Figure 3.16: Radial magnet configuration [219]............................................................. 125 Figure 3.17: Radial and axial magnet [221].................................................................... 126 x
Description: