ebook img

The Demographics of Broad-Line Quasars in the Mass-Luminosity Plane. I. Testing FWHM-Based Virial Black Hole Masses PDF

1.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Demographics of Broad-Line Quasars in the Mass-Luminosity Plane. I. Testing FWHM-Based Virial Black Hole Masses

DRAFTVERSIONJANUARY30,2012 PreprinttypesetusingLATEXstyleemulateapjv.05/04/06 THEDEMOGRAPHICSOFBROAD-LINEQUASARSINTHEMASS-LUMINOSITYPLANE.I.TESTING FWHM-BASEDVIRIALBLACKHOLEMASSES YUESHENANDBRANDONC.KELLY1 HARVARD-SMITHSONIANCENTERFORASTROPHYSICS,60GARDENSTREET,CAMBRIDGE,MA02138,USA. DraftversionJanuary30,2012 ABSTRACT 2 We jointly constrain the luminosity function (LF) and black hole mass function (BHMF) of broad-line 1 quasarswithforwardBayesianmodelinginthequasarmass-luminosityplane,basedonahomogeneoussam- 0 ple of ∼58,000 SDSS DR7 quasars at z∼0.3- 5. We take into account the selection effect of the sample 2 flux limit; more importantly, we deal with the statistical scatter between true BH masses and FWHM-based n single-epochvirialmassestimates, aswellas potentialluminosity-dependentbiasesof these massestimates. a TheLFistightlyconstrainedintheregimesampledbySDSS,andmakesreasonablepredictionswhenextrap- J olatedto∼3magnitudesfainter. DownsizingisseeninthemodelLF.Ontheotherhand,wefinditdifficultto 7 constraintheBHMFtowithinafactorofafewatz&0.7(withMgIIandCIV-basedvirialBHmasses). This 2 ismainlydrivenbytheunknownluminosity-dependentbiasofthesemassestimatorsanditsdegeneracywith othermodelparameters,andsecondlydrivenbythefactthatSDSSquasarsonlysamplethetipoftheactiveBH ] populationathighredshift.Nevertheless,themostlikelymodelsfavorapositiveluminosity-dependentbiasfor O MgIIandpossiblyforCIV,suchthatatfixedtrueBHmass,objectswithhigher-than-averageluminositieshave C over-estimatedFWHM-basedvirialmasses. Thereistentativeevidencethatdownsizingalsomanifestsitselfin . theactiveBHMF,andtheBHmassdensityinbroad-linequasarscontributesaninsignificantamounttothetotal h p BH massdensityatall times. Within ourmodeluncertainties,we do notfind a strongBH massdependence - ofthemeanEddingtonratio;butthereisevidencethatthemeanEddingtonratio(atfixedBHmass)increases o withredshift. r Subjectheadings:blackholephysics—galaxies:active—quasars:general—surveys t s a [ 1. INTRODUCTION 2002; Yu&Lu 2004, 2008; Shankaretal. 2004, 2009; 2 One major effort in modern galaxy formation studies is Marconietal. 2004; Merloni 2004; Hopkinsetal. 2007; v to understand the cosmic evolution of supermassive black Merloni&Heinz2008).TheagreementbetweentherelicBH 2 holes (SMBHs), given their ubiquitous existence in almost mass density and the accreted mass density provides com- 7 pelling evidence that these two populations are ultimately everylocalbulge-dominantgalaxy,andpossiblerolesduring 3 connected. Thereforeit is of imminentimportance to quan- theirco-evolutionwiththehostgalaxy(e.g.,Magorrianetal. 4 tifytheabundanceofactiveSMBHsasafunctionofredshift. 1998; Gebhardtetal. 2000; Ferrarese&Merritt 2000; . ThedemographicsoftheactiveSMBHpopulationhasbeen 7 Gültekinetal. 2009; Hopkinsetal. 2008; Somervilleetal. 0 2008). Over the past decade, the rapidly growing body the central topic for quasar studies since the first discov- 1 of observational data and numerical simulations have led ery of quasars (Schmidt 1963, 1968). Traditionally this is 1 to a coherent picture of the cosmic formation and evolu- doneintermsoftheluminosityfunction(LF),i.e.,theabun- v: tion of SMBHs within the hierarchical ΛCDM paradigm danceof objectsatdifferentluminosities. Measuringthe LF andits evolutionhasbeen the mostimportantgoalfor mod- i (e.g., Haiman&Loeb 1998; Kauffmann&Haehnelt 2000; X ernquasarsurveys(e.g.,Schmidt&Green1983;Greenetal. Wyithe&Loeb 2003; Volonterietal. 2003; Hopkinsetal. 1986).InthelastdecadetheLFhasbeenmeasuredfordiffer- r 2006,2008;Shankaretal.2009,2010;Shen2009).Although a entpopulationsofactiveSMBHsandindifferentbands(e.g., many fundamental issues regarding SMBH growth still Fanetal. 2001, 2004; Boyleetal. 2000; Wolfetal. 2003; remain unclear (such as BH seeds, fueling and feedback Croometal. 2004, 2009; Haoetal. 2005; Richardsetal. mechanisms),thesecosmologicalSMBHmodelsarestarting 2005, 2006; Jiangetal. 2006, 2008, 2009; Fontanotetal. to reproduce a variety of observed SMBH statistics in an 2007;Bongiornoetal.2007;Willottetal.2010b;Uedaetal. unprecedentedmanner. 2003; Hasingeretal. 2005; Silvermanetal. 2005, 2008; It is now widely appreciated that SMBHs grow by gas Bargeretal. 2005), and it constitutesa crucial observational accretion in the past, during which they are witnessed as componentinallcosmologicalSMBHmodels. quasars and active galactic nuclei (AGNs) (e.g., Salpeter AmoreimportantphysicalquantityofSMBHsisBHmass. 1964;Zel’dovich&Novikov1964;Lynden-Bell1969).Inthe BH mass is directly related to growth, and when the BH is localUniverse,themassfunctionofdormantSMBHsisesti- ˙ mated by convolving the galaxy distribution functions with active, it determines the accretion efficiency (M/MBH) via various scaling relations between galaxy properties and BH theEddingtonratioandanassumedradiativeefficiency(e.g., mass. This relic SMBH population has been used to con- such as the average value constrained by the Soltan argu- strain the accretion history of their active counterparts, us- ment).ThusknowingthemassfunctionofSMBHsasafunc- ingtheSołtanargumentanditsextensions(e.g.,Soltan1982; tion of redshift adds significantly to our understandings of Small&Blandford1992;Saluccietal.1999;Yu&Tremaine theircosmicevolution. It remains challenging to directly measure the dormant 1HubbleFellow. BHMF at high redshift. This is not only because the 2 SHEN&KELLY galaxy distribution functions are less well-constrained at sions. Thusitisimportanttoconsidertheseeffectswhenthe high redshift, but also because the evolution of the scal- statisticsisbecominggoodenough. ing relations (both the mean relation and the scatter) be- Kellyetal. (2009)developedaBayesian frameworktoes- tween galaxy propertiesand BH mass is poorly understood. timatetheBHMF/LFforbroad-linequasars,whichaccounts On the other hand, it has become possible to measure the for the uncertainty in virial BH mass estimates, as well as active BHMF of broad-line quasars2, using the so-called the selection incompleteness in BH mass (since the sample virial BH mass estimators based on their broad emission is selected in luminosity). This method was subsequently line and continuum properties measured from single-epoch applied to the SDSS DR3 quasar sample (Kellyetal. 