NAVAL POSTGRADUATE SCHOOL Monterey, California AD-A284 791 (cid:127) TTHESI E219 DTIC SELECTE THESIS, SEP 2 6 1994 F THE DESIGN AND ANALYSIS OF A PHASED ARRAY MICROSTRIP ANTENNA FOR A LOW EARTH ORBIT COMMUNICATION SATELLITE by William Lee Barfield June 1994 Thesis Advisor: Richard Adler Approved for public release; distribution is unlimi# 1. SD nTIC T.,'7 U',PEOT3D 8 94-30651 III1l1I1 IIIIIFI1IPI1MII IIII~lIl (cid:127)(cid:127) 1 94 9 23 079 Form Aproved REPORT DOCUMENTATION PAGE OMB No 0704o018 puislic reoflngj burden for this collecioon if n estimated to averagg I hour per respons, including the time fOoru rrrceesw. ing instctiOn. searching exitting data colectin formation, inctdsing s lgg;etfioor reducing this burden tO washington $ervicCeO. eaDSiroeucatrotreat t t information Operatont an Reports. 12 I Jefferso4 Davis Highway. Suite 112u0d4g.e tA. rhnton. VA 222024302. a.ndt the Offie of Management and Paeor Reduction Prolact (0104-11). Wait. DC 20t03 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED I June 1994 Mstejr'ý Thp-ol 4. TITLE AND SUBTITLE S. FUNDING NUMBERS THE DESIGN AND ANALYSIS OF A PHASED ARRAY MICROSTRIP ANTENNA FOR A LOW EARTH ORBIT COMMUNICATION SATELLITE 6. AUTHOR(S) Barfield, William L. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U. PERFORMING ORGANIZATION Naval Postgraduate School REPORT NUMBER Monterey, CA 93943-5000 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited. 13. ABSTRACT (Maximum 200 words) A Naval Postgraduate School spacecraft design class proposed a multiple beam, phased array, microstrip antenna as part of the preliminary design of a low earth orbit communication satellite. The antenna must provide coverage over the satellite's entire field of view while both uplink and down-link operate simultaneously on the same L-band frequency. This thesis assesses the feasibility of the antenna proposed in that preliminary design. Design tradeoffs for a microstrip array constrained by both available surface area and a limited mass budget are examined. Two different substrate materials are considered in terms of weight and performance. Microstrip patch theory is applied to array element design and layout and antenna array theory is applied to determine phase and amplitude coefficients. The focus of the design is on obtaining the desired beam shape and orientation, given antenna size constraints. A corporate feed method is discussed and a general design presented. Antenna performance is predicted through the use of a computer model based on Modal Expansion theory and results are plotted in a series of graphs which demonstrate the limitations of the proposed design. DTQIUCA INULI~CTIED %3 14. SUBJECT TERMS 1S. NUMRER OF PAGES W Microstrip Antenna, Low Earth Orbit Communication, Modal Expansion Theory, L-band, Satellite 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 191. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT SU n a A- c UL NSN 7S40-01-280-5500 Standard Form 298 (Rev 2-89) P re e by ANSAS id. Z3".16 2K--102 Approved for public release; distribution is unlimited. THE DESIGN AND ANALYSIS OF A PHASED ARRAY MICROSTRIP ANTENNA FOR A LOW EARTH ORBIT COMMUNICATION SATELLITE by William Lee Barfield Lieutenant, United States Naval Reserve B.S., North Carolina State University, 1984 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN ELECTRICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL June 1994 .13 Author: ;ejcI Wil iam Lee Barfield Approved by: _ ___ __ Richar Aer, Thesis Advisor Rudolph Panholzer, Seco d Advisor Michael A. Morgan, Ch6irman Department of Electrical and Computer Engineering ii ABSTRACT A Naval Postgraduate School spacecraft design class proposed a multiple beam, phased array, microstrip antenna as part of the preliminary design of a low earth orbit