ebook img

The density of states approach at finite chemical potential: a numerical study of the Bose gas PDF

0.35 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The density of states approach at finite chemical potential: a numerical study of the Bose gas

The density of states approach at finite chemical potential: a numerical study of the Bose gas. Roberto Pellegrini∗ 6 HiggsCentreforTheoreticalPhysics,SchoolofPhysicsandAstronomy,Universityof 1 0 Edinburgh,EdinburghEH93FD,UnitedKingdom 2 E-mail: [email protected] n a Lorenzo Bongiovanni J CollegeofScience,SwanseaUniversity,SingletonPark,SwanseaSA28PP,UnitedKingdom 2 E-mail: [email protected] 1 Kurt Langfeld ] at CentreforMathematicalSciences,PlymouthUniversity,Plymouth,PL48AA,UnitedKingdom l E-mail: [email protected] - p e Biagio Lucini h CollegeofScience,SwanseaUniversity,SingletonPark,SwanseaSA28PP,UnitedKingdom [ E-mail: [email protected] 1 v Antonio Rago 9 2 CentreforMathematicalSciences,PlymouthUniversity,Plymouth,PL48AA,UnitedKingdom 9 E-mail: [email protected] 2 0 . Recently,anovelalgorithmforcomputingthedensityofstatesinstatisticalsystemsandquantum 1 0 field theories has been proposed. The same method can be applied to theories at finite density 6 affectedbythenotorioussignproblem,reducingahigh-dimensionaloscillatingintegraltoamore 1 : tractableone-dimensionalone. AsanexampleweappliedthemethodtotherelativisticBosegas. v i X r a The33rdInternationalSymposiumonLatticeFieldTheory 14-18July2015 KobeInternationalConferenceCenter,Kobe,Japan* ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommons Attribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0). http://pos.sissa.it/ ShortTitleforheader RobertoPellegrini 1. Introduction Non perturbative phenomena play a relevant role in many aspects of modern quantum field theory. The most developed tool to probe quantitatively these phenomena is the Markov Chain Monte-Carlo simulations of the theory discretised on a space-time lattice. However, this method hasseverallimitations,oneofthemostseverebeingthesocalledsignproblem. The method relies on the interpretation of the Euclidean path integral measure as a probability measure; in which case it is possible to build a Markov Chain that will reproduce the Boltzmann weightinthelongrun. However, inmanyinterestingtheoriestheEuclideanactionisnotrealand themethodbecomesveryinefficient. Recently,anewsimulationmethodbasedonthedensityofstateshasbeenproposed[1]andtested successfullyinfewmodels[2,3,4,5]. We feel that the method deserves further testing in order to properly assess its performance. So far, the method has been probed in discrete models and far from phase transitions. Our aim is to study a model with continuous degrees of freedom and in the neighboring of a phase transition. The relativistic Bose gas at finite density is very well suited for these kind of tests; it is known to undergoasecondorderphasetransitionanditisrelativelyfasttosimulate. 2. Thedensityofstates LetusconsideranEuclideanquantumfieldtheorydescribedbythevariablesφ,theproperties ofthesystemcanbederivedfromthepartitionfunction (cid:90) Z(β)= [Dφ]eβS[φ]. (2.1) Thedensityofstatesisdefinedbytheintegral (cid:90) ρ(s)= [Dφ]δ(s−S[φ]), (2.2) and its geometrical interpretation is the volume of phase-space available to the system at fixed action. Fromwhichitispossibletocomputepartitionfunctionsandobservables (cid:90) Z(β)= dsρ(s)eβs. (2.3) An algorithm to compute the log-derivative of the density of states was proposed in [1], and the convergenceofthealgorithmwasprovedin[2]. Itwastestedin4dcompactU(1)latticegaugetheory,whichisknowntoundergoafirstorderphase transition with remarkable results. In fig.(1) a plot of the log-derivative of the density of states is shown,andintab.(1)wereportacomparisonbetweenthecriticalvalueofthecouplingcomputed usingthedensityofstatesmethodandatraditionalMonte-Carlo. 3. Generalizeddensityofstates Thecaseofcomplexactioncanbetreatedinthesamefashion;eq.