2010), spectra (e.g., Wandeletal. 1999; McLure&Dunlop 2004; basedonvirialmassestimatesfromVestergaardetal.(2008). Vestergaard&Peterson 2006), a technique rooted on rever- This Bayesian framework is a more rigorous and quantita- beration mapping (RM) studies of local broad-line AGNs tive treatment than the simple forward modeling performed (e.g., Blandford&McKee 1982; Peterson 1993; Kaspietal. inShenetal.(2008),andallowsamorereliablemeasurement 2000; Petersonetal. 2004; Bentzetal. 2006, 2009a). These ofthetrueactiveBHMFanditsuncertaintyforquasars. single-epoch virial BH mass estimators are calibrated em- EquippedwithanimprovedversionofthisBayesianframe- pirically using the RM AGN sample to yield on average work, in this paper we measure the active BHMF and LF consistent BH mass estimates compared with RM masses, based on a homogeneoussample of ∼58,000 quasars from which are further tied to the BH masses predicted using SDSS DR7 with FWHM-based virial mass estimates from theM - σ relation(e.g.,Tremaineetal. 2002;Onkenetal. Shenetal.(2011). Themuchimprovedstatisticsnowallows BH 2004). Thenominalscatterbetweenthesesingle-epochvirial a detailed examination of the joint distribution in the mass- estimates and the RM masses is on the order of ∼ 0.4 luminosity plane, and provides better constraints on BH ac- dex (e.g., McLure&Jarvis 2002; McLure&Dunlop 2004; cretionproperties. Vestergaard&Peterson2006). Akeydifferenceinourapproachcomparedwithmostear- A couple of recent studies have applied this technique to lierworkistheattempttoaccountfortheuncertainty(error) measure the active BHMF with statistical quasar and AGN in these virialmass estimates. We distinguishthree typesof samples (e.g. Greene&Ho 2007; Vestergaardetal. 2008; errorsinsingle-epochvirialBHmassestimates: Vestergaard&Osmer 2009; Schulze&Wisotzki 2010). A robust determination of the active BHMF constitutes an im- • measurement error, which is propagated from the un- portant building block of cosmological SMBH models, in certainties of FWHM and continuumluminosity mea- addition to the luminosity function. These virial mass es- surementsfromthespectra;themeasurementerrorsare timators also enable statistical studies on the Eddington ra- typically ≪ 0.3 dex for our sample (see Fig. 1) and tiosofbroad-linequasarsandAGNs(e.g.,Vestergaard2004; hencearenegligible;however,measurementerrormay McLure&Dunlop2004;Kollmeieretal.2006;Sulenticetal. become importantfor other samples with low spectral 2006; Babic´ etal. 2007; Jiangetal. 2007; Kurketal. 2007; quality. Netzeretal. 2007; Shenetal. 2008; Gavignaudetal. 2008; Labita 2009; Trumpetal. 2009, 2011; Willottetal. 2010a; • statisticalerror,whichisthescatterofvirialBHmasses Trakhtenbrotetal. 2011), over a wide range of luminosities around RM masses when these virial estimators were andredshifts,andthereforeprovideconstraintsontheaccre- calibrated against local RM AGN sample; the statis- tionefficiencyoftheseactiveSMBHs. tical error is & 0.3 dex (e.g., McLure&Jarvis 2002; With the development of these virial mass estimators, we McLure&Dunlop 2004; Vestergaard&Peterson nowhavebothBHmassestimatesandluminositiesforbroad- 2006), which will be taken into account in our linequasarsamples. GiventheintimaterelationbetweenBH Bayesianapproach. mass and luminosity, it is important and necessary to study • systematic biases, which may result from the virial their joint distribution and evolution in the mass-luminosity assumption, the usage of RM masses as true masses plane(e.g.,Steinhardt&Elvis2010a;Steinhardtetal.2011). during calibration, the usage of a particular definition Thisrepresentsasignificantstepforwardtostudythedemog- of line width as the surrogate for the virial velocity, raphyofquasarsthanusingLFalone,andoffersnewinsights the extrapolation of the virial calibrations to high lu- on the propertiesand evolutionof the active SMBH popula- minosity/redhift, as well as other possible systemat- tion. ics (e.g., Krolik 2001; Collinetal. 2006; Shenetal. However, the importance of distinguishing between virial 2008; Marconietal. 2008; Fineetal. 2008, 2010; mass estimates and true BH masses can hardly be over- Netzer 2009; Denneyetal. 2009; Wangetal. 2009; stressed. While these virial estimators currently are the Grahametal. 2011; Rafiee&Hall 2011b; Steinhardt only practical way to estimate BH masses for large sam- 2011). ples of broad-line quasars and AGNs, the nontrivial uncer- tainty of these imperfect estimators has severe impact on We generally neglect systematic biases in the current the mass distribution under study. The difference between study, as they are poorly understood at present. That virialmassesandtruemassesnotonlymodifiestheunderly- means we assume on average these virial mass esti- ing true distribution, but also introducesMalmquist-type bi- mators give unbiased mass estimates (see §3.2.1 for ases (e.g., Shenetal. 2008; Kellyetal. 2009; Shen&Kelly themeaningof“unbiased”). However,wedoconsider 2010). These effects tend to dilute any potential mass- a possible luminosity-dependentbias (e.g., Shenetal. dependent trends or correlations (e.g., Kelly&Bechtold 2008;Shen&Kelly2010),whichwedescribeindetail 2007; Shenetal. 2009), and may lead to unreliable conclu- in§3.2.1. Thisisnotonlybecauseluminosityisanex- plicitterminallvirialestimators,butalsobecausethat 2 Fromnowon,unlessotherwisespecified, weusetheterm“quasar”to manystudieswithvirialBHmassesarerestrictedtofi- refertobroad-line(type1)quasarsforsimplicity. niteluminositybinsorflux-limitedsamples. Moreover, QUASARDEMOGRAPHICS 3 understandinganypotentialluminosity-dependentbias is crucial to probe the true distribution in the mass- TABLE1 luminosityplane. SUMMARYOFZBINS ¯ This paper is organizedas follows. In §2 we describe the zbin zrange NQ/Nvir Mi,lim[z=2] data;wepresentthetraditionalbinnedLF/BHMFin§3.1and Hβ describetheBayesianapproachin§3.2.Wepresentourmodel 1... [0.3,0.5] 4298/4149 - 22.94 results in §4, discuss the results in §5 and conclude in §6. 2... [0.5,0.7] 4206/4027 - 23.84 ThroughoutthepaperweadoptaflatΛCDMcosmologywith M3.g.I.I [0.7,0.9] 3955/3873 - 24.61 cosmologicalparametersΩΛ=0.7,Ω0=0.3,h=0.7,tomatch 4... [0.9,1.1] 4871/4772 - 25.06 most of the recentquasardemographicswork. Volume is in 5... [1.1,1.3] 5872/5789 - 25.39 comovingunitsunlessotherwisestated. Wedistinguishvirial 6... [1.3,1.5] 5925/5855 - 25.73 7... [1.5,1.7] 6459/6340 - 25.99 massesfromtruemasseswithasubscriptvir ore. Quasarlu- 8... [1.7,1.9] 5839/5566 - 26.29 minosityisexpressedintermsoftherest-frame2500Åcon- CIV tinuum luminosity (L≡λL or l ≡logL for short), and we 9... [1.9,2.4] 7761/7545 - 26.83 λ 10.. [2.4,2.9] 1695/1641 - 27.34 adoptaconstantbolometriccorrectionCbol=Lbol/L=5. 11.. [2.9,3.5] 4317/4003 - 26.66 12.. [3.5,4.0] 1830/1666 - 27.00 2. THEDATA 13.. [4.0,4.5] 661/518 - 27.36 14.. [4.5,5.0] 270/152 - 27.45 Our parent sample is the SDSS DR7 quasar catalog (Schneideretal. 2010), which contains 105,783 bona fide NOTE.—Thesecondcolumnliststhebound- quasars with i-band absolute magnitude Mi <- 22 and have aries of each zbin. The third column lists at least one broad emission line (FWHM>1000kms- 1) or the total number of quasars and those with have interesting/complex absorption features. Among these measurablevirialmasses(measurementerror< 0.5 dex) in each zbin. The fourth column quasars, about half were targeted using the final quasar tar- liststhelimitingluminosityintermsoftheab- getalgorithmdescribedinRichardsetal.(2002),andforma solute i-band magnitude normalized at z = 2 homogeneous, statistical quasar sample (e.g., Richardsetal. (Richardsetal.2006),whichcorrespondstothe 2006;Shenetal.2007b),whichweadoptinthecurrentstudy. flux limit (i=19.1 and 20.2 for z<2.9 and z>2.9)andisestimatedatthemedianredshift Quasars in this homogeneoussample are flux-limited to i= foreachzbin. 19.1 below z=2.9 and to i=20.2 beyond3. There is also a brightlimitofi=15forSDSSquasartargets,whichonlybe- comesimportantforthemostluminousquasarsatthelowest TABLE2 redshift (see Fig. 1 in Shenetal. 2011). We have used the BINNEDDR7VIRIALBHMF continuumandemissionlineK-correctionsinRichardsetal. (2006) to compute the absolute i-band magnitude normal- ¯z logMBH,vir logΦ(MBH,vir) logσ(MBH,vir) ized at z = 2, Mi[z = 2]. At z < 0.5, host contamination (M⊙) (Mpc- 3logMB- 1H,vir) (Mpc- 3logMB- 1H,vir) becomes more and more prominent towards lower redshift 0.4 7.50 - 6.378 - 7.370 (e.g.,Shenetal. 2011), so we restrictoursample to z≥0.3. 0.4 7.75 - 5.957 - 7.156 Our final sample includes 57,959 quasars at 0.3 ≤ z ≤ 5. 0.4 8.00 - 5.813 - 7.110 The sky coverageof this uniformquasar sample is carefully NOTE. —Thefulltableisavailableintheelectronicversion determined, using the approach detailed in the appendix in ofthepaper. Shenetal.(2007b),tobe6248deg2. Threelineestimatorswereused:Hβ(Vestergaard&Peterson Thevirialmassestimatesandmeasurementerrorsforthese quasars were taken from Shenetal. (2011). We refer the 2006, z<0.7); MgII (Shenetal. 2011, 0.7≤z<1.9); CIV (Vestergaard&Peterson 2006, z > 1.9). Virial BH masses readerto Shenetal. (2011) fordetails regardingthe spectral based on two estimators are smoothlybridgedacrossthe di- measurementsandvirialmassestimates. Inshort,thespectral vidingredshift,i.e.,thereisnosystematicoffsetbetweentwo regionaroundeachofthethreelines(Hβ, MgII,andCIV) is fit by a power-law continuum plus iron template4, and a set differentestimators. Fig.1 (left)showstheredshiftdistribu- tionofvirialmassestimatesinoursample,wherethevertical of Gaussians for the line emission. Narrow line emission is dashed lines mark the divisions between two estimators and modeled for Hβ and MgII but not for CIV. We use the con- thegridweuse tocomputethe BHMF(seebelow)isshown tinuum luminosity and line FWHM from the spectral fits to ingray.Werejectobjectswithameasurementerror>0.5dex compute a virial mass using one of the fiducial virial cali- invirialmassestimatesincomputingtheBHMF,andwewill brations adopted in Shenetal. (2011, eqns. 5,6,8). >95% correctforthisincompletenessinmassestimatesinSec3. of the 57,959 quasars have measurable virial BH masses. Fig. 1 (right) shows the distribution of measurement errors 3. THEQUASARLFANDBHMF (propagatedfrom the FWHM and continuum luminosity er- rors) of these virial mass estimates. The vast majority of 3.1. TheTraditionalApproach virialestimateshaveameasurementerrorfarbelow0.3- 0.4 Following the common practice in the literature (e.g., dex, the nominal statistical uncertainty of virial estimators. Fanetal. 2001; Richardsetal. 2006; Greene&Ho 2007; Vestergaardetal. 2008; Vestergaard&Osmer 2009; 3 Thereareatinyfractionofuniformly-selected quasarstargetedbythe Schulze&Wisotzki 2010), we use the 1/V method max HiZbranchofthetargetselectionalgorithm(Richardsetal.2002)atz<2.9 (e.g.,Schmidt1968)toestimatetheLFandactiveBHMF: downtoi=20.2. Wehaverejectedthesequasarsinourflux-limitedsample (see Shenetal.2011,formoredetails). Ω zmax dV 4ExceptforCIV,whereweonlyfitapower-lawcontinuumwithnoiron V = Θ(L,z) cdz, (1) max templateapplied. 4πZ dz zmin 4 SHEN&KELLY FIG. 1.—Left: Redshiftdistribution ofvirialBHmassesinoursample. Right: DistributionofmeasurementerrorsofthevirialBHmassestimates. The vastmajorityofvirialmassestimateshavenegligiblemeasurementerrorscomparedwiththenominalstatisticaluncertaintyofvirialBHmassestimatorsσvir∼ 0.3- 0.4dex. thetabulatedselectionfunction5inRichardsetal.(2006)with interpolationto estimate Θ(L,z), andcalculateV for each max quasarinaredshift-luminosity(virialmass)bin. Thebinned LF,Φ(M[z=2])≡dn/dM[z=2]isthen: i i N 1 1 Φ(M[z=2])= , (2) i ∆M[z=2] (cid:18)V (cid:19) i Xj=1 max,j withaPoissonstatisticaluncertainty 1 N 1 2 1/2 σ(Φ)= , (3) ∆M[z=2](cid:20) (cid:18)V (cid:19) (cid:21) i Xj=1 max,j where the summation is over all quasars within a redshift- magnitudebin. The 1/V binned BHMF, Φ(M )≡dn/dlogM , FIG. 2.—ComparisonbetweentheDR3(Richardsetal.2006)andDR7 max BH,vir BH,vir binnedLF(thiswork)forthesameluminosity-redshiftgrid.TheDR7results isthen: areingoodagreementwithearlierDR3results. N 1 1 Φ(M )= , (4) BH,vir ∆logM (cid:18)V (cid:19) BH,virXj=1 max,j TABLE3 BINNEDDR7LF withaPoissonstatisticaluncertainty ¯z Mi[z=2] logΦ(Mi[z=2]) logσ(Mi[z=2]) 1 N 1 2 1/2 (Mpc- 3mag- 1) (Mpc- 3mag- 1) σ(Φ)= , (5) ∆logM (cid:20) (cid:18)V (cid:19) (cid:21) 0.4 - 22.65 - 5.669 - 6.920 BH,vir Xj=1 max,j 0.4 - 22.95 - 5.643 - 7.078 0.4 - 23.25 - 5.858 - 7.350 where the summation is over all quasars within a redshift- massbin. Asasanity check,we computedtheDR7 quasarluminos- NOTE.—Thefulltableisavailableintheelectronic versionofthepaper. ity function (LF) in the same L- z grid as in Richardsetal. (2006),andfounditinexcellentagreementwiththeDR3re- sultswithsmallerstatisticalerrorbars(Fig.2). whereΩistheskycoverageofoursample,dV /dzisthedif- TocomputethebinnedLFandBHMFwechoosearedshift c ferential comoving volume, z and z are the minimum grid(zbins)thatavoidsstraddlingtwomassestimators,with min max and maximum redshift within a redshift-luminosity (virial mass) bin that is accessible for a quasar with luminosity L, 5 Thereisnodifferenceinthetargetselectioncompletenessbetweenthe and Θ(L,z) is the luminosity selection function mapped on uniform DR3 quasars usedin Richardsetal. (2006)andthe uniform DR7 quasarsusedhere,sincethefinalquasartargetalgorithmwasimplemented a two-dimensional grid of luminosity and redshift. We use afterDR1. QUASARDEMOGRAPHICS 5 boundaries of 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.4, (e.g.,seeEqn.8below). Forclarity,weuse p(x|y)todenote 2.9, 3.5, 4.0, 4.5, 5.0. Withineach ofthe 14 zbinswe use the conditionalprobabilitydistributionof quantity x at fixed a mass grid with a bin size of ∆logM =0.25 starting y,andx|ytodenotearandomvalueofxatfixedydrawnfrom BH,vir fromlogM =7.375,andaluminositygridwithabinsize p(x|y). BH,vir of ∆M[z=2]=0.3 starting from M[z=2]=- 22.5. Table For the local RM AGN sample (which has a dispersion i i 1 summarizesinformationfor each zbin. Fig. 3 shows the of∼1 dexinluminosity), single-epochvirialBH mass esti- binnedvirialBHMFusingthe1/V technique. Ourbinned mateswerecalibratedagainstRMmasses(assumedtobetrue max virial BHMF results are similar to the binned virial BHMF masses)tohavetherightmean,andascatter(uncertainty)of estimatedinVestergaardetal.(2008)basedonDR3quasars, ∼0.4 dex around RM masses (e.g., McLure&Jarvis 2002; withmuchbetterstatisticsduetoincreasedsamplesize. McLure&Dunlop 2004; Vestergaard&Peterson 2006). To Two important facts limit the application of the binned account for the effects of the uncertainty in virial BH mass virial BHMF. First, it is inappropriate to use the selection estimates, we first must understand the origin of this uncer- function upon luminosity selection for the BHMF, i.e., BHs tainty.Itisnaturaltoascribethisuncertaintytotwofacts(e.g., with instantaneous luminosity fainter than the flux limit of Shenetal.2008;Shen&Kelly2010):a)luminosityisanim- the survey will be missed regardless of their masses. As a perfecttracer of the BLR size; b) line width is an imperfect result, thebinnedBHMFsuffersfromincompleteness,espe- tracerof the virialvelocity. Takentogether,some portionof cially at the low-mass end, and the turn-over of the BHMF thevariationsinluminosityandlinewidthareindependentof at low masses seen in Fig. 3 is not real. Second, virial BH eachother,causingthevirialmassestimatestoscatteraround massesarenottruemasses. Substantialscatterbetweenvirial the true value; the remaining portion of the variations in lu- mass estimates and the true masses changes the underlying minosity and line width cancel with each other, and do not BHmassdistribution,andmayleadtosignificantMalmquist- contributetothescatterinthevirialmassestimates. type biases (e.g., Shenetal. 2008; Kellyetal. 2009, 2010; Tobetter understandthis, considerthe followingexample. Shen&Kelly2010).Thelattereffectisparticularlyimportant Take a population of N BHs with the same true mass m≡ atthehigh-massend(wherethecontaminationfromintrinsi- logM ,andassuming:a)TheFWHMandluminosityfollow BH cally lighter BHs can dominate over the indigenouspopula- lognormaldistributionsatthisfixedtrueBHmass;b)amean tion)andathighredshift(wherethevirialBHmassestimator luminosity-radius(R- L)relationR∝L0.5,andalinearmean switches to the more problematic CIV line, e.g., Shenetal. relationbetweenFWHMandthevirialvelocityv;andc)the 2008). The Bayesian framework developed in Kellyetal. virialmassesareunbiasedonaverage. Forthispopulationof (2009)anddescribedin§3.2remediestheseissues, andpro- BHs,theluminosityl≡logLofindividualobjectisgivenby: videsmorereliableestimatesfortheintrinsicBHMF. l|m=hli +G (0|σ′)+G (0|σ ), (6) Bearingin mindthe limitationsofthe binnedBHMF, Fig. m 1 l 0 corr 3showsacoherentevolutionforthemostmassive(M & wherel|m is theindividualobjectluminosityatthisfixedm, BH,vir 3×109 M⊙) BHs: their abundance rises from high redshift Gi(µ|σ) is a Gaussian random deviate with mean µ and dis- andreachesmaximumaroundz∼2, thendecreasestowards persionσ, and hlim is the expectationvalue of luminosityat lowerredshift. Thistrendislikelyamanifestationoftherise thistrueBHmass. Similarlywecangenerateindividualline andfallofbrightquasarsseenintheLF,andwewilltestthis widthw≡logFWHMas: trendwiththeBayesianapproachdescribedinSec3.2. w|m=hwi +G (0|σ )- 0.25G (0|σ ), (7) m 2 w 0 corr For future comparison purposes only, we tabulated the binnedvirialBHMFinTable2;butweremindthereaderthat wherehwim istheexpectationvalueoflinewidthatthistrue it should be interpreted with caution. We also tabulated the BHmass.Theindividualvirialmassestimateme≡logMBH,vir binnedLFinTable3. atthisfixedMBHisthen 3.2. TheBayesianApproach me|m=m+0.5G1(0|σl′)+2G2(0|σw), (8) Asdiscussedearlier,thecausalconnectionbetweentheLF which implies that the virial BH mass estimates follow a andBHMFnaturallyrequiresadeterminationofthejointdis- lognormal distribution around the correct mean (i.e., m), tributioninthemass-luminosityplane.Indoingso,oneneeds but have a lognormal scatter (virial uncertainty) σvir = toaccountforselectioneffectsofthefluxlimitofthesample, (0.5σ′)2+(2σ )2 around the mean (e.g., Shenetal. 2008; l w andtodistinguishbetweenvirialmassesandtruemasses. The pShen&Kelly2010). TheG0termsofvariationinluminosity bestapproachisaforwardmodeling,inwhichwespecifyan and FWHM exactly cancel with each other and do not con- underlying distribution of true masses and luminosities and tribute to the virial uncertainty, and were referred to as the map to the observedmass-luminosityplane by imposingthe “correlatedvariations”inFWHMandluminosityintheabove fluxlimitandrelationsbetweenvirialmassesandtruemasses, papers; while the G and G terms were referred to as the 1 2 and compare with the observeddistribution (e.g., Shenetal. “uncorrelatedvariations”inFWHMandluminosity,andthey 2008; Kellyetal. 2009, 2010). This is a complicated and contributetothevirialuncertaintyinquadraticsum. Theap- model-dependentproblem. Below we first demonstrate our proachinKellyetal.(2009,2010)implicitlyassumedσ′=0, l bestunderstandingsoftherelationshipbetweenvirialmasses while the approach in Shenetal. (2008) and Shen&Kelly and true masses, then we describe our model parameteriza- (2010)istosetσ =0andconsidernon-zeroσ′. Thelatter corr l tionsandtheimplementationoftheBayesianframework.We choiceismotivatedbythe factthattheobserveddistribution deferthecaveatsinourmodelto§5.3. of FWHM for SDSS quasar samples is already narrow (dis- persion.0.15dex)andthepremisethatthevirialuncertainty 3.2.1. Preliminaries σ shouldbenolessthan∼0.3dex. vir Here we describe our modeling of the statistical errors of Physically σ′ is unlikely to be zero. If this were true, it l virial mass estimates, under the premise that these FWHM- would imply that single-epochluminosity is an unbiased in- basedvirialmassestimatorsonaveragegivethecorrectmean dicator for the instantaneous BLR radius at fixed BH mass. 6 SHEN&KELLY FIG. 3.—BinnedvirialBHMFusingthe1/Vmaxtechnique. Ineachpanelthepointswitherrorbarsaretheresultsforeachzbin,andthedottedanddashed linesarereferenceresultsinzbin1andzbin9.Themeanredshiftineachzbinismarkedontheupper-rightcornerofeachpanel. TABLE4 MODELLF,BHMFANDEDDINGTONRATIOFUNCTION logΦ(L) logΦ(MBH) logΦ(MBH,det) logΦ(λ) logΦ(λdet) ¯z Mi[z=2] (erlgogs-L1) Φ0 (Mpc-Φ3+dex-1) Φ- lo(gMM⊙B)H Φ0 (Mpc-Φ3+dex-1) Φ- Φ0 (Mpc-Φ3+dex-1) Φ- logλ Φ0 (MpcΦ-3+dex-1) Φ- Φ0 (Mpc-Φ3+dex-1) Φ- 0.4 -16.904 42.00 -6.299 -6.002 -6.639 6.000 -10.684 -8.179 -12.383 -19.804 -17.507 -21.693 -4.000 -9.482 -9.108 -10.225 -17.622 -16.349 -19.266 0.4 -16.979 42.03 -6.240 -5.950 -6.572 6.025 -10.550 -8.114 -12.201 -19.521 -17.287 -21.363 -3.975 -9.368 -9.002 -10.097 -17.397 -16.152 -18.999 0.4 -17.054 42.06 -6.182 -5.900 -6.506 6.050 -10.415 -8.049 -12.023 -19.240 -17.068 -21.038 -3.950 -9.256 -8.896 -9.970 -17.175 -15.955 -18.736 NOTE.—Thefulltableisavailableintheelectronicversionofthepaper. Whileinpracticeitismorenaturaltoexpectthereareuncor- indicators(suchasFWHM)mightstillnotresponsetoallthe relatedrandomscatterinbothLandR,indicatingastochastic variationsin luminosity. For example, considera single BH terminadditiontothedeterministicterm(whenpredictingR whereitsluminosityvaries(anditsBLRradiusvariesinstan- withL), whichwilllead tobiasedestimatesforR atfixedL. taneouslyfollowingaperfectR- Lrelation),andsupposethat The sourcesof thisstochastic term may include: a) the con- thebroadlineiscomposedofanon-virializedcomponentand tinuum luminosity variation and response of the BLR is not avirializedcomponent.Whenluminosityincreases(BLRex- synchronized;b)individualquasarshavedifferentBLRprop- pands), the virialized componentreducesline width, but the erties; c) optical-UV continuum luminosity is not as tightly non-virializedcomponentmayincreaselinewidthifitisorig- connected to the BLR as the ionizing luminosity. Further- inatedfromaradiativelydrivenwind(inthecaseofCIV,more more, even if single-epoch luminosity were an unbiased in- blueshiftedCIVtendstohavealargerFWHM,e.g.,Shenetal. dicator of the instantaneous BLR radius, certain line width 2008): thecombinedlineFWHMmaynotchangeduetothe QUASARDEMOGRAPHICS 7 twooppositeeffects.Thereforeinthiscasealthoughluminos- dynamicalrange at fixed true BH mass, and hence are good ityistracingtheBLR sizeperfectly,somevariationinlumi- indicatorsforBLRradiusandvirialvelocity.β=0represents nosityisnotcompensatedbyvariationsinFWHMandshould theextremesituationwhereFWHMrespondstoallthevaria- becountedastheuncorrelatedvariationσ′. tioninluminosityatfixedtruemass(plusadditionalscatterin l A non-zero σ′ implies that the distribution of virial mass FWHM),andnobiasinvirialmassesisincurredwhenlumi- l estimatesatfixedtruemassandfixedluminosity, p(m |m,l), nositydeviatesfromhli . β=0isgenerallyassumedinmost e m is different from the distribution of virial mass estimates at studieswithvirialBHmasses. fixed true mass, p(m |m). In the extreme case where σ = We also notethatoneadvantageofusingEqn.(10) isthat e corr 0, i.e., FWHM does not change in response to variations in it does not rely on the assumption that the mean R- L rela- luminosityatall,wehave tion andthe linear mean relationbetween FWHM and virial m |m,l=m+0.5(l- hli )+2G (0|σ ). (9) velocity used in these virial estimators are correct. In other e m 2 w words,ifthevirialestimatorsadoptedinthisworkusedincor- Hence not only is the distribution p(me|m,l) narrower than rectformsfor the mean R- Lrelation and the mean relation p(me|m), butalso the expectationvalueof me isbiased from betweenFWHM andvirialvelocity,thena negativevalueof thetrueBHmassforanyfixedluminositiesexceptforl=hlim. β maybeneededtocorrectme atfixedmandl. Ofparticular Nowconsideramoregeneralformoftheluminositydistri- interesthereiswhetherornotradiationpressureisimportant butionatfixedtruemassandtheactualslopeintheobserved inthedynamicsoftheBLR(e.g.,Marconietal.2008),which luminosity-radiusrelation, we can parameterizethe distribu- willindicateanegativeβbasedonthevirialmassesthathave tionof p(me|m,l)as: not been corrected for radiation pressure. We will test if a m |m,l=m+β(l- hli )+ǫ , (10) negative β is required to model the observed distribution in e m ml ourBayesianapproach. where again hlim is the expectation value of luminosity at Isthereanyindicationforanon-zeroβ fromthereverber- fixedtrue mass, ǫml is a randomdeviatewith zero meanand ation mapping AGN sample? There are only ∼3 dozens of dispersion σml, denoting the scatter of virial mass estimates RMAGNsandwedonothaveenoughobjectswiththesame atfixedtruemassandfixedluminosity,andtheerrorslopeβ BH mass to test source-by-source variations. Nevertheless, describesthelevelofluminosity-dependentmassbiasatfixed wecanstilltesttheluminosity-dependentbiasusingrepeated truemassandluminosity.Bothβandǫmlaretobeconstrained spectraforthesameobjectwhenitsluminositychangesasig- byourdata. Eqn.(10)impliesthatthevarianceofmassesti- nificantamountovertime. NGC5548isthemostfrequently matesatfixedtruemassandluminosityisreducedto: monitored RM AGN (Hβ only), and has been observed in Var(m |m,l)=Var(m |m)(1- ρ2), (11) differentluminosity states with a spread of ∼0.5 dex in lu- e e minosity(e.g.,Petersonetal.2004;Bentzetal. 2009b), thus where ρ2 =β2Var(l|m)/Var(me|m), and Var(...) refers to the providesanidealtestcaseforsingle-sourcevariations. varianceofadistribution.Theformaluncertaintyofthevirial In Fig. 4 we show the Hβ virial product for NGC 5548, massestimatoristhen computed using the continuum luminosity and line width measured at different luminosity states in each monitoring σ ≡ Var(m |m)= Var(m |m,l)+β2Var(l|m). (12) vir e e period, as a function of continuum luminosity. The spec- q p Ifwe assumea singlelog-normaldistributionfor p(l|m)and tral measurements were taken from Collinetal. (2006), and ǫ (withadispersionσ ),theaboveequationreducesto wehavecorrectedthecontinuumluminosityforhoststarlight ml ml using the correction provided by Bentzetal. (2009a). The σ = σ2 +β2σ2 . (13) linewidthsweremeasuredfromboththemeanandrmsspec- vir q ml l tra7 for each monitoring period. The left and right panels Notethathereσl isthetotaldispersioninlogLatfixedmass, of Fig. 4 show the virial product computed using FWHM ratherthantheportionσ′ thatisnotrespondedbyFWHMas and line dispersion, respectively, and its scaling with lumi- l inEqns.(6)and(8). nosity is the same as in the virial mass estimators provided Eqn. (10) is a rather generic form that describes the rela- by Vestergaard&Peterson (2006). The FWHM-based virial tion between virial masses and true masses and the possible productshows an average trend of increasing with luminos- luminosity-dependentbiasinvirialmasses6,andisoneofthe ity, which means that FWHM does not fully response to basicequationsinourBayesianapproach.Thevalueofβ de- the variationsin luminosity, leading to a positive bias in the pendsontherelativecontributionsfromσl′andσcorrinthelu- virial product (and thus in the virial mass estimate). This minositydispersionatfixedmass. Undertheassumptionthat trend seems to be slightly weaker when using line disper- the mean R- L relation and a linear mean relation between sioninstead. AlinearregressionanalysisusingtheBayesian FWHMandvirialvelocityarecorrectasintheadoptedvirial method of Kelly (2007) yields: β ∼0.65±0.27 (FWHM, estimators, a non-zero σ′ leads to a positive β. If the value mean);β∼0.51±0.34(FWHM,rms);β∼0.20±0.30(σ , l line ofβ approachestheslopeintheadoptedmeanR- Lrelation, mean); β ∼0.45±0.29 (σ , rms), where uncertaintiesare line thenitsuggestseitherluminosityorFWHMisapoorindica- 1σ. Whileitisinconclusivebasedonthissingleobject,there torforBLRsizeorvirialvelocityoverthenarrowdynamical issomeindicationthata positiveβ isfavored,especiallyfor rangeatfixedtrueBHmass(althoughtheycouldstillberea- the virial product based on FWHM from the mean spectra, sonableindicatorsforlargedynamicalrangesinmassandlu- which is the closest to that based on FWHM from single- minosity).Ontheotherhand,ifβissmall,thenitmeanslumi- epoch spectra. It would be important to test this for more nosityandFWHMvaryinconcordanceevenoverthenarrow 7 Strictly speaking, for single-epoch virial mass estimates, neither the 6Onecanworkoutasimilarequationforthedistributionofmeatfixedm meannorrmsspectra areavailable. However, thespectral variability dur- andFWHMw,p(me|m,w)=m+β′(w- hwim)+ǫmw.Anon-zeroσwinEqn. ingeachmonitoringperiodissmallenoughsuchthatthemeanspectrumis (7)willleadtoanon-zeroβ′andp(me|m,w)6=p(me|m).However,thisisof closetosingle-epochspectrawithinthisperiod. littlepracticalvaluesincevirialmassesareneverbinnedinFWHM. 8 SHEN&KELLY FIG. 4.—Thedependenceofthevirialproductcomputedfromluminosityandlinewidthasafunctionofluminosity,forasingleobjectNGC5548andfor Hβonly. ThedataarefromCollinetal.(2006),andarebasedonbothmeanandrmsspectraduringeachmonitoringperiod. Errorbarsrepresentmeasurement errors.Theerrorbarsinluminosityhavebeenomittedintheplotforclarity.Thecontinuumluminosityhasbeencorrectedforhoststarlightusingthecorrection providedbyBentzetal.(2009a).theblackandbluedashedlinesarethebestlinear-regressionfitsusingtheBayesianmethodofKelly (2007),formeasurements basedonmeanandrmsspectra,respectively. Left: virialproductbasedonFWHM;thedatapointforYear5(JD48954-49255)basedonthermsspectrumhas beensuppressedduetoproblematicmeasurements(e.g.,Petersonetal.2004;Collinetal.2006).Right:virialproductbasedonlinedispersionσline. 1.2 s 1.2 Error Slope b 1.2 a , <L>(cid:181) Ma 1 500 400 1.0 ml 1.0 1.0 1 BH urces 400 urces 300 0.8 0.8 0.8 So So 0.6 0.6 0.6 # of 300 # of 200 d 200 d 0.4 0.4 0.4 bserve 100 bserve 100 0.2 0.2 0.2 O 0 O 0 0.0 0.0 0.0 44.5 45.0 45.5 46.0 46.5 7.0 7.5 8.0 8.5 9.0 9.5 10.010.5 0.15 0.20 0.25 0.30 -0.1 0.0 0.1 0.2 0.3 0.4 0.7 0.8 0.9 1.0 1.1 1.2 log L [erg s-1] log MBH,vir [MO •] 11..02 s l 11..02 <logl > 11..02 s (logl ) urces 1000 urces 1000 0.8 0.8 0.8 So 100 So 100 of of 0.6 0.6 0.6 d # d # 0.4 0.4 0.4 bserve 10 bserve 10 0.2 0.2 0.2 O 1 O 1 0.0 0.0 0.0 44.5 45.0 45.5 46.0 46.5 7.0 7.5 8.0 8.5 9.0 9.5 10.010.5 0.350.400.450.500.550.60 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 0.350.400.450.500.550.60 log L [erg s-1] log MBH,vir [MO •] FIG.5.—Modelparametersforzbin2.Shownherearetheposteriordis- FIG. 6.—Posteriorchecksforzbin2. Thesolidblackhistogramsshows tributionsofsomemodelparametersandderivedquantities.Fromtop-leftin theobserveddistributions. Theredpointsanderrorbarsaremedianresults clockwiseorder: thedispersioninmassestimatesatfixedtruemassandlu- anduncertaintiesfromoursimulatedsamplesusing500randomdrawsfrom minosity,σml;theerrorslopeβ;theslopeinthemean(true)mass-luminosity theposteriordistributions. Thetopandbottompanelsshowthehistograms relationforourEddingtonratiomodel,α1;thedispersioninEddingtonratios inlinearandlogarithmicscales,respectively. forallbroad-linequasars,σ(logλ)whereλ≡Lbol/LEdd;themeanEdding- tonratioforallbroad-line quasars,hlogλi; thedispersioninluminosityat fixedtruemassinourEddingtonratiomodel,σl. Now we proceed to describe our model setup and the im- plementationoftheBayesianframework. Belowwedescribe objectswithrepeatedspectra,andforMgIIandCIVaswell. thebasicsofourmodelapproach. Moredetailsregardingthe To summarize, because luminosity is an explicit term in Bayesian approach can be found in Kellyetal. (2009) and virial mass estimators, these virial mass estimates are no Kellyetal.(2010). longer independent (and unbiased) estimates of true masses whenrestrictedtoanarrowluminosityrangeoraflux-limited a. The BHMF and luminosity distribution model. As in sample, for cases where β 6= 0. Our view of the uncer- Kellyetal. (2009, 2010), we use a mixture of log- tainties in these virial mass estimates (i.e., the scatter in normaldistributions as our modelfor the true BHMF, p(m |m), as determined in the calibrations against the RM e and a single log-normal luminosity (Eddington ratio) AGNs) is thus different from that in Kollmeieretal. (2006) distributionatfixedtrueBHmass. Themixtureoflog- andSteinhardt&Elvis(2010b). normals is flexible enough to capture the basic shape ofanyphysicalBHMF,andgreatlysimplifiesthecom- 3.2.2. ImplementingtheBayesianFramework putationasmanyintegrationscanbedoneanalytically. QUASARDEMOGRAPHICS 9 ThemodeltrueBHMFreads 47.0 dV - 1 K π (m- µ )2 Φ(m)=N k exp - k , (14) (cid:18)dz(cid:19) Xk=1 2πσk2 (cid:20) 2σk2 (cid:21) q 46.5 where m≡logM , N is the total numberof quasars, BH dsµiekasnac,nridabneσdkthPaereBKk=tH1hπMekmF=,eaa1sn.waWneddeoduinssopeteKrfisni=odns3ioglfnotighfi-ecnakontrhmtdGailfasfuetsro-- -1L [erg s]bol46.0 encewhenincreasingthenumberoflog-normalsused. og l The luminosity distribution at fixed BH mass is mod- eledas 45.5 1 [l- α - α (m- 9)]2 p(l|m)= exp - 0 1 , (15) 2πσ2 (cid:18) 2σl2 (cid:19) l 45.0 q 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 wherel≡logL, α0 andα1 describeamass-dependent log MBH/log MBH,vir [MO •] mean luminosity, and σ is the scatter in luminosityat l fixedmass. TheLFistherefore FIG.7.—Posteriorchecksforzbin2inthemass-luminosityplaneabove thefluxlimit. ThetwoblacklinesindicateEddingtonratiosof0.01and1. Theblackandredcontoursarefortheobservedandsimulateddistributions Φ(l)= Φ(m)p(l|m)dm. (16) usingvirialmasses,andthebluedashedcontourshowsthesimulateddistri- Z butionwithtruemasses. Ourmodelfitstheobserveddistributionwell,and thedistributionusingtruemassesisdifferentfromthatusingvirialmasses. b. The virial mass prescription. We assume that virial massesareunbiasedwhenaveragedoverluminosityat mass function in mass bins that are severely incomplete, as fixedtruemass(i.e.,Eqns.8,10),andwegeneratevirial small errors in the selection function can lead to large de- masses at fixed true mass andluminosityaccordingto viations in p(I =1|θ), which appears in the denominator in Eqn.(10),assumingasingleGaussian(withdispersion Equation (18). Instead, we use the luminosity derived from σml)todescribethescatterǫml atfixedmassandlumi- the i-band magnitude to ameliorate this effect, as the selec- nosity. tionfunctioniscalculatedintermsofi. It is necessary to impose some prior constraints on β and c. Theredshiftdistribution. Becausetheredshiftbinsare σ basedonthereverberationmappingdataset,asthesepa- narrow, we approximate the distribution of redshifts ml rameters are degenerate with some of the other parameters. acrossthebinasapower-law,wherethepower-lawin- Unlikemostpreviouswork,wedonotfixthevaluesofβ and dexγ isafreeparameter: σ to,say,β=0andσ =0.4dex,butuseapriordistribution ml ml (1+γ)zγ whichincorporatesouruncertaintyintheseparameters. This p(z|γ)= . (17) z1+γ- z1+γ uncertaintywillbereflectedintheprobabilitydistributionof max min themassfunction,giventheSDSSDR7dataset. Weapplied Here,zmaxandzmindefinetheupperandlowerboundary theBayesianlinearregressionmethodofKelly (2007)tothe oftheredshiftbin,respectively. reverberationmappingsample in orderto estimate the prob- ability distribution of β and σ based on this sample. The d. Theposteriordistribution p(θ|m ,l,z)is ml e methodofKelly (2007)incorporatesthemeasurementerrors N in the mass estimates, which is important when estimating p(θ|m ,l,z)∝p(θ)[p(I=1|θ)]- N p(m ,l,z|θ) (18) the amplitude of the scatter in the mass estimates. We set e e,i i i Yi=1 hlim equaltothemeanluminosityforthereverberationmap- ping sample8. We used the values of RM black hole mass where θ(π ,µ ,σ ,α ,α ,σ,β,σ ,γ) is the set of k k k 0 1 l ml (assumed to be true masses) given by Petersonetal. (2004). model parameters, N is the total number of quasars, p(θ)istheprioronθ, p(I=1|θ)istheprobabilityasa FortheHβ calibration,weusedthevalueof5100Åluminos- functionofθthatabroad-linequasarisincludedinthe ity given in Bentzetal. (2009a) and value of FWHM given flux-limited SDSS quasar sample, and the likelihood in Vestergaard&Peterson (2006); when there were multiple function p(m ,l,z|θ) is determined by Eqns. (10), measurements,weaveragedthemtogether. ForCIVweused e,i i i (14),(15)and(17). the values given in Vestergaard&Peterson (2006). For Hβ wefoundthatβ =0.16±0.1,andthattheposteriordistribu- Inthiswork,wederivethecontinuumluminosityat2500Å, tionforσ2 iswelldescribedbyascaledinverseχ2 distribu- ml l ≡logL, from the i-band magnitude according to the pre- tionwithν≈20degreesoffreedomandscaleparameters2= scription givenin Richardsetal. (2006). This is a departure 0.1.ForCIVwefoundthatβ=0.15±0.14,ν≈20,s2=0.17. fromtheapproachtakenbyKellyetal.