conmmunica- tion satellite. The antenna must provide coverage over the satellite's entire field of view while both uplink and down- link operate simultaneously on the same L-band frequency. This thesis assesses the feasibility of the antenna proposed in that preliminary design. Design tradeoffs for a microstrip array constrained by both available surface area and a limited mass budget are examined. Two different substrate materials are considered in terms of weight and performance. Microstrip patch theory is applied to array element design and layout and antenna array theory is applied to determine phase and amplitude coefficients. The focus of the design is on obtaining the desired beam shape and orienta- tion, given antenna size constraints. A corporate feed method is discussed and a general design presented. Antenna performance is predicted through the use of a computer model based on Modal Expansion theory and results are plotted in a series of graphs which demonstrate the limita- tions of the proposed design. Accesion For NTIS CRA&I DTiC TAB [J U,;an(cid:127),ou:;ze'J [ Justification By ..................... Dist. ibution I iii Availability Codes Avail andlor Dist Special TABLE OF CONTNTS I. INTRODUCTION ................... 1 A. BACKGROUND ............... .................. 1 B. SYSTEM CONCEPT ............. ................ 2 C. SYSTEM DESIGN .............. ................. 3 D. ANTENNA PERFORMANCE REQUIREMENTS ..... ....... 6 II. DESIGN CONSIDERATIONS ............ ............... 7 A. SPACECRAFT CONFIGURATION ......... ........... 7 1. Overview ............... ................. 7 2. Size Constraints ........... ............. 7 B. ANTENNA CONFIGURATION .......... ............. 8 C. MICROSTRIP PATCH THEORY .......... ............ 8 1. Radiation Mechanisms ....... ........... .. 10 2. Patch Parameters ......... ............. 12 D. ARRAYS ............... .................... 14 1. Theory ............. .................. 14 2. Beam Synthesis ......... .............. 16 III. ANTENNA DESIGN ............. ................. .. 18 A. MICROSTRIP PATCH DESIGN' ..... ............ .. 18 1. Substrate Material ......... ........... 18 2. Patch Dimensions ......... ............. 22 B. PLANAR ARRAY DESIGN' .......... .............. .. 23 1. Element Spacing .......... .............. 24 2. Excitation Coefficients ...... .......... .. 24 iv 3. Antenna Gain ............... 25 4. Feed Methods ......... ............... ..27 5. Feed Design .......... ................ ..29 C. SUMMARY .............. .................... .. 29 IV. PERFORMANCE ANALYSIS ........... ............... 31 A. ANTENNA MODEL ............ ................. ..31 1. Infinite vs. Finite Arrays ... ........ .. 31 2. Edge Effects ......... ............... ..32 3. Input Impedance ........ .............. ..32 B. SOFTWARE MODELS ............ .............. ..32 1. Method of Moments ........ ............. ..32 2. Modal Expansion Model ...... ........... .. 33 C. MODELING SCENARIO .......... ............... ..33 D. RESULTS .............. .................... .. 34 1. Radiation Patterns ....... ............ .. 34 2. Pattern Separation ....... ............ .. 35 3. Antenna Footprint ........ ............. .. 36 V. ALTERNATIVE DESIGN ........... ................ 38 A. ANTENNA CONFIGURATION ........ ............. .. 38 B. ANTENNA ORIENTATION .......... .............. 39 VI. SUMMARY ................ ...................... .. 40 A. ANALYSIS AND DESIGN .......... .............. 40 B. PERFORMANCE EVALUATION ....... ............ .. 40 C. CONCLUSIONS ............ .................. .. 41 D. FUTURE THESIS OPPORTUNITIES ...... .......... .. 42 v APPENDIX A LINK BUDGET SUMMARY ............. 43 APPENDIX B I. MASS ESTIMATES ......... ............ 44 II. SUMMARY .......... ................ .. 