(2.1)becomes (cid:90) Z(β,µ)= [Dφ]eβSR[φ]+iµSI[φ] (3.1) 2 ShortTitleforheader RobertoPellegrini -0.99 -1 -1.01 ai -1.02 L=8 L=10 L=12 -1.03 L=14 L=16 L=18 -1.04 L=20 3.5 3.6 3.7 3.8 3.9 4 4.1 E/V Figure1: Thelog-derivativeofthedensityofstatesfordifferentvolumesin4dU(1)LGT Lmin kmax βCv(∞) χr2ed 14 1 1.011125(3) 0.91 12 1 1.011121(3) 2.42 12 2 1.011129(4) 0.67 10 1 1.011116(5) 7.44 10 2 1.011127(3) 0.60 8 1 1.011093(5) 90.26 8 2 1.011126(2) 0.62 Table 1: Comparison between the critical value of β computed using the density of states and using a traditionalMonte-CarloCITAZ where S ,S are the real and imaginary parts of the action and µ is the Lagrange multiplier cor- R I respondent to the complex part of the action. The generalized density of states [3] is introduced by (cid:90) P (s)= [Dφ]δ(s−S [φ])eβSRe[φ]. (3.2) β Im Ifβ =0,P (s)isthevolumeofphase-spaceavailabletothesystematgivenimaginarypartofthe 0 action. Atfiniteβ thereisanadditionalweightproportionaltoeβSR[φ]. Thepartitionfunctionisthe Fouriertransformofthegeneralizeddensityofstates (cid:90) Z(β,µ)= dsP (s)eiµs. (3.3) β Itisworthtonoticethattheintegrandineq.(3.2)isrealandthatthedifficultiesduetotheoscillating phase are present only in the 1-dimensional integral in eq.(5.4). Using the LLR algorithm it is 3 ShortTitleforheader RobertoPellegrini possible to compute P (s) with very high precision over many order of magnitude, thus the sign β problemisreducedtothecomputationofa1-dimensionalfastlyoscillatingintegral. 4. RelativisticBosegasatfinitechemicalpotential The Bose gas at finite chemical potential is a perfect toy-model to test new algorithms for simulating systems affected by a sign problem. It has been studied extensively with different ap- proaches i.e. complex Langevin dynamics, Lefschetz thimble, dual formulation and mean field theory[6,7,8,9]. Inthecontinuumformulationtheactionhastheform (cid:90) S[φ]= d4x∂ φ∂ φ+(m2−µ2)|φ|2+µ(φ∗∂ φ−φ∂ φ∗)+λ|φ|4. (4.1) µ µ 4 4 Thediscretizationofthisactionposesnodifficultiesaslongasthechemicalpotentialistreatedas avectorpotential. Thisleadsto 4 (cid:16) (cid:17) S[φ]=∑(2d+m2)φ∗φ +λ(φ∗φ )2− ∑ φ∗e−µδν,4φ +φ∗ eµδν,4φ . (4.2) x x x x x x+ν x+ν x x ν=1 Thelattercanbewrittenintermoftherealandimaginarypartofthefieldsφ = √1 (φ +iφ ) a 1 2 2 3 S[φ]=∑(2d+m2)φ2 φ +λφ4 −∑ φa,xφ −coshµφ φ +isinhµε φ φ . (4.3) a,x x a,x a,x+ν a,x a,x+4ˆ ab a,x b,x+4ˆ x ν=1 InthediscretecasetheLagrangemultiplierµ iscoupledonboththerealandimaginarypartofthe action,andasaconsequencethegeneralizeddensityofstateswilldependalsoonµ, (cid:90) P (s)= [Dφ]δ(s−S [φ])eSRe(m,λ,µ)[φ] (4.4) m,λ,µ Im Weareparticularlyinterestedintheexpectationvalueoftheoscillatingphase,whichquantifiesthe severityofthesignproblem (cid:104)e−SIm(cid:105)=e−VF, (4.5) whereV isthevolumeandF isthevariationofthefreeenergyduetotheoscillatingphase. Anotherinterestingobservableisthedensityofparticles(cid:104)n(cid:105),givenby dlogZ (cid:104)n(cid:105)= . (4.6) dµ 5. Theoscillatingintegral It is fairly easy to compute the generalized density of states using the LLR algorithm; an example is shown in fig.(2). The LLR algorithm delivers a very high precision over different ordersofmagnitude. Infig.(2)itisclearthattheDOSdeviatesfromapureGaussiandistribution. DeviationsfromaGaussianfunctionareclearlyvisibledespitethesearesuppressedbyafactorof ordere−100;whichiswellbeyondtheprecisionofastandardMonte-Carloprocedure. 4 ShortTitleforheader RobertoPellegrini Figure2: Thelog-derivativeofthegeneralizedDOSwithm=λ =1andV =84. Astraightlinewouldbe apurelyGaussianDOS,itisveryremarkablethatusingtheLLRispossibletoclearlyseedeviationsfrom gaussianity. In order to extract physical quantities from the theory we need to carry out the Fourier trans- formofthegeneralizedDOS,eq.(5.4). ThenaturalapproachwouldbetouseafastFouriertrans- form algorithm, however this method is too naive and would break down at very low chemical potential. Inordertoillustratewhythisapproachisnotadequateletusassumethat,infirstapprox- imation,theDOSisaGaussianplussomewhitenoiseη(s), P (s)∼e−s2σ(m,λ)+η(s). (5.1) m,λ,µ ThepartitionfunctionistheFouriertransformofthelatter − µ2π2 Z(m,λ,µ)∼e σ(m,λ,µ) +c, (5.2) wherecistheFouriertransformofthenoise. Therefore,thesignalisexponentiallysuppressedwith µ2 whilethenoisegiveaconstantcontributiontothepartitionfunction. Amuchbetteralternative istofilterthenoisebyinterpolatingthelog-derivativeoftheDOSwithapolynomialofdegree2n, P (s)∼e∑icis2i. (5.3) m,λ,µ In this case the statistical errors affect the coefficients and the Fourier transform of P is a fast decaying function. We found our results to be very stable whenever we avoid over-fitting; in practice we use a Bayesian evidence criterion [11] to decide the degree of the polynomia in order tolimitover-fitting. 5 ShortTitleforheader RobertoPellegrini Once a polynomial interpolant of the DOS is obtained, we are left with the computation of the followingfastlyoscillatingintegral (cid:90) Z(m,λ,µ)= dse∑icis2i+iµs. (5.4) The most straightforward approach is to use a simple numerical integration routine with multiple precision. The number of digits needed for the calculation increases with volume and chemical potentialasthecancellationsbecomemoreviolent. Itwilleventuallygrowtoaverylargenumber. Togiveanidea,weneeded50digitstocomputethepartitionfunctionwithvolume84 and µ =1. Another approach is the numerical steepest descent or Lefschetz Thimble [10] method. Let us consideranintegralofthetype (cid:90) +∞ Z= e−S(x)dx, (5.5) −∞ whereS(x)isholomorphyic. Itispossibletoshowthat (cid:90) Z=∑m e−iSIm(zk) dze−SRe(z), (5.6) k k Jk (cid:82) herez arecriticalpoints∂ S=0. And areintegralsoverthecurvesofsteepestdescent. These k z Jk areparametriccurvesgivenbytheordinarydifferentialequation x˙=−Re{∂ S(z)}, y˙=+Im{∂ S(z)}. (5.7) z z m isanintegernumberthatcountsthenumberofintersectionbetweenthecurvesofsteepestascent k andtheoriginaldomainofintegration. Noticethatthesignproblemdidnotdisappearcompletely, there is a residual oscillating phase coming from the Jacobian of the transformation dz and each dt curve of steepest descent contributes with a global phase e−iSIm(zk). This residual sign problem is verymildandcomputationindoubleprecisionaresufficient. InFig(5)weshowtheaveragefreeenergydifferencebetweenthefullandthequenchedtheory eq.(4.5). Our results are compared with a mean field calculation in the framework of complex Langevindynamics[8],courtesyoftheauthor. Theresultsareinverygoodagreementwitheachother. 6. Conclusions WepresentedanapplicationoftheLLRalgorithmtoasystemaffectedbyaseveresignprob- lem. Wefoundthatthemethodisabletoextractmeaningfulresultsatfinitedensityeveninregions of the parameter space where the sign problem is severe. The main drawback is that it relies on a polynomial fit of the log-derivative of the DOS, this might be difficult if the shape of the density of states is not very regular. On the other hand, in all the system studied with this approach the density of states turned out to be a remarkably smooth function, which gives hope that this is the casealsoforphysicallymorerelevantsystems. 6 ShortTitleforheader RobertoPellegrini Figure3: ComparisonbetweenLLRmethodandmeanfieldtheoryforµ =λ =1 References [1] K.Langfeld,B.LuciniandA.RagoPhys.Rev.Lett.109(2012) [2] K.Langfeld,B.Lucini,R.PellegriniandA.RagoarXiv:1509.08391(2015) [3] K.Langfeld,B.LuciniPhys.Rev.D90,094502(2014) [4] K.Langfeld,J.PawlowskiPhys.Rev.D88,071502(R)(2013) [5] C.Gattringer,P.TorekPhys.Lett.BVol.747(2015) [6] C.Gattringer,T.KloiberPhys.Lett.BVol.720210(2013) [7] G.AartsJHEP0905(2009)052 [8] G.AartsPhys.Rev.Lett.102131601(2009) [9] O.Akerlund,P.deForcrand,A.GeorgesandP.WernerPhys.Rev.D90(2014) [10] M.Cristoforettietal.Phys.Rev.D86(2012) [11] D.Spiegelhalter,N.G.Best,B.P.Carlin,A.VanderLindeJ.R.Statist.Soc.B64(2002) 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.