(2010),whousedthe ForCIVthisissimilartotheusuallyquotedscatterinthemass continuumluminosityestimatedbyVestergaardetal.(2008). estimatesofs≈0.4dex,butthescatterislessforHβ,s≈0.3 However, as explained in Kellyetal. (2010), because the dex. Thisreduceduncertaintyislikelybecausewehaveused SDSSselectionfunctionisintermsofthei-bandmagnitude, they had to assume a modelfor the distribution of i at fixed 8 Ideallyoneshoulduseapopulation ofobjects withthesametrueBH luminosity,andthencalculatetheselectionfunctioninterms mass to perform linear regression using Eqn. (10), which is not available giventhelimitedsizeoftheRMsample. SoinsteadweusethewholeRM ofluminositybyaveragingoverthismodeldistribution.They sample. Nevertheless,thederivedpriorconstraintonβisweakandourre- notethatthisapproachcanleadtoinstabilityintheestimated sultsareinsensitiveontheprioronβ. 10 SHEN&KELLY 45.5 45.0 44.5 -1g s] 44.0 L [er g 43.5 o l 43.0 42.5 42.0 7.0 7.5 8.0 8.5 9.0 9.5 log MBH/log MBH,vir [MO •] FIG.8.—Thesimulatedmass-luminosityplaneforzbin2,whichextends belowthefluxlimit(theblackhorizontalline). Theredcontouristhedis- tributionbasedontrueBHmasses,andisdeterminedbyourmodelBHMF andEddingtonratiomodel. Theblackcontouristhedistributionbasedon virialBHmasses. Thefluxlimitonlyselectsthemostluminousobjectinto oursample,andthedistributionbasedonvirialBHmassesisflatterthanthe onebasedontruemassesduebothtothescatterσml andanon-zeroβ(see Eqn.10). 5100Åluminosityvalueswhicharecorrectedforhostgalaxy starlight(Bentzetal.2009a). Based on the reverberation mapping results, we impose a Cauchy prior distribution on β with mean and scale param- eters equal to those derived from the reverberationmapping data,andweimposeascaled-inverseχ2 priordistributionon σ2 withν=15degreesoffreedomandscaleparametersetto ml thatfromthereverberationmappingsample.ForMgIIweuse FIG. 9.—ModelLF(toppanel)andBHMF(bottompanel)forzbin2. thevaluesderivedforHβsincethesingle-epochvirialmasses ThedatapointsanderrorbarsarethebinnedLFandvirialBHMFestimated in§3.1. Thecolor shaded regions are the 68%percentile range from our basedonthetwolinesseemtocorrelatewitheachotherwell modelLFandBHMF.Inthebottompanel,thegreenshadedregionisforthe (e.g.,Shenetal.2011). WehaveusedaCauchypriorbecause detectable(i.e.,abovethefluxlimit)trueBHMF,andthemagentaoneisfor ithassignificantlymoreprobabilityinthetailsthantheusual allthebroad-linequasars.Theturnoverofthemagentalinebelow∼108M⊙ Gaussiandistribution,makingourpriorassumptionsmorero- isafeatureconstrainedbythedataandourmodel,i.e.,ifthereweremore lowermassBHs,itwouldbedifficulttofittheobserveddistributioninthe bust. Similarly, we reduced the degrees of freedom for the mass-luminosityplane(cf.Fig.8). prior on σ2 compared to the reverberationmapping sample ml inordertoincreaseourprioruncertaintyonσ . Thischoice ml We use zbin2 as an example to demonstrate the infor- ofpriorassumesanuncertaintyonσ of≈20%. ml As in Kellyetal. (2009) and Kellyetal. (2010), we use a mation that we can retrieve from the posterior distributions. Markov Chain Monte Carlo (MCMC) sampler algorithm to ThisbinusesthemostreliableHβ linetoestimatevirialBH obtainrandomdrawsofθaccordingtoEqn.(18)andthusthe masses;italsohasnegligiblehostgalaxycontaminationcom- posteriordistributionofmodelparametersgiventheobserved paredwithzbin1. Thereforetheconstraintsforthisbinare data in the virial mass-luminosity plane. Our MCMC sam- expectedtobethemostrobust. pler employs a combination of Metropolis-Hastingsupdates Fig.5showstheposteriordistributionsofourmodelparam- eters for zbin2. These parameters are tightly constrained, withparalleltempering. ThereaderisreferredtoKellyetal. (2009)andKellyetal.(2010)forfurtherdetails. althoughdegeneracydoesexistamongtheseparameters. Different from Kellyetal. (2009) and Kellyetal. (2010), Fig. 6 presents the posterior checks of our model against wemodelthedatainindividualredshiftbinsinsteadofforthe the data. The black histograms show the distribution of ob- whole sample. We treat each redshiftbin as an independent served luminosities and virial masses. The points and error dataset. Thisallowsustoexplorepossibleredshiftevolution bars are the median and 68% percentile for simulated sam- ofourmodelparameters,aswellasthesensitivityonchanges plesgeneratedusingrandomdrawsfromtheposteriordistri- bution. Thisensuresthatourmodelreproducestheobserved in the detection luminosity threshold and the specific virial mass estimator used. The caveat is that the constraints are luminosityandvirialmassdistributions. Fig.7furthershows generallyweakergivenless data pointsin eachbin, and that thecomparisonbetweenmodelpredictionanddatainthetwo- theconstrainedparametersdonotnecessarilyvarysmoothly dimensional mass-luminosity plane, where the model is the acrossadjacentredshiftbins. one that has the maximum posterior probability. The black and red contours show the observed and model-predicted 4. RESULTSOFTHEBAYESIANAPPROACH joint-distributionsof luminosity and virial mass in our sam- ple, while the blue contours show that for the true masses. 4.1. zbin2asanexample The true masses are scattered and biased according to Eqn.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.