46 APPENDIX C I. PATCH DESIGN ......... ............. 47 II. GAIN ........... ................. .. 48 APPENDIX D EXCITATION COEFFICIENTS ...... ........... .. 49 APPENDIX E ARRAY FACTOR PLOTS ......... ............. 55 APPENDIX F I. DESIGN.FOR ........... .............. 61 II. M1CARY.FOR ......... .............. 63 III. GEOM.FOR ......... ............... ..70 APPENDIX G I. RADIATION PATTERNS ..... .......... .. 72 II. PATTERN SEPARATION ..... .......... .. 75 III. ANTENNA FOOTPRINT ...... ........... .. 76 LIST OF REFERENCES ............. ................... .. 80 BIBLIOGRAPHY ................. ...................... 83 INITIAL DISTRIBUTION LIST .......... ................ ..85 vi LIST OF TABLES TABLE I-i. ANTENNA PARAMETERS ............ 6 TABLE III-l. PARAMETERS FOR A SINGLE MICROSTRIP PATCH .............. ................... .. 23 TABLE 111-2. BEAM 1 EXCITATION COEFFICIENTS .. ...... ..25 TABLE A-I. LINK BUDGET [REF. 1]. .... ........... ..43 TABLE D-1. BEAM 1 EXCITATION COEFFICIENTS .. ...... ..49 TABLE D-2. BEAM 2 EXCITATION COEFFICIENTS .. ...... ..50 TABLE D-3. BEAM 3 EXCITATION COEFFICIENTS .. ...... ..51 TABLE D-4. BEAM 4 EXCITATION COEFFICIENTS .. ...... ..52 TABLE D-5. BEAM 5 EXCITATION COEFFICIENTS .. ...... ..53 TABLE D-6. BEAM 6 EXCITATION COEFFICIENTS .. ...... ..54 vii LIST OF FIGURES Figure 1.1. System Architecture ......... ............ 3 Figure 1.2. L-Band Beam Orientation ....... .......... 5 Figure 2.1. Phased Array Antenna ........ ........... 9 Figure 2.2. Rectangular Microstrip Patch .... ....... 10 Figure 2.3. Array Coordinate System ..... .......... .. 16 Figure 3.1. Effect of er on Width of a Microstrip Patch ............. ................... .. 20 Figure 3.2. Effect of Height and er on Length of a Microstrip Patch ........ ............. .. 21 Figure 3.3. Beam 1 Array Factor (ý=90°) .... ........ .. 26 Figure 3.4. Beam 1 Array Factor (ý=00) ..... ........ 26 Figure 3.5. Coax Corporate Feed ....... ............ .. 30 Figure 3.6. Antenna Panel Assembly .... .......... .. 30 Figure 4.1. Beam 1 Radiation Pattern (*=900) .. ..... .. 35 Figure 4.2. Simultaneous Beam Patterns ... ........ ..36 Figure 4.3. Beam 2 Relative dB Gain Footprint ....... ..37 Figure E-1. Beam 1 Array Factor (ý=90°) .... ........ .. 55 Figure E-2. Beam 1 Array Factor (0=00) ... ........ .. 55 Figure E-3. Beam 2 Array Factor (ý=90°) .... ........ .. 56 Figure E-4. Beam 2 Array Factor (ý=0°) ... ........ .. 56 Figure E-5. Beam 3 Array Factor (ý=900) ...... .... ... 57 Figure E-6. Beam 3 Array Factor (ý=0°) ... ........ .. 57 Figure E-7. Beam 4 Array Factor (ý=900) .... ........ .. 58 Figure E-8. Beam 4 Array Factor (ý=0°) ... ........ .. 58 viii Figure E-9. Beam 5 Array Factor (ý=900) .... ........ .. 59 Figure E-10. Beam 5 Array Factor (ý=0o) ... ........ .. 59 Figure E-11. Beam 6 Array Factor (ý=900) .... ........ .. 60 Figure E-12. Beam 6 Array Factor (*=0) ... ........ .. 60 Figure G-1. Beam 1 Radiation Pattern (ý=90.) ..... 72 Figure G-2. Beam 2 Radiation Pattern (ý=90Q) .. ..... .. 72 Figure G-3. Beam 3 Radiation Pattern (ý=90) .. ..... .. 73 Figure G-4. Beam 4 Radiation Pattern (ý=90) .. ..... .. 73 Figure G-5. Beam 5 Radiation Pattern (ý=90) .. ..... .. 74 Figure G-6. Beam 6 Radiation Pattern (ý=900) .. ..... .. 74 Figure G-7. Simultaneous Radiation .... .......... .. 75 Figure G-8. Simultaneous Radiation .... .......... .. 75 Figure G-9. Simultaneous Radiation .... .......... .. 76 Figure G-10. Beam 1 Relative dB Gain Footprint ....... .. 76 Figure G-11. Beam 2 Relative dB Gain Footprint ..... ... 77 Figure G-12. Beam 3 Relative dB Gain Footprint ....... ..77 Figure G-13. Beam 4 Relative dB Gain Footprint ..... ... 78 Figure G-14. Beam 5 Relative dB Gain Footprint ....... ..78 Figure G-15. Beam 6 Relative dB Gain Footprint ....... ..79 ix
Description: